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Abstract

We review simple connectionist and firing rate models for mutually inhibiting pools of
neurons that discriminate between pairs of stimuli. Both are two-dimensional nonlinear
stochastic ordinary differential equations, and although they differ in how inputs and stim-
uli enter, we show that they are equivalent under state variable and parameter coordinate
changes. A key parameter is gain: the maximum slope of the sigmoidal activation func-
tion. We develop piecewise-linear and purely linear models, and one-dimensional reductions
to Ornstein-Uhlenbeck processes that can be viewed as linear filters, and show that reac-
tion time and error rate statistics are well approximated by these simpler models. We then
pose and solve the optimal gain problem for the Ornstein-Uhlenbeck processes, finding ex-
plicit gain schedules that minimize error rates for time-varying stimuli. We relate these to
time courses of norepinephrine release in cortical areas, and argue that transient firing rate
changes in the brainstem nucleus locus coeruleus may be responsible for approximate gain
optimization.

1 Introduction

The psychological and neural bases of decision making are active areas of inquiry in cognitive
science [Sch01a, GS01, SSB02, GS02, SN01, MG01, Sch01b, Sto60, Lam68, Rat78, RVZM99,
UM01, RS02, XJ02]. There is a wealth of data on simple decision tasks which require dis-
crimination among alternative stimuli as quickly and accurately as possible. Typically, this
discriminatory process has been modelled as a competition among different neural populations,
each representing alternate interpretations of the current stimulus [CDM90, UM01]. Recent
direct recordings in visual and motor areas of monkeys performing sensory discrimination tasks
support this interpretation by revealing that, following training, certain ‘decision’ neurons be-
come selective for different stimulus alternatives, and upon presentation of the relevant stimulus
their firing rates gradually increase accordingly; when these rates cross thresholds, the corre-
sponding behavioral response is initiated (e.g. [Sch01a, GS01, SSB02, RS02, GS02]). This neural
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evidence adds to behavioral evidence noted below, suggesting that decisions are made by com-
paring integrated ‘weights of evidence,’ encoded by the firing rates of neural groups. Here, we
explore the computational mechanisms required to optimize such a process.

The stimuli relevant to making a decision are often not static: their saliences may change over
time. In the simplest case, a change occurs only at the moment when the stimulus itself appears.
This is typically modelled in simulations of decision tasks (e.g., in [CH94, BH01, CNB+02],
cf. [Lam68]) by dividing the task into two distinct periods: a preparatory period, in which
no stimulus is present, and a trial period, in which a stimulus of constant discriminability is
presented. Alternatively, stimulus discriminability may change in a stepwise manner or vary
continuously.

The following specific example motivates our analysis of two specific cases in Section 2.5. In
the ‘moving dots’ paradigm of the two alternative forced choice task [BSNM93, SN01, GS02] a
display of moving dots is presented, and the subject must indicate whether a majority of dots
is moving to the right or the left. In the simplest case, the subject focuses on a neutral fixation
point during the preparatory period, after which the dots appear, with a certain ‘coherent’
fraction moving either left or right, and the rest moving randomly. A variant is obtained by
showing a zero coherence display of dots during the preparatory period, and suddenly increasing
coherence to a fixed value.

Even if external stimuli have constant strengths, their representations in neural populations
that decide between alternative hypotheses may gradually rise, due to accumulating activity in
input layers, fluctuations in attention, or both [Moz88, CSSM92, UCSS+99, GHR+02]. Another
possible source of time varying salience is the increasing noise levels that may accompany higher
firing rates. A richer situation, in which the stimulus salience increases and decreases over time,
is explored in [HPS02]. A focus of the present paper is how stimuli with time dependent salience
can be optimally processed in simple neurally-based models of decision networks. We study the
reduction of such networks to linearized, one-dimensional approximations (cf. [UM01, BH01,
BBM+04]) for which optimality conditions can be fully characterized, and identify two distinct
mechanisms, one involving intrinsic properties of decision networks and the other involving
external modulation, that can implement optimal processing of time-varying stimuli.

Optimality principles have found wide application in psychology and neuroscience (e.g. [BRdRvSW91,
And90, FLBdRvS01]). In particular, Stone applied the optimal Sequential Probability Ratio
Test (SPRT) to model behavioral data in a two-alternative forced choice task [Sto60]. This
was followed by the extensive work of Laming [Lam68]. The SPRT computes time-dependent
likelihood ratios between the probabilities of two competing hypotheses, a procedure equivalent
to the signal processing strategy that maximizes signal-to-noise ratio in the difference between
two incoming stimuli. For stimuli with constant signal-to-noise ratios, the SPRT is equivalent,
in an appropriate continuum limit, to the constant-drift diffusion model, which has been shown
by Ratcliff and others to fit a wide variety of behavioral data (see [Rat78, RVZM99] and ref-
erences therein) and also to describe the dynamics of neural firing rates in sensori-motor brain
areas [SSB02, GS02], cf. [SR04]. Specifically, in [GS02], the notion of reward rate is introduced
for the constant-drift diffusion model, and [BBM+04] shows that higher performing subjects do
optimize this quantity in a specific behavioral task. However, although [Lam68] does allow for
accumulation of noise to have occurred before stimulus presentation (see Laming’s appendix A7),
in all these studies the decision process is modelled only after presentation of a stimulus having
constant signal-to-noise ratio; furthermore, the parameters describing processing of incoming
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information are not explicitly allowed to vary in time.
In this paper we show how models of mutually inhibiting neural populations can make nearly

optimal decisions about the identity of time-varying stimuli. This is accomplished via dynamical
adjustments in an effective gain parameter for the linearized population dynamics. The gain
determines the sensitivity of (equilibrium) population firing rates to changes in averaged input
currents to the population, and the word ‘effective’ is used here because these changes can result
either from transient variations in the gain parameter describing this sensitivity or directly from
the nonlinearities of neural input-output functions. There is much current research into neural
mechanisms for the modulation of gain in neural populations, identifying such factors as levels
of norepinephrine [UCSS+99] and the strength of fluctuations in individual neurons comprising
the population (e.g. [CAR02, AT91, BCFA01]). In particular, [SKD99] proposes a mechanism in
which frequency-current curves of individual neurons adapt to match operating ranges to neural
inputs, via intracellular calcium signals. This may be viewed as a biophysical implementation
of the earlier ‘automatic gain control’ (see Eqn. (9) of [Gro88] and references therein), which is
implemented via multiplicative ‘shunting’ terms in neural network models and also keeps neural
units in the sensitive regimes of their input-output functions. Gain plays a different role in the
present paper: we identify, for three different models, the distinct time-dependent (effective)
gain schedules which implement optimal processing strategies for time-dependent signals. These
provide predictions for gain manipulations that diverse neural mechanisms may implement to
improve task performance.

The balance of the paper proceeds as follows. In Section 2 we introduce the forced and free
response decision tasks, and three types of stochastic differential equation (SDE) models for
these tasks. We show that two of these are related via a coordinate transformation, and discuss
linearized and one-dimensional reductions of them, exploring the accuracy of these reductions in
two rather general cases. In the following Section 3, we compute time dependent values of gain
that optimize signal processing in the one-dimensional models. This involves calculating gain
functions that enable them to implement the classical signal processing notion of matched filters.
Section 4 interprets these results in terms of cortical norepinephrine (NE) release mediated by
the brainstem nucleus locus coeruleus (LC), showing that LC and NE dynamics indeed appear
to approximate optimal time courses. Section 5 concludes the paper with a brief discussion.

