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Integrate-and-fire models are mainstays of the study of single-neuron response properties and emergent
states of recurrent networks of spiking neurons. They also provide an analytical base for perturbative ap-
proaches that treat important biological details, such as synaptic filtering, synaptic conductance increase, and
voltage-activated currents. Steady-state firing rates of both linear and nonlinear integrate-and-fire models,
receiving fluctuating synaptic drive, can be calculated from the time-independent Fokker-Planck equation. The
dynamic firing-rate response is less easy to extract, even at the first-order level of a weak modulation of the
model parameters, but is an important determinant of neuronal response and network stability. For the linear
integrate-and-fire model the response to modulations of current-based synaptic drive can be written in terms of
hypergeometric functions. For the nonlinear exponential and quadratic models no such analytical forms for the
response are available. Here it is demonstrated that a rather simple numerical method can be used to obtain the
steady-state and dynamic response for both linear and nonlinear models to parameter modulation in the
presence of current-based or conductance-based synaptic fluctuations. To complement the full numerical solu-
tion, generalized analytical forms for the high-frequency response are provided. A special case is also
identified—time-constant modulation—for which the response to an arbitrarily strong modulation can be
calculated exactly.
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I. INTRODUCTION

Integrate-and-fire models of spiking neurons, dating back
to the work of Lapicque in 1907 �1�, provide a tractable
approximation to neuronal electrophysiology in which the
cell membrane is modeled by a capacitance and a leak con-
ductance in parallel, together with a threshold for spike gen-
eration. The coupling of a voltage dynamics to a model for
fluctuating synaptic drive �2,3� has provided a versatile de-
scription of the firing-rate response during in vivo–like con-
ditions; it has been extensively studied over the past half-
century and continues to be a very active field of research
�see �4–6� for recent reviews�. The stochastic voltage dy-
namics induced by the fluctuating synaptic drive necessitates
a probabilistic description in which distributions of voltages
and firing rates are considered. One advantage of this
population-density approach is that it lends itself readily to
the description of ensembles of neurons �7–9� and is there-
fore applicable to the analysis of network states.

A standard method used for the treatment of stochastic
synaptic drive is the diffusion approximation—valid in the
limit of high rates of arrival of excitatory and inhibitory syn-
aptic pulses. In this approximation, the dynamics of the volt-
age distribution is governed by the Fokker-Planck equation
�10� from which both the voltage distributions and firing
rates of neuronal ensembles can in principle be extracted
�7,11,12�. The Fokker-Planck formalism provides a robust
framework that has allowed the basic integrate-and-fire dy-
namics to be generalized to include biological details such as
synaptic filtering �13–15�, synaptic correlations �16�, synap-
tic conductance �11,17–19�, nonlinear response properties

near the spike onset �20–24�, and the dynamic effects of
additional voltage-activated currents �25–27�.

The full solution of the Fokker-Planck equation for arbi-
trary time-dependent inputs is hard to extract analytically,
even for simple models with a single state variable, because
it requires the solution of a two-variable partial differential
equation. For this reason a common method has been to con-
sider the effect of a weak oscillatory modulation of the syn-
aptic input and to expand the Fokker-Planck equation order-
by-order in a series in the modulated parameter �an approach
taken early on for the examination of the neuronal response
to noiseless current modulation �28��. The first-order solution
of such expansions gives a good approximation of the dy-
namic response around the steady state and is a quantity that
has found widespread application in the calculation of the
phase diagrams of networks of neurons and the onset fre-
quency of oscillations �7,8�, the transmission of rapid signals
�29–31�, and spike-train power spectra �32�. However, even
the first-order solution can be difficult to obtain—analytical
solutions are only available for the leaky integrate-and-fire
neuron under current-based synaptic modulation �7,33� in
terms of hypergeometric functions. In practice, these hyper-
geometric functions then need to be evaluated numerically,
which itself is not always trivial. Moreover, for the case of
conductance-based synaptic drive, or for complex integrate-
and-fire neurons such as the exponential and quadratic mod-
els, no closed analytical forms are available.

Here a simple scheme is presented that allows for the
direct numerical derivation of the first-order dynamics, with-
out requiring an intermediate analytical solution. It is as
straightforward to apply to nonlinear models receiving
modulated current or conductance-based synaptic drive as it
is to the standard leaky model. The derivation of this method
is the central result of this paper and is presented in Sec. II.*magnus.richardson@warwick.ac.uk
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In the following sections, examples are given for the appli-
cation of this method to both leaky and nonlinear models.
The high-frequency asymptotics are also extracted in ana-
lytic form and compared with the numerical solutions. In the
next section, the general framework for the steady-state and
first-order descriptions is presented. In Sec. III the case of
current-based synaptic drive is treated and in Sec. IV the
analysis is extended to conductance-based synaptic drive.
Technical details of the numerical implementation are given
in the Appendices, together with the analytical derivation of
the high-frequency asymptotics. Further applications and ex-
tensions of the methodology are considered in the Discussion
section.

II. GENERAL CONSIDERATIONS

Common to all probabilistic treatments of voltage trajec-
tories in neuronal ensembles is the continuity equation. This
relates the probability density P of finding a neuron near a
voltage V to the current J of neurons whose dynamics brings
them past a voltage V at a time t

�P

�t
+

�J

�V
= 0. �1�

For the models considered in this paper the synaptic drive is
treated in the diffusion approximation. The dynamics of the
probability density therefore obeys a Fokker-Planck equation
�10� which takes the form

�P

�t
= LP . �2�

The operator L contains derivatives up to second order in
voltage. Its form depends on the underlying neuronal dynam-
ics which are governed by some set of parameters
�� ,� ,� , . . . � which, for example, could be the synaptic noise
strength, rate of excitatory input, etc.

Comparison of Eqs. �1� and �2� leads to the identification
of a current operator J

JP = J , �3�

which is an operator comprising a first-order derivative of
voltage, as can be deduced from its relation to the Fokker-
Planck operator L.

The spike and reset of the model is accounted for by
boundary conditions that deal with the process of spike emis-
sion. These conditions comprise a threshold at Vth and a reset
to Vre, though the exact interpretation of the threshold differs
between linear and nonlinear models. The threshold and reset
impose the following boundary conditions on the probability
density and current

P�Vth−,t� = P�Vre+,t� − P�Vre−,t� = 0, �4�

J�Vth−,t� = J�Vre+,t� − J�Vre−,t� = r�t� , �5�

where the � subscripts denote the limit taken towards the
value from below ��� or above ��� and the current just
below threshold is equivalent to the firing rate r�t�. For future

convenience, in the numerical solutions of the system a fur-
ther condition, restricting the voltage to be above a lower
bound Vlb, is also enforced

J�Vlb,t� = 0. �6�

Here Vlb is chosen to be sufficiently negative that its precise
value has a negligible impact on the evaluation of the firing
rate and probability density �here Vlb=−100 mV�. However,
certain alternatives to the classical IF model �17,34,35� in-
clude this boundary explicitly to approximate the effect of
the inhibitory reversal potential; for such cases, a higher
value of Vlb should be chosen.

