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ABSTRACT
Widespread rumoring can hinder attempts to make sense of
what is going on during disaster scenarios. Understanding
how and why rumors spread in these contexts could assist
in the design of systems that facilitate timely and accurate
sensemaking. We address a basic question in this line: To
what extent does rumor evolution occur (1) through reliance
on a centralized information source, (2) in parallel information
silos, or (3) through a web of complex informational interac-
tions? We develop a conceptual model and associated analysis
algorithms that allow us to distinguish between these possi-
bilities. We analyze a case of rumoring on Twitter during the
Boston Marathon Bombing. We find that rumor spreading
was predominantly a parallel process in this case, which is
consistent with a hypothesis that information silos may under-
lie the persistence of false rumors. Special attention towards
detecting and resolving parallel information threads during
collective sensemaking may hence be warranted.
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INTRODUCTION
Collective sensemaking is a central component of response to
disaster scenarios. In these situations, accurate and efficient
collective sensemaking can lead to life-saving information
revelation, impacting both decision making and actions of
affected populations. Communicating and interacting with
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others are key elements in the sensemaking process, where
individuals and groups must collectively come to understand
what is going on around them [30]. Today, collective sense-
making increasingly occurs in online settings [15]; social me-
dia platforms help facilitate crisis communication, but are also
rife with misinformation [25, 38]. Building tools to improve
collective sensemaking, particularly on social media, could
therefore have a meaningful impact on peoples’ lives. To build
functional tools, we must better understand how the complex
process of collective sensemaking occurs in these settings.

Rumors can often align with attempts to understand unfold-
ing events when information is scarce, and as such rumoring
behavior is often considered a form of collective sensemak-
ing [30]. Rumors—defined as unverified information—often
arise in situations characterized by extreme uncertainty and
a lack of official information sources, as is the case in crisis
contexts. Rumors provide explanations arising from the “col-
lective sensibilities of the ... public” [6], lessening anxiety and
restoring a sense of control in ambiguous conditions. Rumors
are emblematic of collective sensemaking because in situa-
tions in which this process occurs, people often cannot or do
not distinguish facts from false rumors.

Studies of rumoring behavior have a long history in the social
sciences; prior work has tended to focus on the process of
rumor spreading and the subsequent changes in content that
result from serial transmission [3]. Although scholars pro-
posed specific mechanisms leading to this phenomena (e.g.
the tendency for rumors to retain specific content (sharpen-
ing) and lose other details (leveling)), empirical analysis of
the collective sensemaking processes is lacking. Mapping
how variations and permutations of rumor stories unfold and
change over time could improve our understanding of col-
lective sensemaking and our ability to facilitate efficient and
accurate information gathering and decision making.

In this study, we focus on rumoring behavior immediately
following the 2013 Boston Marathon Bombing. We map the
dynamics of collective sensemaking by exploring variations of
a particular rumor story over time. Occurring simultaneously,
as well as in sequence, distinct threads of communication
composed into a complex and widespread false rumor about a
young girl who died while running the marathon in support of
the Sandy Hook school shooting victims.



Feature Meaning Example Tweet
boy Child was a boy, not a girl Everyone is posting the little girl running saying 8 year old killed in

Boston marathon... It was an 8 year old boy that was killed guys..

charity Child was running for charity So sad, this precious 8 year old was running in the Boston Marathon for
charity. #RIPBabyGirl http://t.co/yldeNmxKYA

father Child was waiting for father at the finish line I thought it was an eight year old boy that was waiting for his father to
cross the line that died in Boston not a girl running herself

sandy Child was running for Sandy Hook victims R.I.P. to this 8yr old girl who died in Bostons explosions, while running
for the Sandy Hook kids. RT for respect. http://t.co/ZBhI4on7tN

spectator Child was a spectator, not running in the race Im pretty sure this lil girl wasnt running the marathon & died. Her tag
says 5k on it. Stop posting this picture. http://t.co/EoFmmnQHgG

young Child died One of the casualties was an 8 year old girl running the marathon. The
theme was 26 miles for 26 victims. The things people do make me sick.

Table 1: Descriptions and examples of the features identified in our tagging procedure.
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Figure 1: Inference algorithms take as input data that is as-
sumed to be reflective of some underlying world state of inter-
est. The algorithms then perform intermediary computations
before arriving at final inferences.

Our approach is to map the information space of rumor-related
discussion. From a computational point of view, it is natural
to think of collective sensemaking as a form of inference from
observations. Inference is the process of arriving at knowledge
via the observation of data. For instance, one might wish
to infer the parameters of a model, such as the value of the
gravitational constant g in the Newtonian model of physics.
In this illustrative hypothetical example we might attempt to
find the gravitational constant that best explains trajectories
of a set of falling objects we have observed. To find this
best value of g, one common approach is to try a sequence
of values and observe the explanatory power of each element
in this sequence. However, such processes are often sensitive
to the initial element of the sequence, or the sequence itself
might involve random choices. Therefore running multiple
sequences in parallel can improve the speed or accuracy of
inference. In a more complex scenario, data may be distributed
across different locations, and servers at each location must
periodically communicate intermediate inferences with each
other in a carefully designed distributed algorithm to ensure
that final inferences are accurate. Figure 1 illustrates schematic
diagrams of centralized, parallel, and distributed architectures
for inference algorithms.