Although we only consider simple models of a prototypical cognitive task, we believe that this
paper is appropriate for a volume celebrating the centenary of John von Neumann’s birth. Early
in 1956 von Neumann was working on a manuscript in preparation for the Silliman memorial
lectures at Yale, which he had been invited to deliver that Spring. Unfortunately, his final illness
intervened and he entered the Walter Reed Hospital in April, where he remained until his death
in February 1957. The lectures were never given, but his remarkable book, The Computer and

the Brain [Neu58], remains among his final work. In it he makes elegant and simple estimates
of human neural computational capacity based on notions drawn from the theory of analog and
digital automata (which he had largely developed), and from information theory. Although
neuronal spikes appear as 1’s (and their absence as 0’s), he argues that neural computation is
necessarily inaccurate and noisy, and hence must be ‘statistical’ rather than ‘digital.’ He points
out that firing rates in sensory neurons tend to be monotone functions of stimulus strength and,
as an early proponent of rate coding, he can be seen as pioneering the class of firing rate models
treated here.
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2 Models of decision tasks

2.1 Decision tasks: the forced and free response protocols

We consider two distinct tasks, both widely used in cognitive neuroscience, in each of which a
decision maker must discriminate between two alternatives, henceforth denoted ‘1’ and ‘2’. The
sensory information itself, as well as its neural representation, is assumed to be noisy, so that
discrimination errors occur. The first task is the forced-response paradigm, in which subjects
must respond at a fixed time T following stimulus onset with their best estimate of which
alternative (1 or 2) was presented. Performance on this task is measured by the error rate,
or one minus the fraction of correct responses. We will also refer to this as the interrogation

protocol, noting that it is distinct from deadlining (not considered further here), in which subjects
are apprised in advance of a fixed, maximal time before which all responses must be made.

In the second, free-response paradigm, decisions are not demanded at a preset time, but are
given when the subject feels that sufficient evidence in favor of one alternative has accumulated.
Since the sensory evidence is noisy, response times vary from trial to trial and performance
under the free-response condition is characterised by both reaction times and error rates. Here,
optimality requires an appropriate balance of speed and accuracy [Wic77, GS02, BBM+04].

Following [UM01] and others, we shall model both these tasks by a pair of competing (mu-
tually inhibitory) neural populations, each of which is selectively responsive to sensory input
corresponding to one of the two alternatives. In the forced-response protocol, the neural pop-
ulation with the highest firing rate at time T determines the decision. For free responses, the
first of the two populations to cross a firing rate threshold establishes the choice. We do not
address the (interesting) question of how thresholds are set or threshold crossings are detected.

2.2 Two dimensional nonlinear models and the neural gain parameter

In this section we consider the dynamics of two mutually inhibiting neural populations, each
of which receives noisy sensory input from components of the stimulus representing one of the
alternatives. We describe two models for such populations, both in wide use, and both in the
form of systems of stochastic ordinary differential equations (SDEs) [Arn74].

The first of these, the leaky integrator connectionist model [McC79, UM01], is:

τc
dx1

dt
= −x1 − βfg(t)(x2) + a1(t) +

c(t)√
2

η1
t , (1)

τc
dx2

dt
= −x2 − βfg(t)(x1) + a2(t) +

c(t)√
2

η2
t , (2)

where the state variables xj(t) denote the mean input currents to cell bodies of the jth neural
population, the integration implicit in the differential equations modelling temporal summation
of dendritic synaptic inputs ([Gro88] and references therein). Additionally, the parameter β sets
the strength of mutual inhibition via population firing rates fg(t)(xj(t)), where fg(t)(·) is the
sigmoidal ‘activation’ (or ‘frequency-current’ or neural ‘input-output’) function to be described
shortly. The stimulus signal received by each population is aj(t), and the noise terms polluting

this signal are c(t)ηj
t , where c(t) sets r.m.s. noise strength and the ηj

t are (independent) white
noise processes with variance E(ηj

t − ηj
t′)

2 = δ(t − t′). The time constant τc reflects the rate
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at which neural activities decay in the absence of inputs and respond to input changes. Under
the free-response paradigm a decision is made and the response initiated when the firing rate
fg(t)(xj) of either population first exceeds a preset threshold θj ; it is normally assumed that
θ1 = θ2 = θ. For the interrogation protocol, the population with greatest activity (and also
firing rate) at time T determines the decision. We also assume that activities decay to zero after
response and prior to the next trial, so that the initial conditions for (1-2) are xj(0) = 0.

The subscript in fg(t)(·) indicates dependence on the time-varying gain, or sensitivity, g(t) of
the neural populations: gain sets the slope of the activation function. For example, the logistic
function

fg(t)(x) =
1

1 + exp (−4g(t) (x − b))
=

1

2
[1 + tanh (2g(t)(x − b))] (3)

has maximal slope g(t) (see Fig. 1, left). While this specific form is not required for the results
derived below, we do assume that fg takes its time-dependent maximal slope g(t) at some
time-independent point, as for (3).

As already mentioned, the connectionist model describes the time evolution of current inputs.
A second model is derived in [WC72], cf. [Hop84, Abb91, GK02], in which the firing rates of
neural populations are themselves integrated over time. First we give the linearized version of
this firing rate model:

τc
dy1

dt
= −y1 + f l

g(t)

(

−βy2 + a1(t) +
c(t)√

2
η1

t

)

, (4)

τc
dy2

dt
= −y2 + f l

g(t)

(

−βy1 + a2(t) +
c(t)√

2
η2

t

)

. (5)

Here, the yj are the firing rates of population j and other terms are as above. The linear function

f l
g(t)(x) =

1

2
+ g(t) (x − b) , (6)

derives from replacing the logistic (or any similar monotonic) function by the linear approxima-
tion f l

g(t)(·) around its point of maximal slope. Note that the firing rate yj of the jth population

approaches an equilibrium set by the input currents to this population, passed through the (lin-
earized) frequency-current function. This model must be reformulated to allow for nonlinear
functions fg(t), because white noise does not make sense as an argument in such a function,
cf. [Gar85]. In particular, we assume that, as in (4-5), the strength of firing rate fluctuations in
response to noise in inputs scales with g(t) (i.e., with the maximal sensitivity of firing rates to
the deterministic component of the input). This yields

τc
dy1

dt
= −y1 + fg(t) (−βy2 + a1(t)) + g(t)

c(t)√
2

η1
t , (7)

τc
dy2

dt
= −y2 + fg(t) (−βy1 + a2(t)) + g(t)

c(t)√
2

η2
t , (8)

which is valid for all f(·) and reduces to the form (4-5) for linear f(·). Note that the firing rate
model (7-8) is a standard two-unit recurrent neural network with additive noise [HKP91]. As
above, we take initial conditions yj(0) = 0, and note that threshold-crossing in the free-response
case is detected directly via yj = θj .
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For the questions of optimal stimulus processing addressed here, the most important dis-
tinction between the connectionist (1-2) and firing rate (4-5)-(7-8) models is whether the inputs
aj(t)+c(t)/

√
2ηj

t enter as separate additive terms, as in the former, or as arguments to the activa-
tion function fg(t), as in the latter. As explained at the end of Section 3, this determines whether
changes in gain directly adjust the sensitivity of neural units to all inputs or just to feedback from
the competing unit, and it results in qualitatively different predictions for optimal gain schedules
in the two models. While we expect that future work on low-dimensional descriptions of the pop-
ulation dynamics of spiking neurons (extending, e.g., [BCFA01, XJ02, OKKS00, SM02, Erm94]
to include neurotransmitter effects) will result in more refined models, here we study the ‘simple’
connectionist and firing rate descriptions. Throughout, we use variables xj in referring to the
former and yj to the latter.

2.3 Equivalence of the firing rate and connectionist models

We now show that the firing rate and connectionist models are equivalent under a (generally time-
dependent) coordinate change and corresponding adjustment of parameters, initial conditions,
and thresholds. Specifically, for any activation function that is odd around some input value,
such as (3), (7-8) can be written in the form (1-2). Hence, for every parameterization of the
firing rate model, there is a connectionist model that produces identical trajectories as well as
error rate and reaction time statistics, and vice-versa. This shows that the two models are
effectively equivalent, up to parameterization. However, in Section 3 below we demonstrate
that, because of the different ways that gain g(t) enters them, their optimal gain trajectories
differ significantly.