A. Treatment of a weak modulation

The case of a weak perturbation is now considered in
which one of the parameters, � is varied cosinusoidally at an
angular frequency �

��t� = �0 + �1 cos��t� . �7�

This leads to variations in all state variables that, to first
order in �1, are also cosinusoidal with a phase shift:

P�V,t� = P0�V� + P��V�cos��t + ���V�� , �8�

J�V,t� = J0�V� + J��V�cos��t + ���V�� , �9�

r�t� = r0 + r� cos��t + 	�� . �10�

It proves convenient to consider an allied system which is
driven by a sinusoidal drive so that the effect of the modu-
lation can be written in complex form, greatly simplifying
the treatment. For example,

r� cos��t + 	�� + ir� sin��t + 	�� = r̂�ei�t. �11�

The amplitude r� and phase 	� of the complex r̂�, as well as

those for P̂� and Ĵ�, together characterize the response prop-
erties to a modulation of the parameter �.

The Fokker-Planck equations for the steady-state and dy-
namic perturbations may be written in the form

0 = L0P0 and i�P̂� = L0P̂� +
�F�

�V
, �12�

where L0 is the Fokker-Planck operator with all its param-
eters ��0 ,�0 ,�0 , . . . � set at their steady-state values. The in-
homogeneous term F� is defined by

F� = − J�P0 where J� = �1� �J
��
�

�=�0

. �13�

The notation is a little heavy at this stage due to the require-
ment of treating the problem generally. It simplifies consid-
erably as soon as a specific case is considered.

B. Method for the numerical solution

The strategy essentially involves breaking the Fokker-
Planck equation into two simultaneous first-order equations
for the current J and probability density P. These equations
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can then be solved by appropriately separating out subsolu-
tions and starting the integration from a convenient point.

The steady-state solution is first constructed by resolving
the Fokker-Planck equation into the form

−
�J0

�V
= r0�
�V − Vth� − 
�V − Vre�� , �14�

J0P0 = J0, �15�

with the boundary conditions �5� included explicitly in the
first equation. Both the current and probability density are
proportional to the unknown firing rate r0, so the substitu-
tions

J0 = r0j0 and P0 = r0p0 �16�

allow for the firing rate to be canceled from the pair of equa-
tions �14� and �15�. The resulting equations for j0 and p0 can
then be integrated numerically backwards, from the thresh-
old Vth to the lower bound Vlb, with initial conditions
j0�Vth�=1 and p0�Vth�=0. The firing rate r0 is found by not-
ing that the total probability density integrates to one; hence
r0 is equal to the reciprocal of the integral of p0 over the
voltage range. The correctly scaled current J0 and probability
density P0 are then obtained from Eq. �16�. An example of
this method is given in Appendix A in a form suitable for
numerical integration.

The dynamic response can be found similarly. In this case,
the pair of first-order equations to be solved are

−
�Ĵ�

�V
= i�P̂� + r̂��
�V − Vth� − 
�V − Vre�� , �17�

J0P̂� = Ĵ� + F�. �18�

The firing-rate modulation r̂� is again unknown and the sec-
ond equation now contains the inhomogeneous term F�. The
method is to separate the solution into two components by
making the substitutions

Ĵ� = r̂��̂r + �1�̂� and P̂� = r�p̂r + �1p̂�. �19�

The pair of functions �̂r and p̂r satisfy equations �17� and �18�
with �1=0 �i.e., F�=0�,

−
��̂r

�V
= i�p̂r + 
�V − Vth� − 
�V − Vre� , �20�

J0p̂r = �̂r, �21�

with boundary conditions �̂r�Vth�=1, p̂r�Vth�=0. It can be
noted that these solutions are not specific to the parameter

being modulated. The second pair of functions �̂� and p̂�

account for the inhomogeneous driving term F�=�1f� and
satisfy equations �17� and �18� with r̂�=0,

−
��̂�

�V
= i�p̂�, �22�

J0p̂� = �̂� + f�, �23�

with boundary conditions �̂��Vth�=0, p̂��Vth�=0.
Both these pairs of equations are coupled first-order dif-

ferential equations and can be integrated numerically from
the threshold Vth to Vlb. The final trick is to extract the firing-
rate modulation r̂� using the condition �6� together with the
definition for the current �19� to yield

r̂� = − �1
�̂��Vlb�

�̂r�Vlb�
. �24�

This can then be used with the definitions given in equation
set �19� to yield the modulated probability density and cur-
rent, if required.

This is the central result of the paper. The method just
described works equally well for linear or nonlinear IF mod-
els and current or conductance-based noise; the only differ-
ence being the form of the current operator J and the inter-
pretation of the voltage threshold. In the remainder of the
paper these cases are considered in turn and analytical for-
mulae for the high-frequency asymptotics also derived.

III. CURRENT-DRIVEN MODELS

In this section, the response properties of neurons receiv-
ing additive noise—a fluctuating current—are examined. It
should be noted that this covers both current-based synaptic
drive and conductance-based synaptic drive treated in the
Gaussian approximation �36,37�—the key point being that
the noise is additive. In the Gaussian approximation the tonic
conductance is absorbed into an increased membrane con-
ductance, but the higher-order multiplicative noise is ne-
glected. The classical leaky integrate-and-fire model, for
which many properties of the response to weak stimuli are
known analytically, is first presented. A special case is also
identified for which an exact solution to an arbitrarily strong
modulation can be found. The more general case of nonlinear
integrate-and-fire models, such as the exponential or alge-
braic IF models �like the quadratic IF model� are then con-
sidered. For the LIF and EIF the results of the numerical
solutions are given in Figs. 1 and 2. For all cases a general
formula for the high-frequency response is given and the
specific cases of current, noise and conductance modulation
given explicitly. For the EIF the effect of modulating the
spike-generating parameters is also considered.

A. Leaky IF model

The Langevin equation for the linear IF model of a neuron
with capacitance C and total conductance g can be written in
the form

�
dV

dt
= E − V + ��2��t� , �25�

where �=C /g is the membrane time constant and �t� is
zero-mean, delta-correlated Gaussian white noise 	�t��t��

=
�t− t��. For convenience, the noise strength has been pa-
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rametrized in terms of the induced voltage variance �2 �in
absence of threshold�. This necessitates the � factor appear-
ing in the noise term, but does not imply that the strength of
the synaptic noise is itself a function of � or the conductance
g.

For an ensemble of identical neurons with different real-
izations of the noise �t�, Eq. �25� leads to the Fokker-Planck
equation �10�

�P

�t
=

�2

�

�2P

�V2 +
�

�V
� �V − E�

�
P� �26�

with an associated current operator J of the form

J =
E − V

�
−

�2

�

�

�V
. �27�

For the case of the LIF the steady-state equations �14� and
�15� can therefore be written as

−
�J0

�V
= r0�
�V − Vth� − 
�V − Vre�� , �28�

−
�P0

�V
=

�0

�0
2� �V − E0�

�0
P0 + J0� . �29�

The numerical method required for the solution of equations
�28� and �29� is straightforward �a convenient scheme is
given in Appendix A�. In Fig. 1�a� the firing rate as a func-
tion of E0 and two examples of the probability densities are
given for the steady-state of the leaky IF model.

