Evidence of declining fecundity in the Central Gulf of Alaska

Elizabeth E. Holmes, NWFSC Lowell Fritz, NMML Anne York, YoDA Kathryn Sweeney, UW

The basic idea

- Develop models for the population based on data and knowledge about SSL life-history.
- Fit to time series data 1976 to 2004: pup, nonpup, and juvenile fraction
- Estimate maximum likelihood fits juvenile survivorship, adult survivorship and fecundity in different time periods
- Statistically quantify the fits

Data are derived mainly from the aerial survey data

Basic life history can be estimated from 1970s age and pregnancy data from Marmot Is.

Fitting models to total population trends alone does not rapidly detect change

Changes in age-structure is more sensitive to perturbations

- Perturbation was a 20% increase in juvenile survivorship
- Most extreme values occur 4-yrs following a change
- Ratio stabilizes 10 yrs following the change

Changes in juvenile fraction allow us to see perturbations quickly

We used this approach to estimate demographic perturbations in the CGOA

- Can you explain the data with only one early 1980s perturbation?
- How have demographic parameters been changing 1980-2004?
- What demographic parameter change is most consistent with the recent non-pup increases?

We focused on the CGOA

Is the analysis sensitive to the model? We compared 3 life-history models, all based on the 1970s Marmot Island data

We allowed demographic rates to change through the 1980's and 1990's For t = 1976 to 1982,

> $N_{t+1} = \mathbf{Y}_{76} \cdot N_t$ For t = 1983 to 1987. surv. $\bar{N}_{t+1} = \mathbf{Y}_{83} \cdot \bar{N}_{t}$ For t = 1988 to 1992 $\vec{N}_{t+1} = \mathbf{Y}_{88} \cdot \vec{N}_t$ For t = 1993 to 1998, $\vec{N}_{t+1} = \mathbf{Y}_{03} \cdot \vec{N}_{t}$

Matrices with period specific juvenile surv., fecundity, adult surv.

14-17 free parameters

Three scaling parameters

We allowed demographic rates to change through the 1980's and 1990's For t = 1976 to 1982,

> $N_{t+1} = \mathbf{Y}_{76} \cdot N_t$ For t = 1983 to 1987. surv. $\bar{N}_{t+1} = \mathbf{Y}_{83} \cdot \bar{N}_{t}$ For t = 1988 to 1992 $\vec{N}_{t+1} = \mathbf{Y}_{88} \cdot \vec{N}_t$ For t = 1993 to 1998, $\vec{N}_{t+1} = \mathbf{Y}_{03} \cdot \vec{N}_{t}$

Matrices with period specific juvenile surv., fecundity, adult surv.

14-17 free parameters Distance between the model and the data: negative log-likelihood

We had to construct plausible time periods for when demographic rates changed. We did this 2 different ways.

1900

1910

1920

1930

1950

1970

1980

Analysis of rookery trends (York 1994)

- Known management actions
- Treat each year as a possible change point

Methodology overview

- Location
- Life-history models
- Temporal changes
- Fitting models
- Historical age-structure proxy

We had to develop a practical proxy for age-structure

- Use models to explore what are sensitive proxies
 - Ratio of pups to non-pups
 - Ratio of rookery to haul-out non-pups
 - Ratio of juveniles to adults
- Develop a practical way to measure the proxy: the ratio of small to large individuals

• Test it

Measurements

11 years7000-2000 animals per year15-20 haul-outs31,000 total measurements

We used this approach to estimate demographic perturbations in the CGOA

- Can you explain the data with only one early 1980s perturbation?
- How have demographic parameters been changing 1980-2004?
- What demographic parameter change is most consistent with the recent non-pup increases?

One change in demographic rates or multiple?

Data are best fit by 4 demographic changes

Fit of model indicates rising survivorship and declining fecundity

The different models vary in their ability to fit the data

Models agree on declining fecundity and rising juvenile survivorship

Agreement among models is driven by declining pup-to-non-pup ratios

It is difficult to explain the sum total of CGOA demographic data available since 1980 without a drastic decline in SSL fecundity