Starting with Eqns. (7-8), we extend the S-Σ exchange transformation of Grossberg [Gro88]
to define the new coordinates

ỹ1 = 2b + βy1 − a2 , ỹ2 = 2b + βy2 − a1 , (9)

so that −βy1 + a2 = −ỹ1 + 2b and −βy2 + a1 = −ỹ2 + 2b. In terms of these (7-8) become

τc
dỹ1

dt
= β

[

− 1

β
(a2 + ỹ1 − 2b) + fg(t)(−ỹ2 + 2b) + g(t)

c(t)√
2

η1
t

]

− da2

dt
, (10)

τc
dỹ2

dt
= β

[

− 1

β
(a1 + ỹ2 − 2b) + fg(t)(−ỹ1 + 2b) + g(t)

c(t)√
2

η2
t

]

− da1

dt
, (11)

and using the following property of the logistic activation function (3):

fg(t)(−ξ + 2b) =
1

2
[1 + tanh (2g(t)[−ξ + 2b − b])] =

1

2
[1 + tanh (−2g(t)[ξ − b])]

=
1

2
[1 − tanh (2g(t)[ξ − b])] = 1 − 1

2
[1 + tanh (2g(t)[ξ − b])]

= 1 − fg(t)(ξ) , (12)

(10-11) become

τc
dỹ1

dt
= −ỹ1 − βfg(t)(ỹ2) − a2 − ȧ2 + 2b + β + βg(t)

c(t)√
2

η1
t ,

τc
dỹ2

dt
= −ỹ2 − βfg(t)(ỹ1) − a1 − ȧ1 + 2b + β + βg(t)

c(t)√
2

η2
t .
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Figure 1: (left) Comparison of logistic and piecewise linear activation functions; g = 1, b = 0.5.
(right) Comparison of logistic and piecewise linear vectorfields F (y1, y2) and F pw(y1, y2) for the
piecewise-linear firing rate model (15-16): the difference F (y1, y2)− Fpw(y1, y2) is plotted. Also
shown for reference are the nine phase space tiles described in Figure 2. Here additionally τc = 1,
β = 1, a1 = 1.03, a2 = 0.97.

This SDE has the same form as (1-2) with parameters mapped as follows:

a1 7→ 2b + β − a2 − ȧ2 , a2 7→ 2b + β − a1 − ȧ1 . (13)

The firing rate model (7-8) therefore produces identical statistics to the connectionist model
(1-2) with appropriately remapped parameters and state variables. Note that thresholds and
initial conditions for the firing rate variables y1, y2 must be transformed under (9) to apply to
the equivalent connectionist model, that a1 and a2 are interchanged in the inputs, and that the
noise terms are multiplied by gain g(t).

2.4 Piecewise linear approximations

As in [UM01, BH01], Eqn. (3) may approximated by a piecewise linear function:

fg(t)(ξ) ≈ fpw
g(t)(ξ) =







0 for ξ ∈ (−∞, b − 1
2g ]

1
2 + g(t)(ξ − b) for ξ ∈ [b − 1

2g , b + 1
2g ]

1 for ξ ∈ [b + 1
2g ,∞)

, (14)

as illustrated in Fig. 1. Note that our choice to set the slope of f pw
g(t) in its central domain equal

to the maximal slope g(t) of the nonlinear function fg(t) does not minimize the distance between
the two functions in the L∞ or L2 norms. The best L∞ match is obtained by setting the maximal
slope of fpw

g(t) equal to 0.71g(t), and in L2 by a g(t)-dependent value ranging between 0.72g(t)

and 0.76g(t) (for g(t) between 0.25 and 3.) However, all these choices result in similar error rate
and reaction time statistics, and we use (14) in what follows.
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τc dy1/dt = -y1 + g(t) [ - β y2 + a1(t)]
+ ½ - g(t) b

τc dy2/dt = -y2 + g(t) [ - β y2 + a2(t)]
+ ½ - g(t) b

τc dy1/dt = -y1

τc dy2/dt = -y2 + g(t) [ - β y2 + a2(t)]
+ ½ - g(t) b

τc dy1/dt = -y1 + 1
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+ ½ - g(t) b

τc dy1/dt = -y1 + 1
τc dy2/dt = -y2 + 1

τc dy1/dt = -y1 + g(t) [ - β y2 + a1(t) ]
+ ½ - g(t) b

τc dy2/dt = -y2 + 1

τc dy1/dt = -y1

τc dy2/dt = -y2 + 1
τc dy1/dt = -y1

τc dy2/dt = -y2
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τc dy1/dt = -y1 + 1
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β y2 = a1(t) - b + 1/[2g(t)]
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β y1 = a2(t) - b - 1/[2g(t)] β y1 = a2(t) - b + 1/[2g(t)]

1 2 3

4 5 6

7 8 9

Figure 2: The piecewise linear vectorfield of the firing rate model (15-16). The central tile is
surrounded by a solid box.

For ease of reference, we rewrite Eqns. (7-8) following piecewise linearization:

τc
dy1

dt
= −y1 + fpw

g(t) (−βy2 + a1(t)) + g(t)
c(t)√

2
η1

t , (15)

τc
dy2

dt
= −y2 + fpw

g(t) (−βy1 + a2(t)) + g(t)
c(t)√

2
η2

t . (16)

The difference between the vectorfield of the fully nonlinear model (7-8) and that of (15-16) is
illustrated in Fig. 1 (right) for a specific parameter choice. In Sect. 2.6 below, we shall explicitly
compare reaction times and error rates predicted by these two models.

The (y1, y2) phase space of the piecewise linear firing rate model (and of the analogous
connectionist model) is tiled by nine regions divided by pairs of horizontal and vertical lines at
the break points of fpw

g , each having a distinct linear vectorfield: see Fig. 2. In the following
section, we will describe two cases in which this tiled structure can be used to reduce Eqns. (7-8)
to a one-dimensional system.

2.5 Representing decision dynamics in one dimension

As discussed above and in [UM01], in the forced response protocol, the choice j = 1 or 2 is
made according to which of the two neural populations has the greatest activity or firing rate
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Figure 3: Reduction to one dimension. The coordinate y (or x) of Eqn. (17) parameterizes
the decision manifold M (see text): the invariant manifold containing the fixed point indicated
by the square. In the free response protocol, collapse of noisy solutions along M is required
for accurate description in one dimension (cf. Figs. 4 and 5 (right)) so that sample paths
(dotted line and point) cross thresholds arbitrarily close to the intersections of M with the
thresholds yj = θ. This is not required for the forced response/interrogation protocol, in which
the probability density p(y, t) is simply cut along y1 = y2 at t = T .

at interrogation time T . Therefore, knowledge of the difference

y(T )
4
= y1(T ) − y2(T ) or x(T )

4
= x1(T ) − x2(T ) (17)

determines the outcome and reduction of the original two-dimensional problem to a single vari-
able does not inherently imply any loss in accuracy. For example, if the difference in firing
rates is described by a time-dependent probability density p(y, t) (whose distribution represents
variability across behavioral trials), then the error rate at interrogation time T is

ER =

∫
∞

0
p(y, T )dy (18)

if alternative 2 was presented (that is, if a2 > a1 for t > ts), and

ER =

∫ 0

−∞

p(y, T )dy (19)

if alternative 1 was presented. Similar conclusions hold for the connectionist model.
For the free choice protocol the situation is more subtle. The single variable x or y is

sufficient to characterize the decision only if the probability density of solutions to (7-8) or (1-2)
has approximately collapsed along a one-dimensional ‘decision manifold’ M by the time the
threshold is crossed; see Fig. 3. In this sketch, the decision manifold, parameterized by y, is
the unstable, center or weak stable manifold [GH83] of the indicated fixed point, which, for the
linearized system, coincides with its eigenspace.

The existence of center manifolds M for SDEs with additive noise, such as those consid-
ered here, has been proven rather generally: see [Box91] and [Arn98, Chap. 7]; also [KW83]
for an early analysis and explicit examples. However, here we consider only the fully linear
and piecewise linear systems, for which the ‘diagonal’ coordinates y = y1 − y2, ỹ = y1 + y2
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and assumption of independent white noise processes decouple the components of (7-8) (and
analogously of (1-2)) [BBM+04], and so we do not need the full power of these results.

For collapse to M to occur, the eigenvalue characterizing dynamics normal to the manifold
must be sufficiently negative compared with the other eigenvalue and the noise strength c, so
that the joint probabiblity density p(y1, y2, t) rapidly concentrates near M and a substantial
majority of sample paths crosses the thresholds xj = θ (or yj = θ) near their intersections with
M [UM01, BH01, BBM+04]. These requirements are met by two distinct parameter sets to be
introduced below, and in Section 2.6 we compare the resulting reaction times and error rates
determined from one-dimensional reductions with those of the original two-dimensional models.