In the case of collective sensemaking, individuals are observ-
ing and participating in discussion about a rumor on social

media; they are forming beliefs or opinions based on their ob-
servations and interactions. Given that this process frequently
occurs across geographically distributed participants, it is nat-
ural to ask whether the collective sensemaking we observe
in these situations is consistent with processes of parallel or
distributed inference. Abstracting this process may then al-
low us to draw on a variety of inference procedures that have
been studied in the vast literature on optimization and ma-
chine learning to develop more precise mathematical models
of collective sensemaking (e.g., [5, 16, 21, 29]).

BACKGROUND
Rumoring Behavior on Social Media
Early work on rumors studied the motivation for rumors, when
and how they propagate, and how representations of infor-
mation mutate as a rumor evolves through a population [2,
7, 27]. Recent work extends theories of rumoring to online
environments, categorizing prominent attributes of rumors in
social media platforms [6, 22, 38]. The relationship between
attributes of this sort and the propensity for a rumor to spread
has also been studied [20, 33]. Other works have looked at
how information propagates through social networks without
attending to how the representations of information change [4,
8, 10, 12, 37].

In closely related recent work, researchers examined how
memes evolved through news articles [31] and how rumors
evolved through the network of Facebook posts [1, 11]. This
prior work focused on understanding the details of how rumors
mutate individually, as well as how those mutations and the
attributes of the resulting rumors were related to their propa-
gation rates, but this prior work also identified points when
distinct rumors or rumor variants merged together. Ultimately
our results are largely consistent with the related results of this
prior research, but our focus is on the information processing
implications rather than the implications for genetic models
of memetics.

To the best of our knowledge, none of this prior empirical work
has attempted to infer the dependencies between rumor or con-
versation threads in order to measure the extent of parallel and
distributed information processing occurring during collective
sensemaking. Our work also contrasts with the closely related



prior work on rumor evolution on Facebook in the richness
of the rumor we study. Prior work has focused on studying
quoted text and edits between quotes. This choice allowed
for large-scale data analysis but limited the types of rumors
that could be studied and the contextual detail that could be
brought to bear in understanding this phenomenon. Here we
use a semi-automated coding system using regular expres-
sions to tag conceptual content of tweets associated with the
rumor we study, and hence we can study the process of collec-
tive sensemaking at a different level of analysis. Compared
to using quotes, we are able to observe conceptual changes
rather than just textual changes, and our methods are applica-
ble to any social media rumor rather than just copy-and-paste
reposts.

Social Computation
Our work also connects to a growing literature that attempts
to conceptualize human groups and social systems as informa-
tion processing systems [9, 13, 17, 18, 19]. While rumoring
behavior and collective sensemaking have been discussed in-
formally in computational terms previously (e.g., [37]), to the
best of our knowledge, ours is the first work that leverages an
explicit information processing model in order to better under-
stand observed rumoring behavior, and among the first to do
so for collective sensemaking behavior (cf. [32]). Of course,
many formal models of rumor behavior exist, including large
bodies of literature on cultural diffusion [14] and on gossip
algorithms [28], but the formal models in this area that are
connected with data tend to lack coherent interpretations as
systems that actually perform information processing, and the
models that do have interpretations as information processing
systems tend to be divorced from empirical data. The present
work marries a formal information processing view of social
systems with the empirical study of rumoring behavior and
collective sensemaking.

ARCHITECTURES OF SOCIAL COMPUTATION
In designing software systems, one of the basic architectural
decisions to be made first is whether the system will be imple-
mented in a centralized, parallel, or distributed manner. This
choice involves deciding not only whether to use multiple
processing units but also how and when multiple processing
units would communicate with each other during computation
(typically either not at all or through shared memory in the
parallel case, or through message passing in a prespecified
network structure in the distributed case).

When viewing social phenomena through the lens of compu-
tation, it is also natural to ask in which of these capacities
a phenomenon is operating. In the social context, the ques-
tion is fundamentally about the complexity of the patterns
of information flow between people. However, it is difficult
to disassociate the terms parallel and distributed information
processing from the algorithmic techniques typically associ-
ated with those areas in computer science. Our first step is
therefore to achieve a level of conceptual clarity around what
it means for an arbitrary information processing system to
be operating in a centralized, parallel, or distributed capacity.
This characterization obviously must be general enough so
that it can apply to systems of people, who are clearly not

(a) Centralized (b) Parallel (c) Distributed

Figure 2: Informational dependency graphs associated with
centralized, parallel, and distributed computation. The nodes
represent computation blocks and the edges informational de-
pendencies. The dotted lines show the downstream “influence
cones” of the highlighted blue nodes—the set of nodes that
their computation affects. Centralized computation is asso-
ciated with sharp cones in an information pipeline. Parallel
computation is associated with non-intersecting information
silos. Distributed computation displays intersecting cones that
form an information web.

arranged according to the typical architectures of centralized,
parallel, or distributed software.

