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Introduction
• Donald Hebb discovered a  theory of “cells that fire together wire 

together.”
o When pre-synaptic cell and post-synaptic cell fire at 

same time, overall synaptic strength tends to be 
stronger.

o When  post-synaptic cell fires before  pre-synaptic 
cell, strength tends to be weaker.

• Forms of homeostatic plasticity are ways to stabilize properties of 
Hebbian plasticity.

o Regulate neural excitement, stabilize synaptic 
strength, and influence rate of synapses.

• We attempted to create a program that represented a model of a 
neural network .

o We first implemented Hebbian plasticity into our 
program, then we gathered and plotted the average 
grades and the standard deviations in two heat graphs 
based on assigned weights “a” and “b”. 

o Then we implemented homeostatic plasticity also 
gathering and plotting our results in heat graphs.

o Finally we implemented both rules into our program 
gathering and plotting our results in heat graphs.

Methods and Prodedures
Using MatLab, a computer programming software, we 
modeled a five layer binary Feed Forward Neural Network 
(FFN).
By coding weights and probabilities, we were able to model 

how a FFN may transmit information. Weights were either 
one or zero, and they represented if a neuron connection 
fired into the next layer. The probabilities were a random 
string of numbers between zero and one that determined 
whether a weight for a particular connection was one or zero 
(using a threshold for the probabilities). 
Learning rules then had to be implemented into the model. 

These learning rules affected the probabilities that then 
determined the weights, which then determined firing rates. 
In order to develop the learning rules fully, a method to 
weaken and strengthen firing rates had to be created. We 
achieved this by using two values, “a” and “b” between zero 
and one. We used “a” to weaken the probability of a weight 
being one, while using “b” to strengthen the probability of a 
weight being one. For an example of “a”, if a neuron in the 
pre-synaptic layer was zero, but a neuron in the post-
synaptic layer was one, then the probability (P) of a synapse 
was changed using the formula P = “a”*P effectively cutting 
the probability and updating it to “P*”a””. For “b”, if a 
neuron in the pre-synaptic layer was one, and a neuron in 
post-synaptic layer was also one, then the probability was 
increased by “”b”(1-P)”, making P = P+”b”(1-P).  By using 
both the “a” and “b” values we were able to test the network 
model using three combinations of learning rules: Hebbian, 
Homeostatic, and a hybrid rule consisting of both Hebbian
and Homeostatic. The script used, determined the weights 
based on the learning rules, tested all values of “a” and “b” 
between zero and one in increments of one tenth, and output 
heat maps that displayed average graded values, and average 
standard deviations.
We then observed the graded heat map matrix along-side a 
heat map matrix that displayed the standard deviation of 
grades for each combination of “a” and “b”, and from this 
we made observations of our final results. 
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Results
Hebbian plasticity
• The average grades tended to be highest when “a” was less than 0.6 

for all “b” values.
• The standard deviations were higher when “a” was 0.5 or less for all 

“b” values and lower when “a” was greater than 0.6 for all “b” 
values.

Homeostatic plasticity
• The average grades tended to be the same as the average grades 

using the Hebbian plasticity rule when “a” was greater than 0.6 for 
all “b” values.

• The average grades were lowest when “a” was less than 0.6 for all 
“b” values.

• The standard deviations were highest and higher than the Hebbian
rule when “a” was 0.5 or less for all “b” values and lowest when “a” 
was greater than 0.5 for all “b” values.

Hybrid
• The average grades were highest and higher than the average grades 

of both the Hebbian and the Homeostatic rules’ average grade when 
“a” was less than 0.5 for all “b” values.

• The average grades were lowest when “a” was greater than 0.5 for 
all “b” values.

• The standard deviations were highest and less than the average 
grades of both the Hebbian and the Homeostatic rules’ standard 
deviations when “a” was less than 0.5 for all “b” values.

• The standard deviations were lowest when “a” was greater than 0.5 
for all “b” values.

Conclusion
We noticed that the Hebbian plasticity and the Homeostatic plasticity both improved 
the Feed Forward Network in their own ways. The Hebbian rule got higher grades but 
had high standard deviations while the Homeostatic rule got lower grades but had low 
standard deviations, thus stabilizing the Feed Forward Network. Our biggest 
observation was that when combining both rules, our hybrid network got the highest 
grades out of any of the test while at the same time maintaining low standard 
deviations.

Above: Heat map of the 
average grades using the 
Hebbian rule. Below: 
Heat map of the average 
standard deviations using 
the Hebbian rule.

Left: Heat map of the 
average grades using 
Homeostatic plasticity. 
Right: Heat map of the 
average standard deviations 
using Homeostatic plasticity.

Left: Heat map of the 
average grade using both 
the Hebbian and the 
Homeostatic plasticity 
rules. Right: Heat map of 
the average standard 
deviation using both the 
Hebbian and the 
Homeostatic rules.