2.5.1 Dimension reduction and transient gain in two simple cases

In two cases, a simple equation for the evolution of x(t) or y(t) may be derived. These cases
are characterized by a dominant proportion of solutions to (15-16) (i.e., for ‘most’ realizations
of the noise processes ηj(t)) (i) being confined to a single tile for the duration of the decision
process or (ii) ‘jumping’ together between tiles. The first of these situations occurs for ‘case 1’
parameter sets, in which, for example, the onset of salience (i.e., a1 6= a2) in input currents is
accompanied by large transients in the magnitude of these inputs. The second ‘case 2’ occurs
for stimuli in which salience appears without such transients in magnitude. We now consider
these cases in detail for the firing rate model.

Case 1: Trajectories confined to the central tile, gain parameter directly modulated

The central tile of the firing rate phase plane, where both functions f pw
g(t)(·) appearing in

Eqns. (15-16) are linearly increasing, is defined by βy1 ∈
[

a2(t) − b − 1
2g(t) , a2(t) − b + 1

2g(t)

]

and βy2 ∈
[

a1(t) − b − 1
2g(t) , a1(t) − b + 1

2g(t)

]

. If

b − 1

2g(t)
< a1(t), a2(t) < b +

1

2g(t)
, (20)

then the central tile always contains the origin and some part of the first quadrant (note that
this quadrant is invariant under the deterministic part of Eqns. (7-8) if f is non-negative) so
that decision dynamics starting at the origin may (for suitable choices of other parameters) take
place entirely within the central tile. For example, if b = 0.5 and 0 < g(t) ≤ 1, then a1(t), a2(t)
may take values between 0 and 1 while still satisfying (20).

Fig. 4 shows a sample of solutions of the piecewise-linearized firing rate model for the piece-
wise constant parameters g(t) = {0.3, t < ts; 1, t ≥ ts}, a1(t) = {1, t ≤ ts; 1.03, t > ts},
a2(t) = {1, t ≤ ts; 0.97, t > ts}, c(t) ≡ 0.09

√
2, b = 0.5, τc = 1, θ = 0.725, ts = 10 and β = 1.

Note that stimuli aj(t) 6= 0 are present throughout, but that coherence (a1(t) 6= a2(t)) appears
in the inputs aj only at t = ts, so that times t < ts make up the preparatory phase men-
tioned in the introduction and the situation corresponds to the introduction of coherence into
an entirely random pattern. Assuming that decision thresholds are set within the boundaries
of the central tile or that the interrogation time T is sufficiently small so that only a negligible
proportion of solutions have left this tile, solutions are effectively confined to the central tile for

10
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Figure 4: Case 1: Solutions confined to central tile. Scatter plot of trajectories both at the end
of the preparatory period and hence at the moment of stimulus onset ts (left) and during the
stimulus (t = ts + 2, right). The tiling of the plane is shown with dot-dashed lines; cf. Fig. 2;
the central tile is outlined in solid and extends outside the plotted domain in the left panel.
Parameter values are given in text. Also shown are nullclines for Eqns. (15-16) as thin solid
lines. The lower panels show stimuli aj(t) and gain g(t) as functions of time.

all times of interest. This behavior characterizes ‘case 1’ parameter sets, for which subtraction
of Eqns. (15-16) yields the one-dimensional SDE

τc
dy

dt
= −y + g(t) (βy + a(t)) + g(t)c(t)ηt (firing rate model) , (21)

where we define the net rate of incoming evidence as

a(t) = a1(t) − a2(t) . (22)

We note that transient gain values in this case result from modifications to the firing rate function
itself, as solutions explore only the central region of this function in which it is practically linear.
This is the ‘external’ mechanism of dynamic gain change discussed in the Introduction.

For future reference, we also note that an analytical expression for the density of reaction
times may be derived if the parameters in (21) are constant (i.e., a(t) ≡ a, c(t) ≡ c) and the

11



gain ‘balances’ the decay: e.g., g(t) ≡ g = 1 in (21) (see, e.g., [RVZM99]). In this case, (21)
simplifies to a constant drift diffustion process and the probability that a trajectory first escapes
the interval [−θ̄, θ̄] at a time RT = inf{t : |y(t)| > θ̄} from initial condition y(0) = 0 has density

p(RT ) =
πc2

θ̄2
e−

a2 RT

2c2

(

e−
θ̄a

c2 + e
θ̄a

c2

) ∞∑

k=1

k sin

(
kπ

2

)

exp

(−k2π2c2RT

8θ̄2

)

. (23)

Here ±θ̄ correspond to the intersections of the decision manifold M with the thresholds yj = θ
of the two-dimensional process (Fig. 3). Eqn. (23) may be extended to account for distributed
initial conditions y(0) 6= 0 and other generalizations [RVZM99], but we do not use such extensions
here.

Similar considerations yield the reduction of the connectionist model restricted to its respec-
tive central tile:

τc
dx

dt
= −x + βg(t)x + a(t) + c(t)ηt (connectionist model) . (24)

Note that gain multiplies the last three terms in (21), but only the second in (24).

Case 2: Trajectories switch tiles, changing effective gain

We now consider the case of stimuli aj(t) that ‘suddenly’ turn on from zero at time ts while the
gain parameter g(t) ≡ g remains constant, and show how stimulus onset itself can give rise to a
time-dependent one-dimensional reduction that resembles the reduction to (21) obtained above.
This corresponds to appearance of a partially coherent stimulus replacing a fixation spot. Since
a1(t) = a2(t) = 0 for t ≤ ts, in this period there is a stable fixed point at (0, 0) if b ≥ 1

2g . If

b = 1
2g , the situation simplifies: while t ≤ ts, (0, 0) lies exactly at the corner of tile 9 (see Fig. 2),

to which tile solutions are confined (modulo noise effects). At stimulus onset ts, tile boundaries
shift, so that, for appropriate choices of a1(t), a2(t) > 1

2g(t) − b for t > ts, the origin and the

cluster of solutions in its neighborhood at time t = t+s , suddenly finds itself in the central tile
5. For concreteness, we fix parameters meeting the requirements b = 1

2g and a1(t) = a2(t) = 0
for t ≤ ts as follows: a1(t) = {0, t ≤ ts; 1.03, t > ts}, a2(t) = {0, t ≤ ts; 0.97, t > ts}, g = 1 and
all other parameters as for the example in case 1. See Fig. 5.

To determine the appropriate linear (two- and one-dimensional) reductions for these param-
eters, we use Eqns. (15-16) restricted to tile 9 for the preparatory phase t ≤ ts, and restricted to
tile 5 for times t > ts during stimulus presentation (we make the same assumptions about the
interrogation time or thresholds as for case 1, so that solutions remain in the central tile 5 for
all times t > ts of relevance to the decision). This yields the one-dimensional equation

τc
dy

dt
= −y +

{
gc(t)ηt for t ≤ ts
g[βy + a(t)] + gc(t)ηt for t > ts

, (25)

(and an analogous reduction to a linear two-dimensional model).
Equation (25) is similar to the reduction (21), if the stimulus and gain functions in the

latter are piecewise constant, as for the example parameters of case 1. The major difference is
that the noise coefficient remains constant for (25). As we see in the next section, the statistics
produced by the one-dimensional models (21) and (25) can nevertheless agree rather well. Thus,
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Figure 5: Case 2: Trajectories switch tiles. Scatter plot of trajectories both at the end of the
preparatory period and hence at the moment of stimulus onset ts (left) and during the stimulus
(t = ts + 2, right). The tiling of the plane is shown with dot-dashed lines; cf. Fig. 2; the
central tile is outlined in solid. Parameter values are given in text. Also shown are nullclines for
Eqns. (15-16) as thin solid lines. The lower panels show stimuli aj(t) and gain g(t) as functions
of time.

transient gain strategies to be derived for the more general (21) in Section 3 can be approximately
implemented for stimuli undergoing large steps, with no changes in the gain of the activation
functions per se.

Similar considerations hold for ‘case 1’ and ‘case 2’ reductions of the connectionist model,
but we do not pursue this here.