The response to modulations of some parameter � can
now be considered: The modulation equations �17� and �18�
are

−
�Ĵ�

�V
= i�P̂� + r̂��
�V − Vth� − 
�V − Vre�� , �30�

−
�P̂�

�V
=

�0

�0
2� �V − E0�

�0
P̂� + Ĵ� + F�� �31�

for the LIF model. The general formula for the high-
frequency asymptotics of the LIF can also be calculated as a
function of the driving term F� �see Appendix B 1� and
shown to be

-70 -65 -60 -55 -50 -45 -40
Equilibrium Potential E0 (mV)

0

10

20

30

40

50

60

F
iri

ng
R

at
e

(H
z)

case i with r0=46Hz

case ii with r0=4.8Hz

0

5

10

15

0
5

10
15
20

0

2

4

6

-70 -65 -60 -55 -50 -45
Voltage (mV)

0

0.1

0.2

P
ro

ba
bi

lit
y

D
en

si
ty

P
0

10
-1

10
0

10
1

10
2

10
3

10
4

Frequency (Hz)

-60

-30

0

30

10
-1

10
0

10
1

10
2

10
3

10
4

Frequency (Hz)

0

50

100

10
-1

10
0

10
1

10
2

10
3

10
4

Frequency (Hz)

-60
-45
-30
-15

0
15

0

1

2

0

1

2

3

0

1

10
-1

10
0

10
1

10
2

10
3

10
4

Frequency (Hz)

-60
-45
-30
-15

0
15

10
-1

10
0

10
1

10
2

10
3

10
4

Frequency (Hz)

-15
-10
-5
0
5

10
-1

10
0

10
1

10
2

10
3

10
4

Frequency (Hz)

-240
-225
-210
-195
-180
-165

A Bi Ci

Bii Cii

E modulation σ2
modulation

σ 0
=5

m
V

σ 0=
0m

V

σ 0
=1

m
V

ca
se

i

ca
se

ii

rE

rσ2

rσ2rE

ρE

am
p.

(H
z)

ph
as

e
(d

eg
)

am
p.

(H
z)

ph
as

e
(d

eg
)ca

se
ii

ca
se

i

ρσ2

ρE ρσ2

g modulationDi

Dii

rg

rg

ρg

ρg

FIG. 1. Firing-rate response of the leaky IF model. �A� Top panel: Steady-state firing rate r0 as a function of the resting potential E0 for
three different strengths of the noise �0. Two cases are used to examine the modulation: �i� Suprathreshold excitation with near-deterministic
firing �E0=−45 mV; �0=1 mV; r0=46 Hz� and �ii� subthreshold excitation with noise-driven firing �E0=−60 mV; �0=5 mV; r0=4.8 Hz�.
�A� Lower panel: Steady-state probability densities P0. In panels �B�–�D� the bold lines are numerical solutions and the dashed lines
high-frequency asymptotics. �B� Current E modulation. �Bi� Case i with E1=1 mV: Resonances are seen at the firing rate �dotted line� and
its harmonics, characteristic of low background noise. �Bii� Case ii with E1=1 mV. In both cases i and ii the phase asymptote is −45°
�dashed lines�. �C� Variance �2 modulation. �Ci� Case i with �1

2=0.5 mV2: Again there are resonances at a modulation frequency equal to the
firing rate and its harmonic. �Cii� Case ii with �1

2=6.25 mV2: A resonance and phase zero are seen near 10 Hz. In both cases i and ii the
amplitude r�2 is nonzero and the phase shift 	�2 vanishes for high frequency. �D� Conductance g modulation. �Di� Case i with g1 /g0=0.1.
The phase asymptote �Eq. �36�� is −45° because E0�Vth. �Dii� Case ii with g1 /g0=0.2 which also shows a broad resonance near 10 Hz. Here
the asymptote is −225° 135° because E0�Vth. Parameters used were Vth=−50 mV, Vre=−60 mV, Vlb=−100 mV, and �0=20 ms. The
integration step was 10 �V.

MAGNUS J. E. RICHARDSON PHYSICAL REVIEW E 76, 021919 �2007�

021919-4



r̂� = e−i�/4� �0
2

��0
� �F�

�V
�

th
− F��Vth� . �32�

Three forms of modulation will now be considered: modula-
tion of the resting potential E, which is equivalent to a modu-
lated input current, modulation of the noise variance �2, and
modulation of the leak conductance g. From the definition of
F� given in Eq. �13� and the form of the current operator J
for the LIF �27�, the corresponding driving terms are

FE = −
E1

�0
P0, F�2 =

�1
2

�0

�P0

�V
,

and

Fg =
1

�0

g1

g0
�V − E0�P0. �33�

Full analytical solutions have been given for cases of current
�7� and variance �7,29� modulation for the LIF and the high-
frequency asymptotics have been extracted from these solu-
tions. The general formula �32� agrees with these derivations
for r̂E and r̂�2

r̂E � r0
E1

�0

1
���0

e−i�/4, �34�

r̂�2 � r0
�1

2

�0
2�1 +

�Vth − E0�
�0

���0

e−i�/4� , �35�

and also gives a new result for conductance modulation

r̂g � r0
g1

g0

�E0 − Vth�
�0

���0

e−i�/4. �36�

These asymptotic results are compared to the full numerical
solutions of equations �30� and �31� in Fig. 1. It is interesting
to note that, for the case of conductance modulation, the
value of the high-frequency phase asymptote depends on
whether the neuron is in a suprathreshold E0�Vth tonic-
current driven firing regime or in a subthreshold Vth�E0
fluctuating-current driven firing regime.

Leaky IF response to time-constant modulation

The high-frequency limit of the conductance modulation
�36� is proportional to the decaying component of the noise
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FIG. 2. Firing-rate response of the exponential IF model. �A� Top panel: Steady-state firing rate r0 as a function of the resting potential
E0 for three different strengths of noise �0. Note that for E0 greater than about −47 mV increasing noise decreases the firing rate. Two cases
are used to examine the modulation: �i� Near-deterministic firing �E0=−45 mV; �0=2 mV; r0=44 Hz� and �ii� noise-driven firing �E0=
−60 mV; �0=6 mV; r0=5.6 Hz�. �A� Lower panel: Steady-state probability densities P0. In panels �B�–�D� bold lines are numerical
solutions and dashed lines the high-frequency asymptotics. �B� Current E modulation. �Bi� Case i with E1=1 mV: Resonances can be seen
at the firing rate �dotted line� and its harmonics. �Bii� Case ii with E1=1 mV. In both cases i and ii the phase asymptotes �dashed lines� are
at −90°. �C� Variance �2 modulation. �Ci� Case i with �1

2=2 mV2: Again there are resonances at a modulation frequency equal to the firing
rate and its harmonic. Here the modulation at low frequency is 180° �see arrow� due to the negative impact of noise on higher firing rates
�panel �A�, arrow�. �Cii� Case ii �1

2=18 mV2: A resonance and phase zero are seen at �10 Hz. In all cases of current and variance
modulation the asymptotes �dashed lines, equation set �51�� decay with the reciprocal of frequency. �D� Conductance g modulation. �Di�
Case i with g1 /g0=0.1. The phase asymptote �Eq. �52�� is −270° equivalent to a 90° phase advance. �Dii� Case ii with g1 /g0=0.2 shows a
broad resonance at 10 Hz. A slow, logarithmic relaxation to the high-frequency limit can be seen in all �D� panels. Parameters were VT=
−53 mV, �T=3 mV, Vth=0 mV, Vre=−60 mV, Vlb=−100 mV, and �0=20 ms with integration step 10 �V.
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modulation �35�. Hence, if simultaneous conductance and
noise modulations occurred with amplitudes satisfying
g1 /g0=�1

2 /�0
2 the decaying terms would cancel to leave a

constant contribution proportional to r0. In fact this combi-
nation corresponds to a particular balanced case in which
conductance and synaptic noise are both varied in such a
way that the voltage variance �in absence of threshold� re-
mains constant. This balance is equivalent to varying the
time constant � as it appears in the Fokker-Planck equation
�26�.