Basic Framework
We first suppose that information processing, whether in soft-
ware or in society, consists of compositions of “computation
blocks”. In the case of social computation, a block might be a
single person thinking about a single fact. In the context of our
work, each computation block will be associated with a new
inference event. These computation blocks are composed via
informational dependencies, in which the output of one com-
putation block is communicated as input into another block.
In the social case, an informational dependency could arise
from one person communicating an inference to another per-
son. An informational dependency could also occur between
one person thinking about a fact at one point in time and the
same person rethinking that fact at a later point in time with
the benefit of the inferences gleaned on the first occasion. The
distinction between centralized, parallel, and distributed pro-
cessing can then be understood in terms of the structure of the
network of informational dependencies between computation
blocks. These graph structures are illustrated in Figure 2.

Before describing each of these structures in turn, it is worth
noting that unlike in software systems, where all engaged pro-
cessing units play a functional role in the computation, social
systems may also have people that perform actions that are not
functionally relevant to the computation effectively embodied
by the system. For example, a person may participate in a
system by passively consuming the news. These tangential
actors are informationally passive, and while they enrich the
system, they will not affect its computational architecture.



Centralized Processing
Centralized processing is characterized by chain-structured
informational dependency graphs. Centralized algorithms for
inference typically involve a single processor taking data obser-
vations and gradually updating inferences based on that data
(in a series of computation blocks). In the social context, one
example of a centralized collective sensemaking phenomenon
would be a crowd of people passively consuming news from a
single source, perhaps one that updates its stories over time.
The computation blocks in this case are found within the news
source, and the passive observers are excluded from the infor-
mation architecture.

Parallel Processing
Parallel processing is characterized by tree-structured infor-
mational dependency graphs. Parallel algorithms for infer-
ence typically involve multiple processors running isolated
instances of an identical algorithm. While atypical for parallel
inference algorithms, we also treat spawning child processes,
e.g. that run replicated computation starting at the last ob-
served parent state, as included within the scope of parallel
architectures. In the social context, parallel processing could
occur through multiple people actively engaging with news
from a single source by modifying that news according to
their own experiences. Parallel processing could also occur
through distinct groups of people passively consuming news
from single distinct sources. Or parallel processing could oc-
cur through people interpreting a situation using their own
experiences without reference to information from others.

As is evident in these examples, parallel processing can be
associated with rigid “information silos”. From a technical
point of view, in a parallel process, the descendants of two
computation blocks with no path between them form distinct
information silos. No two downstream computation blocks
from each of those parent blocks will share new information
between them.

Distributed Processing
Distributed processing is characterized by trellis-structured
informational dependency graphs, i.e., directed acyclic graphs.
Distributed algorithms for inference mainly involve periodi-
cally reciprocally sharing intermediary processed data or in-
ferences between processors. In the social context, distributed
processing could occur if people integrate information from
multiple news sources or synthesize ideas heard from multiple
people.

MODELING COLLECTIVE SENSEMAKING
The goal of our work is to understand the extent to which
observed processes of collective sensemaking on social me-
dia are centralized versus parallel or distributed. If people
mainly draw upon a single global source for their information
about a particular scenario, and only copy, embellish, or re-
fine that information privately, collective sensemaking would
appear essentially like a centralized process. If individuals or
small groups mostly replicate or refine distinct non-interacting
threads, the process would appear essentially parallel. If mul-
tiple threads exist and continuously interact with each other,
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Figure 3: An illustration of our conceptual model of collective
sensemaking/rumor spreading. Computation occurs at the
boxed individuals who create new hypotheses. Each utterance
shown in the figure would be an observation in our dataset.

the process would be truly distributed. Each of these poten-
tial conclusions suggests different classes of algorithms to
look towards in further work developing models of collective
sensemaking as inference.

To grapple with these questions, we suppose that the problem
of collective sensemaking can be viewed as one of inferring an
unknown present state of the world. We suppose that the state
of the world can be represented by a binary vector of features.
For example, in a disaster context, some features might be
“there was a tornado”, “there is a fire”, “someone has died”, et
cetera. We also suppose that people communicate hypotheses
about the world, again represented as binary vectors consist-
ing of the features of the world state (e.g., using the features
above, (1,1,0) indicates a hypothesis that there was a tornado
and there is a fire, but nobody has died). Collective sensemak-
ing involves the process of propagating, augmenting, refining,
merging, supporting, and extinguishing these candidate hy-
potheses. We will define one thread in a process of collective
sensemaking as the collected expressions of one candidate
hypothesis (a particular combination of nonzero features).

To simplify the analysis, we assume that individual features
or combinations of features are only discovered once, and all
other occurrences of those features or combinations are copies
or modifications of those first occurrences. While this simplify-
ing assumption likely misses the complexity of real-world col-
lective sensemaking, where truly independent sources could
post essentially identical observations for example, the as-
sumption allows us to begin to map a very complicated phe-
nomena. Our conceptual model is illustrated in Figure 3.