2.6 Accuracy of the reduced models

Fig. 6 demonstrates that our simplifications of the nonlinear firing rate model (7-8) accurately
capture reaction time statistics for case 1 parameters. For the one- and two-dimensional linear
reductions, linearized activation functions take piecewise constant (in time) values appropriate
to the tiles containing the dominant proportion of solution trajectories during the preparatory
and trial periods, exactly as in (21). That is: for case 1, f l

g(t)(x) = 1
2 + (x − b) for all t, as

solutions remain in the central tile 5. For case 2, f l
g(t)(x) = 1

2 for all t < ts (when solutions are
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Figure 6: Reaction time densities for the nonlinear firing rate model of Eqns. (7-8) (stars) and
its various reductions, with thresholds θ = 0.725: dot-dashed line, two-dimensional model with
piecewise-linear activation functions f pw

g(t); plus symbols with dotted line, two-dimensional model

with linear activation functions f l
g(t); solid line, linear one-dimensional reduction, solid line with

circles, analytic 1-D expression with zero variance at trial onset (see text). (a) Case 1: solutions
confined to central tile. (b) Case 2: trajectories switch tiles. Parameter values are given in main
text.

in tile 9) and f l
g(t)(x) = 1

2 + (x − b) for t > ts, when solutions are in tile 5.
For case 1, the error rates corresponding to the reaction time distributions of Fig. 6 are 0.050,

0.051, 0.051, 0.035, and 0.034 respectively for the two-dimensional firing rate model with logistic
activation functions fg(t), the two-dimensional model with piecewise-linear activation functions
fpw

g(t) (15-16), the two-dimensional model with linear activation functions, the one-dimensional

reduction (21), and the expression (23), which describes the one-dimensional reduction with
initial condition y(ts) = 0 at the time of stimulus presentation (keeping the first 10 terms of
sum). For case 2, these error rates are 0.060, 0.065, 0.059, 0.042, 0.034. Thus, in both cases while
the different two-dimensional models are in close agreement, the one-dimensional reductions
produce significantly lower error rates. Figures 4-5 show why: the distribution of solutions is not
entirely collapsed along the attracting decision manifold, and the spatially extended ‘incorrect’
thresholds of the two-dimensional models require smaller (and hence more probable) excursions
to cross. Closer agreement between one- and two-dimensional models can be achieved with, for
example, higher values of β or lower values of noise strength c: see [BBM+04].

As an additional comparison among the various models, we separately computed error rates
for interrogation at a time T = ts + 1 (see [UM01] for an earlier, related comparison between
the nonlinear two-dimensional and linear one-dimensional models). For case 1, the interrogation
error rates are (in the same order as above) 0.323, 0.321, 0.321, 0.324, and 0.319. For case 2,
these error rates are .374, .363, .354, .350, and .319. For both cases interrogation error rates
are more similar for the various model reductions than the free response error rates reported
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in the previous paragraph. This is expected from the discussion in Section 2.5, since accurate
description of the interrogation protocol by a one-dimensional model does not require that
solutions are confined near the decision manifold.

2.7 Drift-diffusion and the one dimensional models as linear filters

We introduce a third one-dimensional SDE, an extension of the drift-diffusion model of [Lam68,
Rat78] in which both drift and diffusion terms are multiplied by a common gain factor g(t):

τc
dz

dt
= g(t)[a(t) + c(t)ηt] ((pure) drift-diffusion model) . (26)

Eqn. (26) and the one-dimensional reductions of the firing rate and connectionist equations (21)
and (24) are Ornstein-Uhlenbeck processes, (affine-) linear in the activities x, y, and z and in
the input

I(t)
︸︷︷︸

input

= a(t)
︸︷︷︸

signal

+ c(t)ηt
︸ ︷︷ ︸

noise

. (27)

We may explicitly solve all these SDEs, for a given realization of the white noise process ηs, s ∈
[0, t], to obtain respectively

z(t) =

∫ t

0

g(s)a(s)

τc
ds +

∫ t

0

g(s)c(s)

τc
dWs (28)

for the drift diffusion model,

x(t) =

∫ t

0

a(s)

τc
exp

(
1

τc

∫ t

s
[βg(s′) − 1] ds′

)

ds +

∫ t

0

c(s)

τc
exp

(
1

τc

∫ t

s
[βg(s′) − 1] ds′

)

dWs (29)

for the connectionist model, and

y(t) =

∫ t

0

a(s)g(s)

τc
exp

(
1

τc

∫ t

s
[βg(s′) − 1] ds′

)

ds+

∫ t

0

c(s)g(s)

τc
exp

(
1

τc

∫ t

s
[βg(s′) − 1] ds′

)

dWs

(30)
for the firing rate model. Here, dWs is an increment of a Wiener process, of which the white
noise process ηs is the formal time derivative, and we have assumed unbiased initial data x(0) =
y(0) = z(0) = 0. These expressions all take the form

w(t) =

∫ t

0
K(t, s)a(s)ds +

∫ t

0
K(t, s)c(s)dWs , (31)

and so we conclude that (28-30) all compute linear filters of their inputs.
At any fixed time t, w(t) is a gaussian-distributed random variable with mean

∫ t
0 K(t, s)a(s)

and variance
∫ t
0 K2(t, s)c2(s)ds. Using this fact, after a change of variables the error rate ex-

pression (19) becomes

ER =
1

2



1 − erf





∣
∣
∣

∫ t
0 K(t, s)a(s)

∣
∣
∣

∫ t
0 K2(t, s)c2(s)ds







 . (32)
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3 Optimal signal discrimination in the one-dimensional models

We now ask what functional form of g(t) optimizes performance for Eqns (28-30), thereby
computing optimal gain trajectories for the (reduced) drift-diffusion, connectionist, and firing
rate models.

3.1 Optimal statistical tests

Given only the noisy input function (27), consider the task of deciding whether I(t) was generated
by time-dependent signals a0(t) or a1(t): hypotheses 0 and 1, resp. This can be accomplished
in two distinct ways, mirroring the interrogation and free response protocols of Section 2. In
the first, the decision is made at a fixed time T ; in the second, it is made when some preset
level of confidence is reached. Optimal performance in the first version of the task implies that
as few errors as possible are made; in the second it implies that the decision must be made as
quickly as possible for a fixed error tolerance, timed from stimulus onset at time t = 0. The best
strategy in the first version is the (continuum limit of the) Neyman-Pearson test; in the second
version it is the sequential probability ratio test (SPRT) [Wal47, Leh59]. Both tests compute
an evolving estimate of the log likelihood ratio:

l(t) = log

[
p ({I(s)|a0(s), s ∈ [0, t]})
p ({I(s)|a1(s), s ∈ [0, t]})

]
4
= log

[
p0 ({I(s), s ∈ [0, t]})
p1 ({I(s), s ∈ [0, t]})

]

. (33)

( the base of the logarithm is arbitrary). In the Neyman-Pearson test, hypothesis 0 is chosen if
l(T ) > 0 and hypothesis 1 if l(T ) < 0; in the SPRT, hypothesis 0 (resp. 1) is chosen when l(t)
first crosses threshold θ (resp. −θ), θ being determined by the error tolerance.

Writing the input I(t) (27) as a sum of its increments for an appropriate discretization of
time {tj}:

I(t) =
∑

j

dIj =
∑

j

a(tj)dt + c(tj)dW j
t , (34)

we obtain

l(t) =
∑

j

log

[

p0

(
dIj
)

p1 (dIj)

]

. (35)

Now restrict to the special case in which a0(t) = −a1(t) = a(t) and consider the likelihood
distributions (now themselves time-dependent) that correspond to an increment dI(t) = a(t)dt+
c(t)dWt. Since the dWt are normally distributed with mean 0, variance dt, we have

p0(t)(dI(t)) =
1

√

2πc2(t)dt
e−(dI(t)+a(t)dt))2/(2c2(t)dt) , (36)

p1(t)(dI(t)) =
1

√

2πc2(t)dt
e−(dI(t)−a(t)dt))2/(2c2(t)dt) . (37)

The corresponding increment of likelihood evidence to (33) is

dlt = log

(
p1(dIt)

p0(dIt)

)

= k
a(t)

c2(t)
dIt , (38)
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where k = 2 log(e) depends on the base of the logarithm. Substituting for dIt, we obtain a
differential equation for the total evidence lt accumulated at time t,

dlt = k

[
a2(t)

c2(t)
dt +

a(t)

c(t)
dWt

]

, (39)

which may be integrated to yield:

l(t) =

∫ t

0
k
a2(s)

c2(s)
ds +

∫ t

0
k
a(s)

c(s)
dWs . (40)

Comparing with Eqn. (31) shows that the optimal filter is

K(t, s) = k
a(s)

c2(s)
: (41)

this is the matched filter for white noise which is fundamental in signal processing [Pap77]. Note
that, in (39-40) only the signal-to-noise ratio (a/c) appears.