Surprisingly, the cancellation of the decaying terms con-
tinues to all orders for this form of balanced drive: The
firing-rate response to an arbitrarily strong � modulation, af-
ter initial transients have died away, can be derived exactly.
The proof is as follows: By introducing the variable s
= t /��t� the LIF Fokker-Planck equation becomes

�P

�s
= �0

2�2P

�V2 +
�

�V
��V − E0�P� . �37�

In this form, there is no explicit time dependence; the system
equilibrates to yield a steady-state distribution P0 and firing
rate r0 �in units of s� parametrized by the constant quantities
E0 and �0. On transforming back to the standard time vari-
able t the true firing rate is found to be

r�t� =
1

��t�
r0��0,E0,�0 = 1� , �38�

which is exact for arbitrary modulations of ��t�. In other
words, because ��t� is the only quantity carrying units of
time, varying it is equivalent to compressing and stretching
time.

B. Nonlinear IF models

The method outlined in the previous section can be di-
rectly applied to nonlinear integrate-and-fire models such as
the exponential �EIF�, quadratic �QIF�, or more general alge-
braic �AIF� integrate-and-fire models. For this class of mod-
els the Langevin equation takes the form

�
dV

dt
= E − V + � + ��2��t� , �39�

where � is the spike-generating current that dominates the
dynamics for large voltages. The corresponding Fokker-
Planck equation takes the form

�P

�t
=

�2

�

�2P

�V2 +
�

�V
� �V − E − ��

�
P� , �40�

with the current operator

J =
E − V + �

�
−

�2

�

�

�V
. �41�

Hence, for the steady state of nonlinear models, the pair of
equations is

−
�J0

�V
= r0�
�V − Vth� − 
�V − Vre�� , �42�

−
�P0

�V
=

�0

�0
2� �V − E0 − ��

�0
P0 + J0� , �43�

where the threshold Vth is chosen to be sufficiently large that
its exact value does not alter the dynamics �here 0 mV�. The
corresponding equations for the modulated response are

−
�Ĵ�

�V
= i�P̂� + r̂��
�V − Vth� − 
�V − Vre�� , �44�

−
�P̂�

�V
=

�0

�0
2� �V − E0 − ��

�0
P̂� + Ĵ� + F�� . �45�

For both the steady state and modulations the method of
solution is the same as that described for the LIF, using the
substitutions given in Eqs. �16� and �19�, respectively.

A general solution for the high-frequency asymptotics for
an arbitrary F� can also be derived �see Appendix B 2� for
the nonlinear case

r̂� =
1

i
lim
s→0

�
0

�

dm e−�i+s�mF��m� , �46�

where F��m� is expressed in terms of a variable m which
satisfies

dm

dV
= −

��0

�
�47�

so that the form of m depends on which nonlinear IF model
is being considered. These forms will be given below for the
cases of exponential and algebraic spike currents and used to
determine analytical solutions for the high-frequency re-
sponse.

C. Exponential IF response to modulation

The exponential IF model �23,31� captures the initial dy-
namics of the opening of the spike-generating sodium chan-
nels. In this approximation the spike-generating current takes
the form

� = �Te�V−VT�/�T, �48�

where VT sets the voltage scale at which the exponential term
becomes significant and �T is a measure of the sharpness of
the spike. Some examples of the steady-state firing rate and
distributions are given in Fig. 2.

To calculate the high-frequency asymptotics the quantity
m given in Eq. �47� must be derived. For the EIF it takes the
form

m = ��0�T/� . �49�

From Eq. �43� it is seen that P0�r0�0 /� in the large V, large
� limit. Using this result in combination with Eq. �49� the
quantities F� given in equation set �33� can be rewritten as
functions of m to give

FE = − m
E1r0

�T��0
, F�2 = − m

�1
2r0

�T
2��0

,

and
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Fg = m
g1r0

g0�
�log���0� +

VT − E0

�T
− log�m�� . �50�

These can be integrated in Eq. �46� to yield the firing-rate
modulations. For the mean and variance the modulations
were previously derived �31� using a method that is a special
case of Eq. �46� and take the form

r̂E �
r0

i��0

E1

�T
and r̂�2 �

r0

i��0

�1
2

�T
2 . �51�

For both cases the amplitudes decay as 1/� with a phase
difference of −90°. These asymptotes are included in Fig. 2
together with the numerical solutions. For the case of
conductance-based modulation the decay is marginally
weaker, the 1/� being moderated by a logarithmic factor

r̂g �
g1

g0

ir0

��0
�log���0� +

VT − E0

�T
+

i�

2
+ � − 1� , �52�

where �=0.57722. . . is Euler’s constant. The phase asymp-
tote here is reversed to give a lead of 90°. Two examples of
this response are also given in Fig. 2.

For the EIF model there are two further quantities that
might be varied: The spike-generating parameters VT and �T.
Though it is not clear what biological mechanisms might
lead to direct modulations of these quantities, it should be
remembered that in practice the parameters VT, �T represent
averages over the combined dynamics of the m, h, and n
voltage-activated variables of the underlying Hodgkin-
Huxley currents �38�. Any of the modulations previously
considered, that affect the average voltage, might be ex-
pected to induce secondary modulations in the spike-
generating parameters �if some model for the effect of the

voltage modulations on VT and �T were included�. For this
reason, an examination of the effect of a modulation of these
effective parameters is worthwhile. The corresponding driv-
ing terms are

FVT
=

VT1

�T
r0�0, F�T

=
�T1

�T
�log ��0 − log m − 1� , �53�

leading to the response modulations

r̂VT
� − r0

VT1

�T
, r̂�T

� − r0
�T1

�T
log���0� , �54�

which are given here to leading order. It is notable that nei-
ther response decays with frequency. The case of VT modu-
lation is similar to noise modulation in the LIF and, if cor-
rectly combined with modulation of the conductance and
noise, an exact solution equivalent to the � modulation in Eq.
�38� is found for the EIF. The response to �T modulation
actually grows with frequency and, though for very high fre-
quencies this unbounded behavior would presumably be cur-
tailed by higher-order terms, the asymptotic limit and
numerically-generated response plotted in Fig. 3, panels �Bi�
and �Bii�, agree well with Monte Carlo simulations up to
frequencies of 1000 Hz. Only at the highest frequencies are
weak nonlinear effects, due to the strong amplification, seen
in the phase. �Simulations were made with a forward Euler
scheme, time step in the range 5–100 �s, with error bars
showing standard error on the mean over 10 repeated trials,
each of duration in the range 20–100 s, depending on the
frequency.�

Above it was stated that though it was not obvious how
VT or �T might be modulated directly, they could be modu-
lated as a side effect of the more direct modulation of an-

0

5

10

15

0

5

10

15

20

10
-1

10
0

10
1

10
2

10
3

10
4

Frequency (Hz)

-210

-180

-150

-120

10
-1

10
0

10
1

10
2

10
3

10
4

Frequency (Hz)

-180

-150

-120

-90

-60

0
1
2
3
4
5

0

1

2

10
-1

10
0

10
1

10
2

10
3

10
4

Frequency (Hz)

-185

-180

-175

-170

10
-1

10
0

10
1

10
2

10
3

10
4

Frequency (Hz)

