Detecting effects of management on long-lived species

count (rookery and haulout trends sites)

 Challenge: The slow response of population size to small survivorship and fecundity improvements prevents rapid detection of the effects of management actions.

Solution? Age-structure shifts?

York matrix model based on tagging data from Marmot Is. '70s

age 0	1	2	3	4	5	6	•••	31
0	0	0.0788	0.1669	0.2376	0.2819	0.278^{\dagger}	• • • •	0
0.782	0	0	0	0	0	0	•••	0
0	0.782	0	0	0	0	0	•••	0
0	0	0.782	0	0	0	0	•••	0
0	0	0	0.930	0	0	0	•••	0
0	0	0	0	0.909	0	0	•••	0
0	0	0	0	0	÷ •••	0	•••	0
0	0	0	0	0	0		•••	0

Changes in ratios of juveniles to adults after a 20% increase in juvenile survival

- Most extreme values occur 4yrs following a change
- Ratio stabilizes

 10 yrs following
 the change

Development of a practical proxy for age-structure

- Use models to explore what are sensitive proxies
 - Ratio of pups to non-pups
 - Ratio of rookery to haul-out non-pups
 - Ratio of juveniles to adults
- Develop a practical way to measure the proxy: the ratio of small to large individuals
- Test it

Measurements

Results

- 35 Haul-out locations in the Central Gulf of Alaska
- 6 census years: 1985-1998
- 25,322 individual measurements

Historical changes in the ratio of small to large animals

- Between 1985 and 1989, the metric doubles and then declines
- Similar to the transitory spikes predicted after an improvement in juvenile survivorship.

Changes in ratios of juveniles to adults after a 20% increase in juvenile survival

Using the matrix model to explore what changes in demographic rates are consistent with the data:

The model: changing demographic rates in the 1980's and 1990's For *t* = 1976 to 1982, Matrices with $\bar{N}_{t+1} = \mathbf{Y}_{76} \cdot N_t$ period specific juvenile surv., For t = 1983 to 1987. fecundity, adult surv. $\bar{N}_{t+1} = \mathbf{Y}_{83} \cdot \bar{N}_{t}$ For t = 1988 to 1992 $\vec{N}_{t+1} = \mathbf{Y}_{88} \cdot \vec{N}_t$ 9 free parameters For t = 1993 to 1998, $\vec{N}_{t+1} = \mathbf{Y}_{qq} \cdot \vec{N}_{t}$

Distance between the model and the data: negative log-likelihood

One change in demographic rates or multiple?

o

Maximum likelihood fit of model with 3 temporal changes to data

Maximum likelihood estimates of the changes in demographic parameters

What explains these changes?

Conclusions

- Early 1980's, juvenile survivorship collapsed leading to a population collapse
- Late 1980's juvenile survivorship recovers
- Fecundity has been gradually eroding since the early 1980s
- Adult survivorship appears to have recovered to near pre-collapse levels

Age-structure information improves the ability to make inferences about demographic changes