3.2 A direct proof that the kernel K(t, s) = k
a(s)
c2(s)

is optimal in the interroga-

tion paradigm

As follows from its matched filter property, the linear filter K(t, s) = k a(s)
c2(s)

which computes log

likelihood l(t) for inputs with white noise also produces, for all times t, a filtered (and gaussian)
version w(t) of the input (Eqn. (31)) with a maximal integrated signal-to-noise ratio

F [K; a, c](t) =

∣
∣
∣

∫ t
0 K(t, s)a(s)ds

∣
∣
∣

√

E

(∫ t
0 K(t, s)c(s)dWs

)2
=

∣
∣
∣

∫ t
0 K(t, s)a(s)ds

∣
∣
∣

√
∫ t
0 K2(t, s)c2(s)ds

. (42)

For completeness, we now demonstrate this directly.
Minimization of the error rate (18) or (19) for (fixed) interrogation at time t = T is achieved

by maximizing F over all possible kernels K(s). This problem in the calculus of variations
is solved by computing the first and second variations, with respect to K, of the functional F ,
setting the first to zero to determine a candidate K̄ for the optimal K, and evaluating the second
at K̄ to check that D2

KF is negative (semi-) definite. Henceforth we drop explicit reference to
the (fixed, arbitrary) interrogation time t = T in the function K and write K(T, s) = K(s). We
compute:

δF

δK
= lim

ε→0

d

dε
F [K + εγ; a, c](T ) = lim

ε→0

d

dε







∫ T
0 a(s)[K(s) + εγ(s)] ds

[

2
∫ T
0 c2(s)[K2(s) + 2εg(s)γ(s) + ε2γ2(s)] ds

] 1
2







= lim
ε→0

1√
2

{∫ T
0 a(s)γ(s) ds

[H(T, ε)]
1
2

−
∫ T
0 a(s)[K(s) + εγ(s)] ds

∫ T
0 c2(s)[K(s)γ(s) + εγ2(s)] ds

[H(T, ε)]
3
2

}

=

∫ T
0 a(s)γ(s) ds

∫ T
0 c2(s)K2(s) ds −

∫ T
0 a(s)K(s) ds

∫ T
0 c2(s)K(s)γ(s) ds

√
2
[∫ T

0 c2(s)K2(s) ds
] 3

2

, (43)
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where H(T, ε) =
∫ T
0 c2(s)[K2(s)+2εK(s)γ(s)+ ε2γ2(s)] ds. Setting (43) equal to zero and using

the fact that the variation γ(s) is arbitrary, we conclude that the critical point indeed occurs at

K̄(s) = k a(s)
c2(s)

, as given by (41).

To compute the second derivative we differentiate the expression within braces in the penul-
timate step of (43) with respect to ε once more, set ε = 0, and evaluate the resulting expression
at the critical point (41), obtaining:

δ2F

δK2

∣
∣
∣
∣
K=K̄

= −
∫ T
0 c2(s)K̄2(s) ds

∫ T
0 c2(s)γ2(s) ds −

(∫ T
0 c2(s)K̄(s)γ(s) ds

)2

√
2
[∫ T

0 c2(s)K̄2(s) ds
] 3

2

≤ 0 . (44)

In the last step we appeal to Schwarz’s inequality. This proves that the second variation is
negative semidefinite, and vanishes identically only for variations γ(s) = κK̄(s) in the direction
of K̄ (as expected from (41), which contains the arbitrary ‘scaling’ parameter k).

Substituting (41) into (42) we obtain

F [ḡ; a, c](T ) =

√

1

2

∫ T

0

a2(s)

c2(s)
ds , (45)

and using (32), we obtain the minimum possible error rate for interrogation at time t:

ER =
1

2



1 − erf





√

1

2

∫ T

0

a2(s)

c2(s)
ds







 . (46)

Since the integrand (a/c)2 is non-negative, the error rate continues to decrease or at worst
remains constant as T increases.

3.3 Optimal gains for the three models

We may now extract explicit expressions for optimal gains by setting K(s) = K̄(s) in (31) and
comparing the resulting integrands with those in the SDE solutions (28-30).

3.3.1 Pure drift-diffusion model

Comparing (31) with (28), we see that the optimal gain is simply K̄:

ḡdd(s) = τcK̄(s) = τck
a(s)

c2(s)
; (47)

thus, there is a continuum of optimal schedules differing only by a multiplicative scale factor.

3.3.2 Connectionist model

Equations (31) and (29) give

τcK̄(s) = τck
a(s)

c2(s)
= exp

(
1

τc

∫ T

s
[βḡc(s

′) − 1] ds′
)

, (48)
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where ḡc is the optimal gain for the connectionist model. Taking the log of this expression,
differentiating with respect to s, and solving for ḡc(s), we obtain:

ḡc(s) =
1

β

[

1 − τc
d

ds
log

(
a(s)

c2(s)

)]

. (49)

Note that ḡc is unique and in particular, independent of k and of the interrogation time T .
However, ḡc is not required to be positive, so may not always be physically admissable. The

form of ḡc may be interpreted as follows. When
(

a(s)
c2(s)

)

is decreasing, ḡc(s) > 1/β and the O-U

process (24) is unstable; hence solutions ‘run away,’ in the direction x(s), emphasizing higher-

fidelity information that was previously collected. When
(

a(s)
c2(s)

)

is increasing, ḡc(s) < 1/β, the

O-U process is stable, and the linear term in (24) is attractive, thereby discounting previously
integrated information in favor of the higher-fidelity input currently arriving.

We note that, because the ‘output’ neural activity is determined by a gain-dependent function
of the dynamical variable x in the connectionist model (see text following Eqns. (1-2)), transient
gain schedules also adjust the position of free-response thresholds with respect to x. We leave
an exploration of this effect, which does not enter the interrogation protocol or affect the firing
rate model, for future studies.

3.3.3 Firing rate model

Equations (31) and (30) give

τcK̄(s) = τck
a(s)

c2(s)
= ḡf (s) exp

(
1

τc

∫ T

s
[βḡf (s′) − 1] ds′

)

. (50)

Defining f(s) = τck
a(s)
c2(s)

e
1
τc

(T−s), differentiating with respect to s, and restricting to positive

functions ḡf , a and c2 (which we justify below), (50) yields

f ′(s) =
d

ds

[

ḡf (s) exp

(
1

τc

∫ T

s
βḡf (s′)ds′

)]

= ḡ′f (s) exp

(
1

τc

∫ T

s
βḡf (s′)ds′

)

− β

τc
ḡ2
f (s) exp

(
1

τc

∫ T

s
βḡf (s′)ds′

)

= ḡ′f (s)
f(s)

ḡf (s)
− β

τc
ḡf (s)f(s) . (51)

Rewriting (51), we obtain

dḡf (s)

ds
=

β

τc
ḡ2
f (s) + ḡf (s)

f ′(s)

f(s)
=

β

τc
ḡ2
f (s) + ḡf (s)

d

ds
log (f(s))

=
β

τc
ḡ2
f (s) + ḡf (s)

[
d

ds
log

(
a(s)

c2(s)

)

− 1

τc

]

. (52)

Thus, the condition for optimal gain in the linearized firing rate model is a differential equa-
tion, unlike the algebraic relationships for the drift-diffusion and connectionist cases. Note that
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solutions to (52) initialized at positive values remain positive for all time, since the equation
has an equilibrium at ḡf = 0, preventing passage through this point. This justifies our as-
sumption of positive ḡf above and ensures that the optimum gain is ‘physical’ this sense. In
fact, (52) may be solved explicitly using the integrating factor I(s) = exp

