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Goal: provide a well-behaved estimate of 
quasi-extinction probabilities given time 
series data from species of conservation 
concern
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Dealing with process uncertainty:
A common approach is model selection

Model weighting
Parameter 
estimation Extrapolation
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Dealing with model uncertainty:
An approach from mathematical statistics



An analogy from statistics: 
what’s the distribution of the mean of a large 
sample?

Data = measurements x1, x2, ... , xn from some unknown 
distribution

Want to make inference about 

Central Limit Theorem says that under broad conditions 
(whatever distribution x’s are from and not too non-i.i.d), mean 

Gaussian distribution with some mean and variance.
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Why expect the existence of a simple 
stochastic process to approximate quasi-
extinction probabilities?



Common patterns of relating how variance 
increases in stochastic population time series

pure random walk

pure random walk obs. with error



Corrupted random walk

Pure discrete random 
walk (RW)
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Stochastic age-structured models are an 
example where a CRW approximation works 

Age-structured stochastic Leslie matrix 
model for chinook salmon



What about density-dependent processes?

pure random walk

pure random walk with error (C
RW)

non-lin
ear ra
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Low density-dependent population processes 
can still be approximated by a CRW

Stochastic ricker time horizon



More obviously density-dependent 
processes may also be approximated

Stochastic ricker time horizon
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Existence of an approximating stochastic 
process is one thing, estimation it is another



Using cross-validations with real time series 
to study CRW approximations for quasi-
extinction prediction
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Database of species of conservation concern: 
117 time series 20-50 yrs long
mammal and bird dominated

Holmes, Fagan et al. (2006)



Low Bias: close correspondence between 
the expected and observed fraction of quasi-
extinctions in the dataset as a whole
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To look at correspondence, I examined 
cumulative quasi-extinctions
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CRW projecting 10 years; kalman filter
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Discrimination depends on parameterization
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Conclusions

• Theoretical reasons to think that parsimonious 
approximations for first-passage probabilities 
exist

• Cross-validations with datasets (SOC, Salmon) 
suggest that a reasonable CRW can be 
estimated for 20-30 yr projections

• So far, properties of the estimates are well-
characterized even when CIs are wide.



• Talk focused on CRW, but the analysis actually 
compares CRW and RW approximations.

• This dataset is not overly plagued by non-process error 
and RW approx. also works well.

• But CRW worked consistently better in our other cross-
validations using large salmon data (Holmes and Fagan 
2002), in predator-prey (Sabo & Gerber 2006) and 
density-dependent simulations (Holmes, Sabo & Viscido, 
in prep).

• We have separated out those time series representing 
extinction events (Fagan and Holmes 2006)

Some important results I didn’t show
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