DATA
The dataset we analyze consists of observations of collec-
tive sensemaking unfolding during the 2013 Boston Marathon
Bombing. On April 15, 2013 two bombs were detonated near
the finish line of the Boston Marathon. Hundreds of spectators
and runners were injured by the blasts, and three individuals
were killed. In the week that followed, police launched a sig-
nificant manhunt for two suspects, during which time social
media users collectively attempted to help apprehend the sus-
pects. Several rumors propagated during this time, including
the case study in this paper.
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Figure 4: A plot of the temporal dynamics and frequency of
the observed instances of each rumor thread. There is one row
for each rumor thread, and one point for each tweet.

Collection
The data we analyze was collected in a prior study by using the
Twitter Streaming API with the search terms “blast”, “boston”,
“bomb”, “explosion”, and “marathon” [22]. Data collection
began a few hours after the explosion of the first bomb and
continued for seven days; some periods of observation have
missing data due to rate limits of the Twitter API. Prior work
has examined this data, identifying multiple rumor stories and
qualitatively coding individual tweets based on their relevance
to each rumor [22, 35, 38].

Tagging
Although the dataset we use was studied in prior work, we
enrich the data by adding feature tags to 4,826 tweets asso-
ciated with one larger rumor story. These tags correspond to
“features” in our conceptual model. We focus on the “Girl
Running” rumor, which contained claims and references to
a young girl who was killed while running the marathon in
honor of the victims of the 2012 shooting at the Sandy Hook
elementary school in Newtown, CT. We focus on this rumor
because it is well-defined while still containing interesting
complexity in the number of distinct ideas present in the con-
versation. We use 4,826 distinct tweets identified as related to
this rumor (via manual coding in prior work).

In an iterative and collaborative process, we compiled a list
of distinct information features within the larger rumor story.
Two authors of the present work took a random sample of 100
of these tweets, examining each tweet individually to identify
and note new information that was being introduced into the
rumor landscape. Using a list of keywords and phrases to
identify each of these features, and after discussion among
the research team, a consensus was reached about the set of
appropriate features. Throughout this process, the level of
detail of the features was refined. For example, two features
that overlapped conceptually and empirically would likely
be merged into a single feature; other cases were separated
into multiple more specific features. For each feature, a reg-
ular expression-based query was developed to automatically
retrieve and identify tweets from the dataset related to that par-
ticular rumor feature. Finally, some irrelevant and unreliable
features were removed prior to analysis. The resulting set of
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Figure 5: (a) Distribution of the logarithm of the volume
(number of tweets) of each thread. (b) Distribution of the
number of features associated with each thread. (c) Histogram
of the times at which we first observe an instance of each
thread. (d) Histogram of the duration of each thread.
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Figure 6: (Left) The time a thread first appeared versus its
ultimate total tweet volume. (Right) The duration of time over
which we observe a thread versus its total volume.

features identified in this process, along with basic descrip-
tions and example tweets, is shown in Table 1. We consider a
single thread of discussion to be the set of tweets associated
with a particular combination of these features.

Descriptive Statistics
This dataset consists of 27 distinct rumor threads. In this
section we present visualizations of basic descriptive statistics
of these threads to provide context for our analysis. The time
stamps of all tweets associated with the 27 threads are shown
in Figure 4. Immediately this plot begins to hint at the structure
of collective sensemaking in this case. We see that there are
three threads that dominate in terms of the volume of tweets,
and tweets associated with each of these three threads occur
throughout our observation window. Figure 5 displays the
distribution of tweet volume by thread as a histogram, again
showing that most threads have low volume. We also observe
that most threads have an intermediate number of features
associated with them. Figure 5 also shows that most observed
threads are created early, and last only a short time. Figure 6
shows that the most popular threads tend to be introduced
earlier, and the length of time a thread exists appears to have
an exponential relationship with the total volume of tweets
associated with it. These results indicate the early-comers are
likely to persist and enjoy widespread attention.

METHODS
Our main goal is to evaluate the degree to which rumoring
behavior and by extension the collective sensemaking process
observed in this case displays signatures consistent with cen-
tralized, parallel, or distributed information processing. We
combine quantitative and qualitative assessment of the rumor
threads in this analysis to give insight into how communication
was unfolding over time. For the quantitative component of



our analysis, we develop an automated method for classifying
threads into different types of dependencies, associated with
either centralized, parallel, or distributed computation.1 For
the qualitative component of our analysis, we look at example
tweets from threads associated with different types of depen-
dencies, drawing on expert knowledge of this particular case
study. Our qualitative component adds richness and context
for our observed results, increasing understanding as well as
lending face validity to quantitative results.