(∫ s
0 l(s′)ds′

)
, where

l(s′)
4
= d

ds′ log
(

a(s′)
c2(s′)

)

− 1
τc

, yielding

ḡf (s) =
exp

(∫ s
0 l(s′)ds′

)

β
τc

∫ s
0

[

exp
(∫ s′

0 l(s′′)ds′′
)]

ds′ + 1
g(0)

. (53)

The integral equation (50) specifies only an arbitrary, positive final condition ḡf (T ) = k a(T )
c2(T )

for (52), since k is itself arbitrary. Any solution of (52) with positive initial condition (as long
as it is defined) therefore delivers a member of the continuum of optimal gain functions for the
linearized firing rate model. This is in striking contrast to the unique optimal gain (49) in the
connectionist model, and, since the different ḡf generally have different forms (see below), it
also contrasts with the multiplicity of ‘scaled’ optimal drift-diffusion gain functions (47). The
optimality of ḡf schedules with such different forms follows from the fact that gain multiplies the
inputs to the firing rate model (21). For example, optimal gain schedules with (βḡf (s)− 1) < 0
may implement the SPRT even when the signal-to-noise-ratio is constant (see Example 1 below),
because discounting of previously integrated evidence is compensated for via weighting incoming
evidence by a decreasing function ḡf (s).

3.3.4 Numerical examples

Example 1: We first take constant signal a(s) ≡ a = 0.06 and constant noise strength
c(s) ≡ 0.09 with τc = β = 1. Then, Eqn. (47) gives the family of optimal constant gain
functions for the pure drift-diffusion model,

ḡdd(s) ≡ τcka , (54)

and Eqn. (49) gives the unique optimal gain for the connectionist model, again a constant:

ḡc(s) ≡
1

β
. (55)

For the same parameter values, the firing rate model gain ODE (52) becomes

d

ds
ḡf (s) =

β

τc
ḡ2
f (s) − 1

τc
ḡf (s) . (56)

Initial conditions ḡf (0) ∈ [0, 1/β] decay to the fixed point at ḡf = 0, while for ḡf (0) > 1/β, gain
functions increase to ∞ in finite time. The initial condition ḡf (0) = 1/β yields the constant
gain function ḡf (s) ≡ 1/β, for which the linearized firing rate model again becomes constant
drift Brownian motion: see Fig. 7. As expected, all gain profiles produced optimal performance
(with 82.7% correct responses returned at interrogation time T = 2).

Example 2: We now assume that signal amplitude is zero up to stimulus presentation at time
ts and rises exponentially toward ā thereafter: a(s) = ā[1 − e−r(s−ts)] for s > ts. This form is
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Figure 7: Optimal gains for constant signal strength a(s) ≡ 0.09 (solid line in bottom panel)
and constant noise amplitude c(s) ≡ 0.09 (dotted line). Top panel: three optimal gain schedules
ḡf solving (52); note that these include, but are not limited to, ḡf (s) ≡ 1/β (here β = 1).
Central panel: the unique optimal gain function ḡc(s) ≡ 1/β for the connectionist model, given
by Eqn. (49).

motivated by the saturating dynamics of input layers which feed forward to decision units in
simple connectionist models. We set ā = 0.06, r = 10, ts = 1 and take constant noise strength
c(s) ≡ 0.09 and τc = β = 1 as previously: see Fig. 8 (bottom). As r → ∞, a(s) approaches the
piecewise constant functions of Sections 2.5.1-2.6, for which the one-dimensional reduction was
shown to be an adequate model.

For the pure drift-diffusion model, Eqn. (47) gives

ḡdd(s) = τcka(s) , (57)

so that, as above, optimal gain trajectories are scaled versions of the signal strength and, in
particular, ḡ(s) = 0 for s ≤ ts. For the connectionist and firing rate models, however, the
formulae (49) and (52) are valid only while a(s) > 0, and additional reasoning is needed to
determine optimal gain values in the pre-stimulus period s < ts. For the connectionist model,
the integral equation (48) is clearly satisfied for a(s) = 0 if gc(s) = −∞, so we set ḡc(s) = −∞,
s ≤ ts. Since for a ‘physical’ neural network, activation functions fg(t)(·) are nondecreasing,
such negative gain values are not directly relevant to biological applications, but illustrate the
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Figure 8: Optimal gains for exponentially asymptoting signal strength a(s) (solid line in bottom
panel) and constant noise amplitude c(s) ≡ 0.09 (dotted line). Top panel: three optimal gain
schedules ḡf for the firing rate model solving (52) (solid curves); the non-optimal constant gain
g ≡ 1/β is shown as dot-dashed for reference. The lowest of the solid ḡf ’s displays the rise-decay
form discussed in the text. Central panel: the unique optimal gain function for the connectionist
model, given by Eqn. (49); ḡc(s) = −∞ for s ≤ ts.

demand that relative activation x be clamped at zero before the stimulus arrives. As before, we
define ḡc(s) via (49) for s > ts. That is, for t > ts,

ḡc(s) =
1

β
[1 − τcl(s)] , (58)

where l(s) = d
ds log

(
a(s)
c2(s)

)

= r
er(s−ts)−1

decays from ∞ to 0 as time s increases.

For the firing rate model, we also appeal directly to the integral equation (50) to define
gf (s) when a(s) = 0. Since (50) is satisfied by ḡf (s) = 0, we assume this for s ≤ ts. We
then determine ḡf (s) for s > ts from (52), allowing a discontinuity at ts and taking arbitrary
‘initial’ conditions ḡf (ts). Fig. 8 illustrates several optimal functions arising from different
choices of ḡf (ts). The following fact is helpful in understanding positive solutions of (52): orbits
lying below 1

β [1 − τc l(s)] at any time s decrease toward 0; those above this value increase.

Since 1
β [1 − τc l(s)] → 1

β as s → ∞, 1
β asymptotically forms a separatrix between optimal gain

trajectories that decay and those that diverge to ∞. Also, note that the Case 2 parameters for
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Figure 9: Optimal gains for pulsed signal strength a(s) (solid line in bottom panel) and constant
noise amplitude c(s) ≡ 0.06 (dotted line). Top panel: three optimal gain schedules ḡf for the
firing rate model solving (52) (solid curves); the non-optimal constant gain function g ≡ 1/β
is shown dot-dashed for reference. Central panel: the unique optimal gain function for the
connectionist model, given by Eqn. (49).

the two-dimensional firing rate model of Section 2.5.1 implement a step in effective gain values
up to 1/β = 1, so that in this case nearly optimal signal processing occurs with no explicit
adjustment of the gain parameter. The performance resulting from optimal gain trajectories
in all models is 73.1% correct responses at interrogation at time T = 2; for comparison, the
(non-optimal) constant gain ḡf (s) ≡ 1/β produces only 66.4% correct.

Gains must remain bounded for all time to be of practical interest. A family of optimal gain
schedules of this form, determined by their (sufficiently small) initial conditions, will always exist
for monotonically rising and bounded stimuli a(s) such as that chosen here. As we elaborate
in Section 4, their ‘rise-decay’ pattern resembles the gain produced by dissipating pulses of the
neuromodulator norepinephrine delivered to cortical decision areas via the locus coeruleus, hence
providing a clue that this brainstem organ may be assisting near-optimal decision making.

Example 3: We finally assume that a(s) smoothly increases from a low to a higher level and
then returns to its original level, corresponding to a transient increase in stimulus salience. We
model this as a difference of two sigmoids: a(s) = a0 + ā

1+exp(−4r(ts,1−s)) −
ā

1+exp(4r(ts,2−s)) , with

parameters a0 = −.04, ā = .045, ts,1 = 0.75, ts,2 = 1.25, and r = 20: see Figure 9. Additionally,
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we take constant noise strength c(s) ≡ 0.06 and τc = β = 1.
For the pure drift-diffusion model, Eqn. (47) again gives ḡdd(s) = τcka(s), and for the

connectionist and firing rate models, we may use (49) and (52) for the entire time interval of
interest since a(s) is strictly positive. The resulting optimal gain trajectories, shown in Fig. 9,
yield 70.8% correct responses at interrogation time T = 2, compared with 64.9% correct obtained
for constant gain gf (s) ≡ 1/β in the firing rate model. Note that the form of the optimal
ḡc(s) illustrates the intuitive explanation given in Section 3.3.2: when the signal-to-noise ratio
increases, ḡc(s) decreases, suppressing previously integrated information, and vice-versa.