-180

-150

-120

-90

VT modulation ∆T modulation
am

p.
(H

z)
am

p.
(H

z)
ph

as
e

(d
eg

)
ph

as
e

(d
eg

)ca
se

ii
ca

se
i

Ai Bi

BiiAii

rVT

rVT

ρVT

ρVT

ρ∆T

r∆T

ρ∆T

r∆T

FIG. 3. Firing-rate response of the exponen-
tial IF model to modulations of spike-generating
parameters. Cases i and ii defined in Fig. 2 are
used with the same EIF parameters. Bold lines
are numerical solutions and dashed lines high-
frequency asymptotics. �A� Modulation of the
spike threshold VT. �Ai� For near-deterministic
firing, with VT1=0.5 mV, a resonance in the re-
sponse is seen at the firing rate r0�44 Hz. The
asymptote is a constant with a 180° phase. �Aii�
The noise-driven case with VT1=2 mV. A broad
resonance is seen near 100 Hz with the asymptote
again becoming constant with a 180° phase lag.
�B� Modulation of the spike width �T. Symbols
show results from Monte Carlo simulations �see
main text�. �Bi� For the near-deterministic case
with �T1=0.15 mV there is again a resonance
equal to the firing rate r0. It should be noted that
the response amplitude increases with increasing
frequency �see arrows�. �Bii� The noise-driven
case with �T1=0.15 mV; increasing response to
high-frequency modulation can again be seen.
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other parameter �given some model linking these features�.
Because the modulations of VT or �T do not decay with
frequency, their induced modulations would be as important
as the primary modulation, and hence these effects would
need to be accounted for if the overall response were to be
correctly calculated.

D. Asymptotic response of algebraic IF models

To complete this section the high-frequency asymptotics
of models with algebraic spikes will also be considered. By
this it is meant models that have spike generating currents
that vary with some power of voltage, when the voltage is
large and positive, where an important model from this class
is the quadratic integrate-and-fire model �20–24�. For alge-
braic IF models the spike-generating current scales as

� � �T�V − VT

�T
�k

�55�

for large voltages, and where in all of the following only
cases where k�1 are considered. It should be noted that for
the following derivation of the high-frequency asymptotics it
is not necessary to specify the exact form of the subthreshold
dynamics.

For algebraic models the quantity m defined through Eq.
�47� takes the form

m =
��0

�k − 1�
�V − VT

�T
�1−k

�56�

and from Eq. �43� for large voltage P0�r0�0 /�. The driving
terms �33� for the AIF can therefore be written in terms of m
as

FE = − r0
E1

�T
� �k − 1�m

��0
�k/�k−1�

,

F�2 = − r0k
�1

2

�T
2� �k − 1�m

��0
��k+1�/�k−1�

,

and for the case of conductance modulation, to leading order,

Fg = r0
g1

g0

�k − 1�m
��0

+ r0
g1

g0

VT − E0

�T
� �k − 1�m

��0
�k/�k−1�

.

�57�

These can be inserted into the integral �46� to yield the firing
rate modulations. For E modulation the result is

r̂E � r0
E1

�T
��2k − 1

k − 1
�� k − 1

i��0
�k/�k−1�

, �58�

which agrees with the k=2 case previously treated �31�. For
�2 modulation the result is

r̂�2 � r0k
�1

2

�T
2 �� 2k

k − 1
�� k − 1

i��0
��k+1�/�k−1�

, �59�

which also agrees with the case of k=2 previously treated
�31�. Finally, the result for conductance modulation takes the
form

r̂g � − r0
g1

g0

�k − 1�
i��0

�60�

to leading order. In all cases algebraic models are seen to be
less responsive than the EIF, in the sense that the high-
frequency asymptotes decay with a more negative power of
frequency.

IV. CONDUCTANCE-DRIVEN MODELS

A full conductance-based model of synaptic drive com-
prises a tonic conductance change and, in contrast to the
current-based noise considered in the previous section, an
additional multiplicative noise source that depends on volt-
age �3�. However, a notation will be adopted that brings the
analysis required into a rather similar form to the current-
noise case. As will be seen, there is little qualitative differ-
ence between the response properties of neurons to param-
eter modulation in the presence of multiplicative
conductance-based noise or additive current-based noise.
The numerical method is similar and the general formulas for
the high-frequency response are identical, save for the volt-
age dependence of the variance �2.

A. Leaky IF with conductance noise

A scenario is considered in which a neuron with leak con-
ductance gL and capacitance C receives an excitatory and
inhibitory drive of amplitude ae, ai respectively. Using the
case of purely excitatory drive as an illustration, the voltage
dynamics follow

C
dV

dt
= gL�EL − V� + ae�Ee − V��

�te�

�t − te� , �61�

where �te� is the set of pulse arrival times at rate Re. Some
care needs to be taken in defining the effect of the synaptic
pulses on the voltage, because the 
�t�V�t� terms on the
right-hand side are open to interpretation. Here it is consid-
ered that the 
 functions represent the limit of short synaptic
pulses and so it is the Stratonovich definition �10� of stochas-
tic calculus that is chosen. For the case of excitatory drive,
this implies that on the arrival of a pulse the voltage jumps
from its initial value V to V+�V where �V=be�Ee−V� and
be=1−e−ae. In any case, the diffusion approximation requires
that be is small so that, practically speaking, the difference
between ae and be is also small.

The corresponding Fokker-Planck equation can now be
derived �11,18,39� and written in a form similar to the
current-based case, but with a voltage-dependent variance
�2�V�, a synaptic-drive-dependent time constant � and a
drive-dependent-resting potential E. On including both exci-
tation and inhibition, the equation reads

�P

�t
=

�2

�V2��2

�
P�V�� +

�

�V
� �V − E�

�
P�V�� , �62�

with an associated current operator
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J =
E − V

�
−

�

�V

�2

�
. �63�

The terms appearing in the Fokker-Planck and current opera-
tors may be expressed in terms of the synaptic drive as fol-
lows:

�2

�
=

1

2
�Rebe

2�V − Ee�2 + Ribi
2�V − Ei�2� �64�

and

V − E

�
=

V − EL

�L
+ Rebe�V − Ee� + Ribi�V − Ei� , �65�

from which � and E may be extracted

E =
EL + �LRebeEe + �LRibiEi

1 + �LRebe + �LRibi
, �66�

� =
�L

1 + �LRebe + �LRibi
, �67�

by collecting the prefactor of the voltage and constant terms
on the right-hand side of Eq. �65�.

The scheme for the numerical derivation of the steady
state properties is not significantly different to the current-
based case. It remains only to arrange Eq. �15� with the cur-
rent operator �63� into a form convenient for integration. It is
first noted that

�

�V
��0

2

�0
� +

�V − E0�
�0

=
�V − E0��

�0�
, �68�

where the dashed quantities on the right-hand side just re-
quire the changes be→be+be

2 in Eq. �65� and similarly for
inhibition. Hence the equations required for the numerical
solution are

−
�J0

�V
= r0�
�V − Vth� − 
�V − Vre�� , �69�

−
�P0

�V
=

�0

�0
2� �V − E0��

�0�
P0 + J0� . �70�

These are of the same form as the current-noise case given in
Eqs. �28� and �29� except that the variance �0

2 is now voltage
dependent. This method of calculating the firing rate and
probability density is more convenient than using the analyti-
cal solutions �11,18� which themselves involve numerical in-
tegration.