Analysis Approach
To understand whether threads are formed in a centralized,
parallel, or distributed manner we attempt to reconstruct the
dependency structure between threads. Given our conceptual
model we firstly suppose that any tweet that consists entirely
of a previously observed combination of features belongs to
the thread associated with that combination. When we see a
tweet with a new combination of features, all of which are
features that have been observed previously, we can deduce
that this tweet must have been derived from some prior thread
or threads. There are two possibilities in this case. If that
specific combination of features has appeared as a subset of
a combination of features that appeared in a single previous
tweet, then the new thread could have been formed by a dele-
tion event. If that specific combination of features has never
appeared at all in any previous tweet, then the new thread must
be from a merge of two prior threads. For example, if we
observe the threads (1,1,0) and (1,0,1), and then later observe
(1,1,1), this latter thread could have been due to a merge of
these two earlier threads. Finally, when we find a new feature
together with an otherwise old combination of features, we can
think about this tweet as forming from a mutation event. Since
all tweets we analyze were detected as associated with the Girl
Running rumor, we treat threads that consist of completely
novel features as mutations on the base thread (0,0, . . . ,0).

Each of these types of dependencies are associated with cen-
tralized, parallel, or distributed processing. Centralized and
parallel processing would consist only of mutations and dele-
tions events since in these forms of computation there is either
only a single thread or multiple non-interacting threads. Dis-
tributed processing would also include merge events between
threads since it consists of multiple interacting threads of com-
putation.

Even with the deductions just described, there is still ambiguity
in the dependency structure between threads. This ambiguity
arises from cases where a thread could have been formed
either by a deletion event or a merge event. For example, if a
tweet with features (1,1,1,1) exists already, as well as tweets
with features (1,0,0,0) and (0,1,0,0), then a new tweet with
features (1,1,0,0) could have been a refinement of the first
thread, or a merge of the second and third threads. We resolve
these ambiguities in three different ways, detailed below. We
use three different methods in order to provide a more robust
analysis.

1The code for our quantitative analysis is online at
https://github.com/pkrafft/Centralized-Parallel-and-Distributed-
Information-Processing-during-Collective-Sensemaking.

Algorithm 1 Merge Event Lower Bound (MELB)
for rumor thread r, sorted by first appearance time do

s := r with newly observed features stripped
if s has been observed previously then

count r as a mutation
else

if the features in s are a subset of a prior thread’s then
count r as a deletion

else
count r as a merge

Algorithm 2 Merge Event Upper Bound (MEUB)
for rumor thread r, sorted by first appearance time do

s := r with newly observed features stripped
if prior threads not strict supersets of s could merge to s then

count r as a merge
else

if s has been observed previously then
count r as a mutation

else
count r as a deletion

Counting Thread Types
Our first two methods of resolving ambiguous dependencies
establish lower and upper bounds on the number of merge
events that could have occurred between threads. Establishing
a merge event lower bound (MELB) provides the most severe
test within the confines of our conceptual model of whether
distributed processing is occurring at all in the collective sense-
making event we study. The purpose of the lower bound is to
avoid overestimation and a false positive declaration of dis-
tributed information processing. To establish a lower bound
on the number of merge events, we simply attribute thread
creation to deletion events whenever there is a case where a
thread could have formed from either a deletion or a merge
event. Therefore, with this method, merge events are likely
undercounted. Obtaining a merge event upper bound (MEUB)
allows us to avoid a false negative declaration of distributed
information processing. To establish an upper bound, we at-
tribute any thread creation to merge events whenever there is a
case where a thread could have formed either from a deletion
or a merge event. Pseudocode for these two methods is shown
in Algorithms 1 and 2.

Inferring Dependencies
Our third method resolves the same ambiguity in a different
way. This method first defines a set of three atomic actions
that can be composed to lead to new threads. The first action
consists of merging all of the features of two threads, the sec-
ond action consists of deleting one feature from one thread,
and the third action consists of creating a new feature on one
thread. These actions can be composed any number of times
in the creation of a new thread, but this method assumes that
newly observed threads were formed by the minimal number
of actions upon previously existing threads. When this heuris-
tic does not completely determine a single set of potential
dependencies (for example, if a new thread could have been
formed by a single deletion from an old thread, or a single
merge of two old threads), then the dependency set with the
highest mean tweet volume among the potential dependencies



Type Dependencies MELB Method MEUB Method
None Single 1 1

Mutation Single 6 6

Deletion Single 10 3

Merge Multiple 10 17

Table 2: Counts of the different thread dependency types. One
thread (with zero features) represents discussion detected as
relating to the rumor not displaying distinctive features.

with minimal edit distance is chosen. The algorithm we wrote
for identifying the set of simplest dependencies for each new
thread is a complex recursive algorithm, and hence we omit a
description of its details due to space limitations. This method
not only allows us to count the number of times each type
of dependency occurred, it also allows us to identify which
specific prior threads likely contributed to a new thread. Thus
we can directly reconstruct and examine a specific plausible
dependency structure of threads using this method.

RESULTS
The descriptive statistics we examined of our dataset already
indicated that multiple prominent threads of discussion were
occurring simultaneously during the propagation of the Girl
Running rumor. This finding suggests that collective sense-
making in this case was either primarily parallel or primarily
distributed. Distinguishing between these two possibilities
requires examining how the main threads of discussion might
have arisen. Beyond the major two or three threads of discus-
sion, there were also a substantial number of threads with a
lower volume of tweets associated with them. We are also in-
terested in examining the common dependency patterns among
these lower volume threads. The results from counting the
number of instances of each possible type of dependency are
shown in Table 2. A visualization of specific inferred depen-
dencies between threads is shown in Figure 8.