In summary, we have shown in this section that gain schedules yielding optimal performance
in (reduced) models of decision tasks depend strongly on the time course of task stimuli as well as
the structure of the underlying model, although they all implement matched filters and maximize
the signal-to-noise ratio in the difference between activities of neural populations representing
competing alternatives. For systems well-described by connectionist models, neural mechanisms
may be expected to depress the gain (i.e., strength of inhibitory feedback) below the ‘balanced’
level of 1/β when stimulus salience is increasing, and enhance it above this level when salience
is decreasing. However, for the firing rate model an optimal network can ‘choose’ among a
variety of gain schedules of qualitatively different forms. One neurobiological implication of this
flexibility is explored in the following section.

4 The locus coeruleus brainstem area and optimal gain trajec-

tories

Neurons comprising the brainstem nucleus locus coeruleus (LC) emit the neurotransmitter nore-
pinephrine (NE) to targets widely distributed throughout the brain, including cortical areas in-
volved in decision tasks. While NE has disparate and complex effects on different brain regions,
a dominant cortical role is believed to be modulation of neuronal gain at both the single cell and
population levels [UCSS+99, SSPC90]. Recordings of cortical neuron responses to stereotyped
inputs at various latencies following activation of LC reveal these gain effects: responses to a
fixed input are larger (in certain experimental ranges) following LC activation than in control
recordings without LC, and this elevated sensitivity decays with a time constant τNE ≈ 0.2
sec [WMW98].

Since the firing rate of LC neurons governs NE release rate, we propose the following simple
model for cortical gain g(t):

τNE ġ(t) = kLC LC(t) − g(t) . (59)

Here, LC(t) denotes the time-dependent rate of LC firing and kLC is a constant relating this
rate to equilibrium values of cortical gain. This model’s limitations in describing the underlying
biology include the fact that g(t) decays to zero in the absence of LC firing (this could be rec-
tified by adding a constant ‘gain floor’ gbase). Nevertheless, it allows us to make an interesting
qualitative point in relating recent data on LC firing rates to optimal strategies for the process-
ing of noisy sensory stimuli. Inverting (59) and inserting an optimal gain trajectory yields a
prediction for the optimal time course of LC activity:

LC(t) =
1

kLC
(τNE ˙̄g(t) + ḡ(t)) . (60)
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Figure 10: Comparison of optimal gain theory with empirical data for two psychological tasks.
(a) Optimal gain schedules for the firing rate model, for rapid (left) and gradual (right) onset
of stimulus a(t) to neural units (with a processing time lag of 0.1 sec following sensory cue), as
shown in (b). (c) The corresponding optimal time courses of LC firing rate. (d) Histograms of LC
firing rates recorded in the two tasks: (left), the target detection task [UCSS+99] and (right), the
Eriksen flanker task, with data kindly provided by the authors of [CRCAJ04]. Vertical dashed
lines indicate onset of sensory stimuli, and vertical grey (solid) lines indicate mean behavioral
reaction time (standard deviations are ≈ 34 and 114 msec. for the target detection and Eriksen
tasks, respectively).

Fig. 10(d) shows histograms of LC firing rates recorded from monkeys performing two dif-
ferent psychological tasks: target identification, in which a horizontal or vertical bar must be
detected, and the Eriksen flanker task, in which a central cue must be identified while an array
of distractors is ignored. Since the second task involves more complex stimulus processing, we
assume as in [BMH+04] that the onset of stimulus representation in cortical decision areas is
more gradual in this than in the target identification task. Specifically, for t greater than the
time ts of stimulus arrival we take a(t) = ā(1 − e−r(t−ts)) with r = 50 (time constant 0.02 sec)
for target identification and r = 10 (time constant 0.1 sec) for the Eriksen task; also, we set
ā = 0.06; and τc = 0.5 sec: see Fig. 10(b). Additionally, we assume that ts follows presentation
of sensory cue by a processing time lag of 0.1 sec (cf. [AJRKA94]). Optimal gain schedules
ḡf (t) for the firing rate model with these stimuli, computed as in the preceding section, are
shown in Fig. 10(a). To produce panel (c), these gain functions were inserted into Eqn. (60) to
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yield corresponding optimal LC firing rates, the discontinuity in ḡf (t) at stimulus onset having
negligible effect. (Also note that assuming a smoother profile for a(t) would eliminate the jump
in LC(t).) The similarity between overall form and decay rates of optimal gain functions LC(t)
and the empirical data of Fig. 10(d) supports the hypothesis that the LC may effect near-optimal
processing of sensory stimuli. This is true even though LC firing rates are not sustained at the
initial high values that follow stimulus onset; in fact, both LC firing rate relaxation and NE
time constants are compatible with optimal gain schedules.

We note that the optimal gains, and hence LC(t) time courses, are computed assuming

prior knowledge of the stimulus a(t) and signal-to-noise ratio a(t)
c(t) . If this were the case, LC

firing patterns should be well-correlated with stimulus onset. However, experimental data of
[CRCAJ04], which involved variable stimulus onset times, indicates tighter correlations with
behavioral responses. Here, the function a(t) is perhaps better interpreted as input to motor
neurons, the onsets of sensory stimuli having been detected earlier in decision layers. Thus, the
most appropriate LC data for use in Fig. 10 would be aligned with transients in firing rates in
intermediate processing layers; here we provide data aligned with sensory stimuli as the closest
available surrogate. Explicit models of multilayer decision/response dynamics with variable gain
are studied in [BGC04].

5 Discussion and conclusions

In this paper we explicitly compute optimal gain trajectories for one-dimensional, linearized
reductions of simplified models for competing neural groups involved in decisions between two
alternatives. We also demonstrate via simulations that such reductions provide good approxima-
tions for the reaction time and error rate statistics of the nonlinear two-dimensional connectionist
and firing rate models from which they were derived.

We first show that the nonlinear connectionist and firing rate models are equivalent, un-
der suitable variable and parameter coordinate changes. We then develop a piecewise linear
approximation to the canonical sigmoidal activation or firing rate function. The resulting two-
dimensional piecewise linear SDEs (15-16) introduced in Section 2.4 form a midpoint in our
simplification process. This system can be easily solved on each of nine ‘tiles’ forming its
phase plane, but solutions must be assembled by matching constants of integration. To il-
lustrate this, we focus on two specific cases in Section 2.5.1, motivated by the moving dots’
paradigm [BSNM93, SN01, GS02], that correspond to differing stimulus presentation conditions
and rely on different neural mechanisms to implement transient effective gain values.

In case 1, the development of salience (i.e., a1 6= a2), in sensory stimuli at time ts is not
accompanied by large changes in the stimulus magnitudes; in fact the summed magnitude is un-
changed. This mild stimulus onset is insufficient to move solutions between tiles, so variations in
gain must result from modulation of the gain of the neural activation function itself, presumably
via influence of other brain areas such as the locus coeruleus. However, in case 2, the appearance
of salience is accompanied by large changes in stimulus magnitude, either due to properties of
the stimulus itself or due to additive biases that shift the activation function to the left, as has
been proposed in connectionist models that address the effects of attention [Moz88, CSSM92].
In this case, no external modulation of gain is required, since the decision dynamics themselves
move the system between regions of the activation function where desired sensitivities (and
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hence gains) are achieved. The possibility that neural systems are tuned so that the presence
of target stimuli causes solutions to move into sensitive regions of their activation functions has
been previously suggested in behavioral neuroscience [SSPC90]; here we reformulate this idea in
terms of optimal signal processing.

We end by showing that the (non-unique) optimal gain schedules for the firing rate model
include time courses that are consistent with release of norepinephrine due to transient increases
in the activity of neurons in locus coeruleus.

The external modification of gain considered in case 1 assumes prior knowledge of the time
course of the absolute values of sensory inputs aj(t), the task of the decision maker being
merely to identify their signs. In [BGC04] the more general case in which this information is not
available is treated, and strategies must additionally include a mechanism for detecting increases
signal-to-noise ratio of sensory inputs.
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