The numerical derivation of the response to modulation
follows similarly with the pair of equations taking the form

−
�Ĵ�

�V
= i�P̂� + r̂��
�V − Vth� − 
�V − Vre�� , �71�

−
�P̂�

�V
=

�0

�0
2� �V − E0��

�0�
P̂� + Ĵ� + F�� . �72�

For conductance-based drive the biophysical parameters that
might be varied are Re, be, or Ee and similarly for inhibition.
Modulation of Re has a simple interpretation in terms of
modulating the presynaptic rates

FRe
= Re1be�be

2

�

�V
��V − Ee�2P0� + �V − Ee�P0� . �73�

Modulation of be can be interpreted as a simple model for the
effects of synchrony in the presynaptic population

Fbe
= be1Re�be

�

�V
��V − Ee�2P0� + �V − Ee�P0� �74�

and the modulation of Ee might arise from changes in local
ionic concentrations, for example in spines upon which syn-
apses are formed

FEe
= − Ee1Rebe�be

�

�V
��V − Ee�P0� + P0� . �75�

As can be seen from Eqs. �73� and �74�, the response to rate
and amplitude modulation contain the same functional forms
and, together with those of synaptic reversal modulation,
comprise four distinct functional cases.

The high-frequency behavior for the case of conductance-
based synaptic drive has the same general form �see Appen-
dix B 1� as the current-noise case except that the voltage-
dependent variance must be evaluated at Vth

r̂� � e−i�/4��0
2�Vth�
��0

� �F�

�V
�

th
− �F��th. �76�

Thus there is no qualitatively new behavior for the case of
conductance fluctuations. This equation allows for the
asymptotic firing-rate modulation for arbitrary drive terms to
be directly calculated in terms of derivatives of P0 at Vth
which can in turn be related to the steady-state firing rate.
The exact forms are straightforward to derive and will not be
given here; nevertheless, it is worth briefly examining the
types of possible behavior.

Because each of the F� equations �73�–�75� are nonzero
when evaluated at Vth, all of the modulations show a sus-
tained response at high-frequency. This is consistent with
variance modulation �33� in the presence of current noise in
Eq. �35� because Re, be, and Ee all appear in the diffusion
term of the Fokker-Planck equation. To see a decaying re-
sponse at high frequency an appropriately balanced, com-
bined input must occur, such as the sum of Eqs. �73� and �74�
with Re1be=−2be1Re. This combination reveals the effect of
conductance modulation centered around the reversal poten-
tial for excitation, which decays with the reciprocal of the
square-root of frequency.

B. Nonlinear IF models with conductance noise

There is also little new qualitative behavior for nonlinear
IF models. Defining the Langevin equation
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C
dV

dt
= gL�EL − V� + gL�L + Isyn, �77�

where �L is the spike-generating current and Isyn is the
conductance-based drive defined for excitation in Eq. �61�.
Using the definitions �64� and �65� the current operator can
be written

J =
E − V + �

�
−

�

�V

�2

�
, �78�

where the redefinition �=��L /�L takes into account the ef-
fective shift in threshold due to the conductance change and
allows the following to be written in a similar form to the
current-noise case. The equations for the steady state are

−
�J0

�V
= r0�
�V − Vth� − 
�V − Vre�� , �79�

−
�P0

�V
=

�0

�0
2�� �V − E0��

�0�
−

�

�0
�P0 + J0� �80�

and for the time-dependent case are

−
�Ĵ�

�V
= i�P̂� + r̂��
�V − Vth� − 
�V − Vre�� , �81�

−
�P̂�

�V
=

�0

�0
2�� �V − E0��

�0�
−

�

�0
�P̂� + Ĵ� + F�� . �82�

Both pairs of equations are similar to the current-based case
and, furthermore, the high-frequency asymptotics can be
shown �see Appendix B 2� to be of exactly the same form as
that given in Eq. �46�.

Before deriving the scaling of the high-frequency modu-
lations for Re, be, and Ee it is noted that for all these cases the
terms appearing in F� in Eqs. �73�–�75� may be written

Fxy = ��
�x

�y

�x

�Vx ��V − Ee�yP0� , �83�

where x=0 or 1, y=0, 1 or 2 and � has units of rate and
depends on which parameter is being modulated. Before con-
cluding this section, the results for the exponential and alge-
braic IF models are quoted.

C. Exponential integrate and fire model

For the EIF model m=��L�T /�L. On rewriting Fxy in
terms of m, expanding to leading order and performing the
integration �46� the corresponding contribution to the firing
rate modulation is

r̂xy � i�− 1�x�r0�L
logy���L�

��L
, �84�

to leading order. Hence the response due to Re and be modu-
lation decay as log2���L� /��L, which is marginally slower
than the case of synaptic noise modulation for the EIF given
in Eq. �52�. However, a combined modulation with Re1be

=−2be1Re, equivalent to a pure conductance modulation,
scales as log���L� /��L which is the same as the current-
noise case of Eq. �52�. It should be noted that the modulation
of the spike-generating parameters is also unchanged.

D. Algebraic integrate and fire model

For AIF models driven by conductance-based synaptic
fluctuations

�L � �T�V − VT

�T
�k

, m =
��L

�k − 1�
�V − VT

�T
�1−k

�85�

and P0�r0�L /�L. The corresponding rate modulations can
be separated into three distinct cases; for x=0,

r̂0y � − �r0�L��2k − y − 1

k − 1
�� k − 1

i��L
��k−y�/�k−1�

�86�

to leading order; for x=1 and k�y,

r̂1y � �r0�L�k − y���2k − y

k − 1
�� k − 1

i��L
��k−y+1�/�k−1�

�87�

to leading order; and finally for x=1 and k=y=2,

r̂12 �
4�r0�L

���L�2 �Ee − VT

�T
� �88�

to leading order. For this last case, the sign would be re-
versed �assuming VT�Ei� for modulation of the inhibitory
reversal potential.

V. DISCUSSION

A simple and efficient method has been introduced for the
numerical calculation of the response properties of linear and
nonlinear integrate-and-fire models. The first-order response
properties are an essential component of the analysis of the
single-neuron response function and the categorization of the
dynamic states of recurrent neuronal networks and so the
method should facilitate considerably the quantitative analy-
sis of temporal phenomena in neural tissue.

The numerical approach was complemented by the deri-
vation of analytical forms for the high-frequency asymptotics
for each of the cases, extending the known results for current
and variance modulation for the LIF and EIF �7,29,31� to
that of conductance modulation, modulation of the spike-
generating parameters for the EIF and modulations of the
parameters for IF models with a conductance-based imple-
mentation of the synaptic noise. Though for the EIF the 1/�
decay was tempered by logarithmic terms, it is fair to say
that no significantly new qualitative behavior was seen for
conductance-based drive in comparison to current-based
implementations of synaptic fluctuations: The Gaussian or
effective time-constant approximation of conductance-based
drive �36,37,39� is not too different from the diffusion ap-
proximation. A summary of the high-frequency behavior is
provided in Table I.

A. Modulations of EIF models with finite thresholds

In the numerical evaluation or simulation of exponential
IF models a finite threshold �here Vth=0 mV� must be chosen
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that is sufficiently high so as not to significantly affect the
steady-state or time-dependent results. However, an exami-
nation of the derivations in Appendix B shows that the
modulated response of the EIF model with a finite threshold
will always cross over to LIF behavior at a sufficiently high
frequency. The frequency for which the EIF asymptotics be-
gin to lose their validity can be found by an examination of
the competing frequency �-dependent and exponential
�-dependent terms on the left-hand side of Eq. �B14�. At low
voltages the �-dependent term dominates whereas for high
voltages the �-dependent term dominates: Equation �B18�
captures the effect of both these regimes and gives the cor-
rect EIF scaling. However, if the threshold Vth occurs before
the � term dominates then the EIF scaling argument breaks
down. This occurs for frequencies greater than

�* �
1

�0
exp�Vth − VT

�T
� . �89�

For the parameter values investigated in this paper this cross-
over frequency was beyond the physiological range �i.e., sig-
nificantly larger than 1000 Hz for Vth=0 mV�.

