State-space models for PVA

E. E. Holmes National Marine Fisheries Service

IUCN Red List Criteria

- Criteria A2: "A reduction of at least xx%, projected or suspected to be met within the next xx years...."
- Criteria C1: "Population estimated to number less than xx and an estimated continuing decline of at least xx% within xx years...."
- Criteria E: "Quantitative analysis showing the probability of extinction in the wild is at least xx% within xx years..."

Quasi-extinction risk

The nature of variability in population trajectories

Lognormality of population distributions – May 70s

What might produce these patterns?

- Extrinsic forces: Increased variability due to accumulation of rare events with time.
 Populations are tightly regulated by densitydependence; variance doesn't increase with time due to intrinsic forces.
- Intrinsic forces: Year-to-year variability in growth rates caused increased variability with time – not extrinsic forces. Populations are regulated by density-dependence, but in a stochastic process, the effects of year-to-year variability dominate.

Using the Global Population Dynamics Database to study these patterns

- Inchausti and Halley 2003 "On the relation between temporal variability and persistence time in animal populations"
- Akcakaya, Halley, Inchausti 2003 "Population-level mechanisms for reddened spectra in ecological time series"

A simple model of annual variability in growth rate + measurement error or annual variability + weak density-dependence can explain the "red-shift" pattern in the GPDD

stochastic age-structured models: Tuljapurkar 1980s

Dennis, Munholland, Scott 1991: How this all applies to conservation biology

- A really simple diffusion approximation for the stochastic exp model can predict quasiextinction in age-structured models (Lande and Orzack 1988)
- Lots of nifty risk metrics can be calculated using this approximation
- A maximum-likelihood approach for estimating the 2 parameters from time series data

- Salmon:
 - Leslie matrix model of Snake R. spr/sum chinook
 - Has density dependence
 - Has environmental autocorrelation
- Petrel:
 - Leslie matrix model of the Hawaiian Dark-rumped Petrel (Simons 1984);
 - Long-lived; census is of mature breeders
 - environmental autocorrelation
- Sea Turtle:
 - Leslie matrix model of the Loggerhead Sea Turtle (Crowder et al. 1994);
 - Long-lived; census is of eggs which is highly variable
 - environmental autocorrelation

Linear gaussian state-space model

Process error (aka random walk) var(log($a_{t+\tau} / a_t$)) $\propto \tau$

Non-process error (aka white noise) $var(log(a_{t+\tau} / a_t)) = constant$

Model of measurement error

 $log(N_{t+1}) = b log(N_t) + \mathcal{E}_{t,p}$ $log(y_{t+1}) = log(N_{t+1}) + \mathcal{E}_{t+1,np}$ $\mathcal{E}_{t,p} \sim Normal(\mu, \sigma_p^2)$ $\mathcal{E}_{t,np} \sim f(\beta, \sigma_a^2)$

Monitoring data is often stage specific

Example with sea turtles

Example with salmon

Does a state-space model exist for the age-specific counts?

Linear gaussian state-space model

Estimation of σ^2 (process error) + σ_{np}^2 (non-process error) using the statespace model

- Regression estimating the increase in variance in log $N_{t+\tau}/N_t$ with τ (Holmes 2001)
- Kalman filter (Lindley 2003)
- "REML": Restricted ML estimation (Staples et al. 2004)

Estimating parameters might be challenging for some species

 What does real data tell us about the performance of these methods? Are most data "petrel-like" or "sea turtle-like"?

117 Time series 20-50 yrs long72 are listed species

Distribution of process error estimates

IUCN Red List Criteria

- Criteria A2: "A reduction of at least xx%, projected or suspected to be met within the next xx years...."
- Criteria C1: "Population estimated to number less than xx and an estimated continuing decline of at least xx% within xx years...."
- Criteria E: "Quantitative analysis showing the probability of extinction in the wild is at least xx% within xx years..."

Cross-validation

Expected vs Observed Freq. of Hitting Particular Thresholds

Proportional Declines

In conclusion....

- This is research in progress...
- This problem does not appear pervasive in data on species of conservation concern
- There appears to be a trade-off between precision of estimates versus bias