Parallel Information Processing
The results of the MELB method, shown in Table 2, indicate
that most threads we observe could have been formed either
by mutations or deletions from old threads. Both the muta-
tion and deletion actions only operate on a single existing
thread, and hence are associated with centralized or paral-
lel processing. Furthermore, as shown in Figure 7, threads
with single dependencies tend to have higher total volume
than threads with multiple dependencies (a difference that is
statistically significant p = 0.0437 under a two-sided t-test
with the MELB method and at p < 0.001 with the MEUB
method). In fact, threads with either no dependencies or only
a single dependency account for about 97% of the tweets we
observe (including retweets) under the MELB method and
still about 96% under the MEUB method. We further observe
that a large portion of this percentage is attributable just to
three threads, all of which have either zero or one possible
dependency. Hence from our quantitative analysis, the process
of collective sensemaking in this case appears to be predom-
inantly parallel as opposed to distributed. Figure 8 indicates
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Figure 7: Threads with single dependencies tend to have higher
log volume than threads with multiple dependencies. Each
point in each plot is a single thread.

that our third method for inferring dependencies also supports
this interpretation.

Examples
We look at three examples of threads with dependencies and
dynamics that indicate parallel processing. As has been previ-
ously noted in investigations of the rumor studied here [22],
and as confirmed by our quantitative analysis, this rumor con-
sisted mainly of two threads. One thread involved reports that
a young girl had died in the 2013 Boston Marathon Bomb-
ing, possibly while running in the marathon. In our data, this
thread is associated with the “young” feature. Since this thread
consists only of a single feature, the only possible ways in
which it could have been created are through a deletion event
of a more complicated thread, or through an innovation on
top of the general discussion thread (that has no features).
Our quantitative analysis reveals that “young” was indeed an
innovation without prior dependencies beyond the general dis-
cussion around the event. Looking at the actual text of the
tweets in our dataset, the first tweet we observe referencing
this thread is the following: “RT @XXX: An eight year old
girl who was doing an amazing thing running a marathon, was
killed. I cant stand our world anymore”.2

The main variant of this thread, which has been recognized in
prior work [22], involved reports that the young girl who had
died was running in memory of the victims of the Sandy Hook
school shooting. In our data, this thread is associated with the
“young,sandy” combination of features. Since this thread has
two features, and since we can confirm that the “young” thread
existed first within our tweets, the “young,sandy” thread could
have been formed either by a merge of the “young” thread
and a separate “sandy” thread, or it could have formed from a
simplification of a more complex thread, or from a mutation
of the “young” thread.

Our dependency inference method indicates that the
“young,sandy” thread was in fact formed by a mutation of
the “young” thread. That is, the first appearance of the “sandy”
feature co-appeared with the “young” feature. The first tweet
we observe with this combination was “RT @XXX: + Boston
Marathon Bombing has me sobbing a fucking river. An 8
year old, a little girl who was running for Sandy Hooks,

2The first such tweet we observed was a retweet. This is either
because the rumor was propagating earlier than the beginning of
the data collection or because Twitter API rate limits led the data
collection to miss the earliest tweet.



...” and we have no clear references to Sandy Hook be-
fore this tweet. However, we do observe earlier references
to the little girl who died having been running for char-
ity. The first such tweet we observe (classified as in the
“young,charity” thread) was “So sad, this precious 8 year
old was running in the Boston Marathon for charity. #RIP-
BabyGirl http://t.co/yldeNmxKYA”. It could therefore be that
“young,sandy” mutated from this thread rather than the “young”
thread alone.

In either case, all of these threads have single dependencies
among the existing threads of discussion, and hence are char-
acteristic of parallel information processing. Participants in
the online discussion appear to have seen prior reports in a
single thread and introduced variants of the rumors that then
propagated in parallel.

One final piece of evidence that supports the fact that these
threads were indeed propagating in parallel highly isolated
threads of discussion is that eventually (indeed actually rather
early on) threads appeared that identified the rumor about the
young girl as being false. For instance, this tweet appeared al-
most immediately after the first instance of the “young” thread
that we observed, “Just wanna tell you that you have to qualify
for the Boston Marathon so a 8 year old wouldnt be running!!!!
that picture isnt of the girl!!!”, and a number of similar sub-
sequent tweets also appeared. Yet the main rumor threads
persisted despite these denials.

Distributed Information Processing
While the few threads that include the vast majority of tweets
we observe appear to be associated with parallel information
processing, we also find signatures of distributed information
processing in the tail of the discussion activity. As shown in
Table 2 we identify at least ten threads, a substantial proportion
of the total number of threads we observe, that cannot have
been formed by deletions from or mutations of prior threads.
This 40% or so of threads do not constitute a large volume of
tweets, but they may shed light on how some people access
the information available during collective sensemaking, and
they highlight the complexity in the details of the collective
sensemaking process.

