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Goal: provide a well-behaved estimate of
guasi-extinction probabilities given time
series data from species of conservation
concern |
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Dealing with process uncertainty:
A common approach is model selection
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Dealing with model uncertainty:
An approach from mathematical statistics
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An analogy from statistics:
what’s the distribution of the mean of a large
sample?

Data = measurements Xy, X,, ... , X, from some unknown
distribution
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Central Limit Theorem says that under broad conditions
(whatever distribution x’s are from and not too non-i.i.d), mean
- Gaussian distribution with some mean and variance.
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Why expect the existence of a simple
stochastic process to approximate quasi-
extinction probabilities?
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Common patterns of relating how variance
Increases In stochastic population time series
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Corrupted random walk

Pure discrete random  |54(N.Y = loa(N. )+ +
walk (RW) 9N =10gN)+ 4+ in

+ corruption (CRW) . =G )4

Variability that

Exponential growth doesn’t feed back
with viability in year Into the process (e.g.
to year growth rates measurement error,

cycles)



Stochastic age-structured models are an
example where a CRW approximation works

Age-structured stochastic Leslie matrix
model for chinook salmon
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What about density-dependent processes?
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Low density-dependent population processes
can still be approximated by a CRW
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More obviously density-dependent
processes may also be approximated
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Existence of an approximating stochastic
process Is one thing, estimation it is another
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Using cross-validations with real time series
to study CRW approximations for quasi-
extinction prediction

Estimate Predict
80 -

0 [ et B I B

ARASIRACI NI A AN
SN IEN N NN N



Database of species of conservation concern:

117 time series 20-50 yrs long
mammal and bird dominated
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Fraction of time series

Low Bias: close correspondence between
the expected and observed fraction of quasi-
extinctions In the dataset as a whole
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To look at correspondence, | examined
cumulative quasi-extinctions
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Discrimination depends on parameterization

Cumulative number of quasi-extinctions
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Wide confidence 1' P
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Conclusions

e Theoretic

al reasons to think that parsimonious

approximations for first-passage probabilities

exist

e Cross-va
suggest t

idations with datasets (SOC, Salmon)
nat a reasonable CRW can be

estimated

character

for 20-30 yr projections

So far, properties of the estimates are well-

1zed even when Cls are wide.



Some important results | didn’t show

e Talk focused on CRW, but the analysis actually
compares CRW and RW approximations.

* This dataset is not overly plagued by non-process error
and RW approx. also works well.

 But CRW worked consistently better in our other cross-
validations using large salmon data (Holmes and Fagan
2002), in predator-prey (Sabo & Gerber 2006) and
density-dependent simulations (Holmes, Sabo & Viscido,

In prep).

« We have separated out those time series representing
extinction events (Fagan and Holmes 2006)
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