B. Absolute refractory period

For a short time after a spike, neurons remain nonexcit-
able due to a transitory inactivation of the sodium current.
This absolute refractory period is often modeled by fixing the
postspike voltage at the reset Vre for a duration �ref. Such a
refractory period can be straightforwardly accommodated in
the framework developed in this paper. The central differ-
ence to the nonrefractory case is seen in the current conser-
vation equation �5� which becomes

Jref�Vre+,t� − Jref�Vre−,t� = rref�t − �ref� . �90�

Furthermore, the density Pref no longer integrates to unity, as
a fraction of the neurons are refractory.

The steady-state rate rref0 and density Pref0 are simply re-
lated to the corresponding nonrefractory quantities

rref0 =
r0

1 + �refr0
and 	0 = rref0P0/r0. �91�

For the response to a modulation relation �90� must be taken
into account, and hence the equations corresponding to Eqs.
�17� and �18� are

−
�Ĵref�

�V
= i�P̂ref� + r̂ref��
�V − Vth� − e−i��ref
�V − Vre�� ,

�92�

J0P̂ref� = Ĵref� + Fref�, �93�

where the inhomogeneous term, by virtue of its linear rela-
tion to the steady-state density, is Fref�=rref0F� /r0. These
equations can be split, integrated and solved numerically,
exactly as was done for the nonrefractory case.

C. Extensions of the method

The method provides a solution to the numerical calcula-
tion of the response properties of arbitrary, one-variable IF
models subject to additive or multiplicative diffusive, Gauss-
ian white noise. It has recently been shown, for the case of
nonthresholded leaky integrators, that the effects of
conductance-based synaptic drive cannot be fully captured
within the diffusion approximation �37,39� because the shot-
noise nature of the underlying synaptic drive must be ac-
counted for. This disparity between the diffusion approxima-
tion and full shot noise stochastic dynamics has also been
identified in numerical solutions of the Fokker-Planck and
master equations �40� using a third-order method distinct
from the one detailed here. The development of a corre-
sponding method, for the calculation of modulatory response
functions for neurons receiving full synaptic shot noise
would be a worthwhile exercise, particularly given the sig-
nificantly non-Gaussian nature of synaptic fluctuations seen
in vivo �41�.

Another important biophysical component of neuronal dy-
namics is the activation of nonlinear, voltage-gated currents.

TABLE I. Summary of results for the high-frequency response to various forms of parameter modulation for the integrate-and-fire models
considered in this paper. The relevant equation numbers are provided and, where results have also been presented previously, the appropriate
references are given. It can be noted that the frequency appears only in the form i��0. Hence each power of frequency brings with it a phase
shift of � /2. Roots or fractional powers of i such as 1/ im/n should therefore be interpreted as e−i�m/2n. This is true for the argument of the
logarithm terms also, but because only the leading order � dependence is given in this table the constant i� /2 terms were dropped. The AIF
model with k=2 has the same high-frequency response as the quadratic integrate-and-fire model analyzed in �31�.

Current E Variance �2 Conductance g Threshold VT Width �T

LIF
r0

E1

�0

1
�i��0

Eq. �34� and Ref. �7�

r0
�1

2

�0
2 �1+

�Vth−E0�

�0
�i��0

�
Eq. �35� and Refs. �7,29�

r0
g1

g0

�E0−Vth�

�0
�i��0

Eq. �36�
EIF

r0
1

i��0

E1

�T
Eq. �51� and Ref. �31�

r0
1

i��0

�1
2

�T
2

Eq. �51� and Ref. �31�

−r0
g1

g0

1

i��0
log���0�

Eq. �52�

−r0
VT1

�T
Eq. �54�

−r0
�T1

�T
log���0�

Eq. �54�

AIF
r0

E1

�T
��2k−1

k−1 �� k−1

i��0
�k/�k−1�

Eq. �58� and for k=2 Ref. �31�

r0k
�1

2

�T
2 �� 2k

k−1 �� k−1

i��0
��k+1�/�k−1�

Eq. �59� and for k=2 Ref. �31�

−r0
g1

g0

�k−1�

i��0
Eq. �60�
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These underlie important aspects of the neuronal response
function, like subthreshold resonance �42� and spike-
frequency adaptation �43�. To account for these additional
currents IF models with two or more state variables are re-
quired, with the standard approach having been to linearize
the activation functions and to solve the corresponding
Fokker-Planck equation using an adiabatic approximation
�25–27�. The method described in this paper will allow for
the full nonlinear activation of the current to be included �in
the adiabatic approximation� and so allow for a more com-
plete analysis of the dynamics of neurons with voltage-gated
currents.

Finally, it should be noted that the method can be easily
extended to generate higher-order terms in the expansion of
the Fokker-Planck equation �i.e., beyond the linear-level re-
sponse given by Eqs. �8�–�10��. The higher-order response is
an important component of the weakly nonlinear analysis
required to determine the nature of oscillatory instabilities in
coupled networks �7�. Their analysis promises to yield fur-
ther insight into the nonlinear response �44� of populations
and coupled networks to afferent synaptic drive.
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APPENDIX A: NUMERICAL SCHEME

To perform the integration of the coupled differential
equations the voltage is discretized over the range Vlb to Vth
in steps of � such that V�k�=Vlb+k� with k taking values
0 ,1 , . . . ,n such that V�n�=Vth. It proves convenient to choose
� such that the reset Vre falls on a lattice point, which will be
labeled kre.

The differential equations for the probability density, both
for the steady state and dynamic response to modulation, are
of the form

−
�P

�V
= GP + H . �A1�

A straightforward implementation of an Euler scheme would
not have good convergence properties, particularly for the
case of nonlinear models, like the EIF. An alternative scheme
which avoids these problems is found by integrating the
above equation to yield

P�k−1� = P�k�exp�
V�k−1�
V�k�

G�V�dV + �
V�k−1�

V�k�

dV H�V�exp�
V�k−1�
V

G�U�dU,

�A2�

where all superscripts refer to the quantity evaluated at the
corresponding lattice point. On expanding G and H, in all
integrals, around the value at V�k� to zero order in �, the
following approximation is arrived at

P�k−1� � P�k�e�G�k�
+ �H�k�� e�G�k�

− 1

�G�k� � �A3�

with corrections of order �2. It can be noted that Eq. �A3� is
exact if G and H are constants. This formalism is more fa-
vorable than the standard Euler method applied to Eq. �A1�
because it is not necessary that �Gk be small—a feature that
is crucial for convergence near Vlb for both linear and non-
linear models, and particularly for convergence near the ab-
solute threshold Vth for the nonlinear models.

Given the form of Eq. �A3� it proves convenient to define
the following dimensionless quantities:

A�k� = e�G�k�
and B�k� =

1

�0
2

e�G�k�
− 1

�G�k� . �A4�

Note that if G�k�=0 for some V�k� then B�k� takes the value
1/�0

2 at that point. Also, the case considered here corre-
sponds to that of current-noise models where �0 is a con-
stant; for conductance-based synaptic drive �0 is voltage de-
pendent, but the corresponding algorithm is nevertheless
straightforward to derive.