Examples
We examine two examples of inferred merge events to check
whether these cases appear to be legitimate rather than artifacts
of the tagging procedure or of our inference procedure. The
first example occurs between the threads “young,boy” and
“young,sandy”, which appear to merge into “young,sandy,boy”.
Here are the tweets associated with “boy” that appear before
the first appearance of “young,sandy,boy”:

• “Everyone is posting the little girl running saying 8 year old
killed in Boston marathon... It was an 8 year old boy that
was killed guys..”

• “RT @XXX: For those seeing photo of 8 yr old girl running
with claims that she died: CNN has reported it was an 8 yr
old BOY wh ...”

The next tweet with a “boy” feature is then in the
“young,sandy,boy” thread: “HES A BOY @XXX: R.I.P. to the

8 year-old girl who died in Bostons explosions, while running
for the Sandy Hook kids. #prayforb...”

Clearly this tweet has integrated information about the boy
who died while spectating with an observation of the Sandy
Hook thread. The “young,boy” thread also continues in paral-
lel with tweets such as the following:

• “Just sayin it was an 8 year old boy that died, not a girl,
for all those who posted a picture of a little girl running
#GodBless #Boston”

• “RT @XXX: Is this true? CNN says it was a boy RT
@XXX: Girl, 8, died in #Boston while running ...”

And eventually we see another “young,sandy,boy” instance:
“An 8 year old girl died, and an 8 year old boy in Boston today.
And they both were running in honor of sandy hook. Like
really?”

Another merge event we observe occurs between the
“young,boy” and “spectator” threads. Here we find a refer-
ence to the fact that the girl people had been talking about
could not have been running in the marathon because of her
age, as well as a reference to the report that a young boy had
died, not a girl: “It was a boy that died not the 8 year old girl..
plus she wasnt running you need to be 18 to run the marathon.
#prayforboston”

These threads, though comparatively low in volume, indicate
that some people are paying attention to multiple parallel
threads that are occurring, and integrating information from
across them into new threads. Again, however, these merge
events appear primarily to create new parallel threads rather
than extinguishing old threads.

DISCUSSION
The results presented above explore collective sensemaking
during the 2013 Boston Marathon Bombing. The evidence we
examined suggested that collective sensemaking in this case
contained both parallel and distributed information processing.
These results have implications for understanding collective
sensemaking in the context of crisis events.

Sources of Parallel and Distributed Processing
Given the observed high degree of parallelism in this case
study of collective sensemaking, as well as some degree of dis-
tributed information processing, it is important to consider how
these components (and their combination) may arise in social
media systems; collective sensemaking in online environments
may well be constrained by the features of the platforms used.
In this case, the structure of collective sensemaking during
extreme events is driven primarily by the affordances and lim-
itations of the platform interface itself. Twitter, for example,
allows users to search for distinct content of interest using key-
words or hashtags. Search results then display tweets associ-
ated with distinct subsets of the larger discussion surrounding
this rumor, and the event itself. Users can also receive content
through pre-existing or newly formed social relationships (i.e.
follower ties). Alternate mechanisms of exposure might be
third-party platforms, or even word-of-mouth.



Figure 8: A reconstruction of the dependencies between threads of the rumor we study. Each horizontal line is a thread, with the
thickness of the line being monotonically related to the volume of tweets associated with the thread.

Given the similarity between the language used in affirming
and denying tweets (e.g. copy and pasting an affirming tweet
and adding a denial of the content at the beginning or end),
and given how persistent the dominant threads were even in
the face of conflicting information, the limited display of infor-
mation in the interface seems unlikely to represent the whole
story. It is likely extremely difficult for users to have a com-
plete and accurate picture of all rumor-related conversation
in the total information space; users instead see a very spe-
cific, potentially biased, subset of crisis communication. It is
unsurprising then, given these features of the communication
channel, that multiple parallel discussions may exist.

Another source of parallelism is suggested when examining
the text of the example tweets, as well as referencing prior
work about rumoring during crisis events, specifically on social
media platforms. Social media posts persist, though perhaps
not visibly, and can be “re-discovered” at much later time
points. Users who may have missed detailed rumor discussion,
and even resolution of uncertainty within the rumor, can re-
introduce rumors by re-posting outdated content. Indeed, prior
work has observed cases of rumor resurgence [4, 22].

Moreover, rumor-related messages often contain references
to external sources, such as mass media outlets. In the case
reviewed here, for example, a large portion of the conversa-
tion surrounding denials of the Girl Running rumor explicitly
referenced content from CNN which noted it was actually a
young boy who was killed while spectating. Each individual

thread of discussion we examined was centralized by defini-
tion since they consisted of the same information content. It
is possible that distinct threads obtain their coherency from
some centralized, external information source such as CNN.
Some amount of parallelism could therefore be due to different
people attending to difference news outlets.

Finally, there has been continued interest in the ability of the
distributed crowd on social media platforms to engage in crisis
response and recovery activities, coordinating aid activities,
situational awareness, crisis mapping, donations, etc. [23,
24, 36, 34]. Distributed information processing could arise
from the coordinated actions of populations that have prior
experience with crowdwork and crisis participation, and who
are tweeting about various different discussion threads.

Relation to Theories of Rumoring
It is also interesting to consider how our information pro-
cessing perspective relates to traditional characterizations of
rumoring processes such sharpening and leveling, as well as
other social phenomena such as information silos and echo
chambers. Deletion events can likely be viewed as sharpen-
ing or leveling. Merge events, mutations, and innovations
are probably related to “assimilation”. Echo chambers and
the spread of false news could potentially be exacerbated by
parallel rumoring while potentially being mitigated by central-
ized or distributed rumoring. Future work could study these
connections in more depth.



Implications for Design
Research that improves our understanding of collective sense-
making, and the types of information processing that accom-
pany it, has many implications for the design of systems to
help facilitate these processes. For example, making observed
parallel processing visible to users could help online crowds
transition from parallel to centralized or distributed systems
for collective sensmaking, perhaps increasing efficiency and
allowing human resources to be directed at multiple tasks
rather than multiple versions of the same task.

Prior work has often focused on building systems to detect
rumors (e.g. [26]). Less attention has been paid to building
systems that help facilitate collective sensemaking and rumor-
ing behavior itself. Such work could aid in crisis response,
allowing online crowds to reach consensus or at least collective
understanding of appropriate response actions. These systems
could also assist in decision making by directly facilitating
communication and interaction that builds understanding and
awareness of crisis situations and how events unfold. Our
study represents just one step in this direction.

Methodological Limitations
One limitation of our study is in the raw data itself. The dataset
was collected using Twitter’s Streaming API, and using par-
ticular keyword searches. Hence, it is likely the case we only
have a sample (albeit a large sample) of the full set of tweets
discussing this rumor. If multiple threads were introduced
close together in time, lacking comprehensive coverage of all
tweets could disrupt the dependencies we infer.

Our tagging procedure also introduces a potential source of
error. Features were manually curated through an extensive
and resource intensive procedure, but ultimately the features
associated with specific tweets were determined automatically
via regular expressions and are therefore noisy. Tagging is
susceptible to both false positives and false negatives; errors
could disrupt our inferred dependencies for the same reason
that missing tweets do.

We also need to consider possible error due to our modeling
assumptions. The main modeling assumption we leverage
is that features are only innovated once. This assumption is
almost certainly not met, but it may be approximately satisfied
if most people get their information from looking at what
others say rather than investigating the event independently,
or if each feature is innovated by a single source external to
the platform (such as a news source). If this assumption is
not satisfied, then we may inappropriately infer merge events
when none have actually occurred. Without this assumption,
then, apparent merge events between threads could also be
attributable to a thread rediscovering a feature contained in a
separate thread, rather than having an actual interaction with
that thread.

While strong assumptions simplify models and limit their im-
mediate application in real-world settings, they also provide
necessary parsimony when exploring complex phenomena.
Moreover, the qualitative analysis used to augment our quan-
titative findings helps to evaluate the impact of all of these
limitations. By carefully checking the inferences from our

quantitative analysis against prior work and against the text
of the tweets in the raw data, we can gain confidence in our
conclusions. Future work could examine probabilistic models
that account for gaps in our data, for unreliable features, and
for varying probabilities of different features being discovered
independently in order to relax our modeling assumptions and
assign probabilities to merge events.

Finally, we must be careful not to generalize too readily from
the single Girl Running rumor that we study. The amount of
parallel and distributed information processing that we observe
could be tied to the type of rumor we chose to study (a clearly
false rumor that was likely intentionally started by a person
who knew it to be untrue). Further, many of the affirming
permutations around this rumor were likely purposeful mis-
information, so the sensemaking process was mostly around
questioning/correcting the rumor. Future work could conduct
the type of analysis we have performed here with a broader
set of rumors.

CONCLUSIONS
In this work we present a new way to analyze and characterize
individual rumoring scenarios. Our conceptual model opens
the door to richer mathematical models of rumor spreading
than currently exist. Our analysis methods and conceptual
model also lead to inferential capabilities and attendant visual-
izations that could be leveraged immediately in a system for
collective sensemaking.

We illustrate these techniques using data from a rumor that has
been extensively analyzed previously using mixed-method,
interpretivist research methods, including detailed qualita-
tive analysis in conjunction with temporal signatures [22, 35,
38]. This prior work serves as a comparison for the current
work, allowing us to demonstrate how our new methodologi-
cal approach leads to additional insights about how the rumor
changed over time, and providing insight into why it kept
propagating (widely) after it had been corrected. This prior
work also demonstrates that this rumor is similar in temporal
signature shape to the majority of Twitter rumors, and highly
representative of one of three Twitter rumor types.

Our substantive finding that rumoring in the case we studied
was largely centralized and parallel may be central to explain-
ing why rumors resurface even after they have been corrected,
but is also interesting in its own right. Given that the rumoring
process could easily have been highly distributed, some under-
lying forces must be favoring centralized and parallel rumor
evolution. Future work could identify these underlying forces.
Finally, future work could compare how the prominence of
different dependency types and the underlying forces leading
to them vary across different types of rumors or different social
media and interaction contexts.
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