For the steady state the discretized equations �28� and
�29� with the substitution �16� are

j0
�k−1� = j0

�k� − 
k,kre+1, �A5�

p0
�k−1� = p0

�k�A�k� + ��0j0
�k�B�k�, �A6�

where 
a,b is the Kronecker delta function that is unity when
a=b and zero otherwise. These equations are integrated
backwards from V�n�=Vth to V�0�=Vlb with the initial condi-
tions j0

�n�=1 and p0
�n�=0. The firing rate is then found by

integrating the �unnormalized� probability density

r0 = ��
k=0

n

�p0
�k��−1

. �A7�

The probability densities and steady-state currents can then
be correctly normalized by multiplying by r0:

P0
�k� = r0p0

�k� and J0
�k� = r0j0

�k�. �A8�

The equations for the response to the modulation of some
parameter � can be discretized and integrated in a similar
manner using the appropriate definition for F�. As explained
in Sec. II, Eqs. �17� and �18� must be integrated twice; once
with the assignment r̂�=1, �1=0 and once with r̂�=0, �1
=1. These two cases are satisfied by the pairs of functions

�̂r , p̂r and �̂� , p̂�, respectively. Thus for the first case

�̂r
�k−1� = �̂r

�k� + �i�p̂r
�k� − 
k,kre+1, �A9�

p̂r
�k−1� = p̂r

�k�A�k� + ��0�̂r
�k�B�k�, �A10�

with initial conditions �̂r
�n�=1 and p̂r

�n�=0, and for the second
case

�̂�
�k−1� = �̂�

�k� + �i�p̂�
�k�, �A11�
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p̂�
�k−1� = p̂�

�k�A�k� + ��0��̂�
�k� + f�

�k��B�k�, �A12�

with initial conditions �̂�
�n�=0, p̂�

�n�=0 and where the inhomo-
geneous term f�

�k�=F�
�k� /�1 is calculated using the correctly

normalized probability density P0. From result �24� the
firing-rate modulation is given by

r̂� = − �1�̂�
�0�/�̂r

�0�. �A13�

With this quantity the correct combination of the two solu-
tions can be found to yield the full current modulation and
probability density

Ĵ�
�k� = r̂��̂r

�k� + �1�̂�
�k�, �A14�

P̂�
�k� = r̂�p̂r

�k� + �1p̂�
�k�. �A15�

The MATLAB code for this example is available on request.

APPENDIX B: HIGH-FREQUENCY LIMITS

Here the asymptotic forms for the firing-rate response will
be extracted for the high-frequency limit. The case of the LIF
model will first be addressed, followed by the nonlinear IF
models. The method is cast in a form which is applicable to
both additive current noise and multiplicative conductance
noise.

1. High-frequency response of the leaky IF model

In the following it is assumed that the noise strength �0 is
voltage dependent so as to allow for both the cases of current
and conductance noise to be simultaneously considered; the
current-noise case being recovered by replacing �0�V� by its
constant value.

Starting with the modulated current �31�, at threshold

P̂�=0, and so

r̂� = −
�0

2

�0
�Vth�� �P̂�

�V
�

th
− F��Vth� . �B1�

To calculate the firing-rate modulation it is necessary to ex-

tract the derivative of P̂� at threshold. It is possible to do this
without having to fully solve Eq. �26� through the laborious
matching of boundary conditions, as will now be shown.

The solution of the modulation equation �12� P̂� can be

separated into a particular integral Q̂� and complementary
function �̂� which satisfy

i�Q̂� = LQ̂� +
�F�

�V
, �B2�

i��̂� = L�̂�, �B3�

respectively. In the large ��0 limit, Eq. �B2� yields

Q̂� =
1

i�

�F�

�V
. �B4�

In the same limit a solution for Eq. �B3� of the form �̂�

�e� can be expanded in powers of �

i� =
�0

2

�0
� ��

�V
�2

+ O��� �B5�

so that to leading order

��±

�V
� ± ei�/4���0

�0
2 . �B6�

In the large ��0 limit it is the growing solution �+ that will
dominate the complementary function near the voltage
threshold Vth,

�̂� = �e�+−�th, �B7�

where � is a constant to be determined and �th=��Vth�.
The boundary conditions are now imposed, the first being

that at threshold P̂� vanishes. From Eq. �B7� the constant �

is found to be �=−Q̂��Vth� which is fixed by Eq. �B4�. The

derivative of P̂ at threshold required for the firing-rate modu-
lation via Eq. �B1� may now be found. Thus

� �P̂�

�V
�

th
= �� ��+

�V
�

th
+ O� 1

�
� , �B8�

which, on using the result �B6� and substituting for �, yields

r̂� = e−i�/4��0
2�Vth�
��0

� �F�

�V
�

th
− F��Vth� , �B9�

from which the full range of modulated responses for the LIF
in the high-frequency limit can be extracted.

2. High-frequency response of nonlinear IF models

A simple argument exists �31� for extracting the high-
frequency response of the EIF model to current or noise
modulation. However, for conductance modulation, or other
modulations that explicitly include voltage terms, this argu-
ment must be generalized and is given here for models of the
form �40�.

First the scaling of the steady-state probability density as
a function of the average firing rate r0 is required. From the
current equation

0 = �0J0 +
�

�V
��0

2P0� + �V − E0 − ��P0, �B10�

where �0�V� could be voltage dependent �to include the case
of conductance-based noise� and where � generates the
spike. For the case of current-based noise �0 is constant,
�L=�0 and definition �48� is recovered.

From Eq. �B10� it is seen that in the large V limit the
steady-state distribution scales as

P0 =
r0�0

�
+ O� 1

�2� . �B11�

For the time-dependent case the current equation is of the
form
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�0Ĵ� = �P̂� −
�

�V
��0

2P̂�� − �V − E0�P̂� − �0F�, �B12�

so that in the large V limit the firing-rate modulation r̂�

= Ĵ��V→�� becomes

�0r̂� = lim
V→�

��P̂� − �0F�� �B13�

and in most cases F��V� tends to zero in this limit by virtue
of Eq. �B11�. Hence to calculate the rate modulation the

quantity �P̂� must be found in the limit of large voltages.
However, it is also the limit of large frequency that is of
interest and both these terms, together with the inhomoge-
neous term, must be included in the analysis. Hence the
Fokker-Planck equation �40� for the modulation becomes

i��0P̂� +
��P̂�

�V
� �0

�F�

�V
. �B14�

Dividing both sides of this equation by ��0 /� allows for a
variable m that satisfies

dm

dV
= −

��0

�
�B15�

to be defined. Note that for the limit of large voltage m→0
and for large frequencies m→�. On substituting the variable
m for the voltage V, Eq. �B14� simplifies to

��P̂�

�m
− i�P̂� � �0

�F�

�m
. �B16�

On multiplying by e−�i+s�m where s is small and positive,
integrating over the range from m=0 to m=� and then set-
ting s to zero, the following result required for Eq. �B13� is
obtained

lim
V→�

�P̂� = − lim
s→0

�0�
0

�

dm e−�i+s�m�F�

�m
, �B17�

which allows the firing-rate modulation in the high-
frequency domain to be written in a pleasingly compact
form:

r̂� =
1

i
lim
s→0

�
0

�

dm e−�i+s�mF��m� , �B18�

though the expanded form of Eqs. �B17� and �B13� is some-
times easier to use.
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