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BEYOND THEORY TO APPLICATION AND EVALUATION: DIFFUSION
APPROXIMATIONS FOR POPULATION VIABILITY ANALYSIS
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Abstract. Census data on endangered species are often plagued by problems that make
quantitative population viability analysis (PVA) a challenge. This paper addresses four such
problems: sampling error, density dependence, nonstable age structure, and population
supplementation that masks the true population status. Estimating trends and extinction
risks using such corrupted data presents serious parameter estimation difficulties. Here I
review diffusion approximation (DA) methods for estimating population status and risks
from time series data. A variety of parameterization methods are available for DA models;
some correct for data corruption and others do not. I illustrate how stochastic Leslie matrix
models can be used to evaluate the performance of a proposed DA model and to select
among different DA parameterization methods for a given application. Presenting the un-
certainty in estimated risks is critical, especially when the data are highly corrupted and
estimated parameters are more uncertain. Using a Bayesian approach, I demonstrate how
the level of data support for different risk levels can be calculated using DA parameter
likelihood functions.
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INTRODUCTION

Limited data are a common stumbling block for
quantitative population viability analysis (PVA). Suf-
ficient data for developing detailed life-history models
are often unavailable; indeed often the only available
or planned data are a simple time series of counts (Mor-
ris et al. 2002). In the last decade, diffusion approxi-
mation (DA) methods have been developed that use
count data alone for the estimation of PVA risk metrics,
such as the probability of crossing extinction thresh-
olds, mean passage times, and average long-term rates
of population growth or decline (Lande and Orzack
1988, Dennis et al. 1991). These methods have since
been used to estimate extinction risks for numerous
species of conservation concern (Dennis et al. 1991,
Nicholls et al. 1996, Gerber et al. 1999, Morris et al.
1999, McClure et al. 2003). The appeal of DA methods
from an applied standpoint is their simplicity and their
reliance on simple census data alone, and they have
become one of the basic quantitative tools presented
in recent books on PVA methods (Morris and Doak
2002, Lande et al. 2003).

Diffusion approximation methods stem from theory
concerning the behavior of stochastic age-structured
population models with no density dependence:
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where At is a stochastic population transition matrix,
e.g., a Leslie matrix, for time t. The At’s are assumed
to be drawn from some unspecified stationary statistical
distribution, although they need not be drawn random-
ly. For example, At11 might be drawn conditioned on
At if there is temporal correlation in year-to-year en-
vironmental conditions (i.e., good years follow good
years). For such models, the asymptotic behavior of
any weighted census of the population, Nt 5 Si wini,t,
is a stochastic exponential process (Tuljapurkar and
Orzack 1980, Tuljapurkar 1989):

N 5 N exp(mt 1 « )t 0 t (2)

where «t is distributed normally with mean 0 and var-
iance s2t for t big. The statistical distribution of future
population sizes, here log Nt /N0, is distributed normally
with mean mt and variance s2t, for t big. The weights
wi can be equal to 1 so that Nt is simply the total number
of individuals alive at time t, but other weightings, such
wi equals the fraction of age i individuals that even-
tually become reproductive, may be more appropriate
when calculating extinction metrics. The parameter m
in Eq. 2 determines the rate at which the median log
population size, log(Nt/N0), increases through time,
while s2 determines the rate at which the distribution
spreads, or in other words, the variability of potential
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population sizes at time t. Throughout this paper, s2

will be referred to as process error. See Caswell (2001:
section 14.3.3) for a review of the theory of products
of random matrices in the context of stochastic age-
structured models, and Morris and Doak (2002: chapter
3) for a discussion of stochastic exponential models.

Diffusion approximation methods assume that Eq. 2
holds for all t . 0 including small t and that the «t are
independently and identically distributed. This allows
one to model the population as a diffusion process
(Lande and Orzack 1988):

2 2 2]p/]t 5 2m]p/]x 1 (s /2)] p/]x (3)

where p is the probability density of (Nt/N0) 5 x. The
diffusion model has the property that log Nt /N0 is dis-
tributed normally with mean mt and variance s2t, like
the stochastic exponential process it is used to ap-
proximate. See Dennis et al. (1991) for a fuller dis-
cussion of the diffusion approximation.

This approximation opens a toolbox of parameteri-
zation methods for linear models with normal error. It
also provides analytical estimates of passage proba-
bilities, i.e., the probability of crossing a particular
threshold within a given time frame, for example ex-
tinction estimates (to one individual) or quasi-extinc-
tion estimates to some critical population size .1.
Strictly speaking, however, an age-structured popula-
tion process is not a diffusion process. For a time series
from an age-structured population, log Nt1t /Nt where t
5 1 is not normally distributed; only log Nt1t /Nt where
t is big, is normally distributed. Also in an age-struc-
tured population time series, the temporal indepen-
dence assumptions at t 5 1 are violated since the ratios,
log Nt11 /Nt and log Nt12 /Nt11, will be correlated, even
if the environment is uncorrelated.

Despite these assumption violations, the diffusion
model approximates many types of stochastic age-
structured population processes, as seen both from sim-
ulated and real data (Lande and Orzack 1988, Dennis
et al. 1991, Holmes and Fagan 2002; W. F. Fagan, J.
Rango, A. Folarin, J. Sorensen, J. Lippe, and N. E.
McIntyre, unpublished manuscript). There are, how-
ever, well-known cases where the diffusion approxi-
mation performs poorly, such as when year-to-year var-
iability is high and populations are small (Ludwig
1996b, 1999), when demographic stochasticity intro-
duces strong nonlinearities (Wilcox and Possingham
2002), and when density dependence is extreme (Sabo
et al. 2004). Thus, it is critical to carefully evaluate
the appropriateness of the diffusion model given the
life history of the species at hand and given the types
of extinction or quasi-extinction metrics one would like
to estimate. In addition, careful selection of parame-
terization methods for estimating the DA parameters is
essential since many real population time series will
contain extraneous variability whether due to age-
structure cycles, density-dependent feedback, or sam-
pling error, and this will confound proper parameteri-

zation. In this paper, I discuss and illustrate the appli-
cation of DA methods with the biologist faced with
assessing risks for a real population in mind. I discuss
the available parameterization methods and present a
quantitative approach for assessing the performance of
the diffusion approximation and its parameterization.

Once a parameterization method is chosen, evalua-
tion of which risk metrics to use is needed. Some met-
rics will be robust and others may be useful only over
certain time frames. In particular, estimates of the prob-
ability of crossing population thresholds (e.g., extinc-
tion metrics) can be extremely variable for certain pa-
rameter ranges (Fieberg and Ellner 2000, Ellner et al.
2002). This is not a problem specific to the DA ap-
proach; it is a feature of stochastic population processes
in certain parameter ranges. Nonetheless, conservation
biologists are often asked to make an assessment of
extinction or quasi-extinction risk; indeed, such an as-
sessment may be mandated by law when working with
species being considered under the U.S. Endangered
Species Act. One of the positive features of DA meth-
ods is that uncertainty is well characterized and can be
estimated from the data. Thus, while we may be un-
certain about the point estimates of the risk metrics,
we can be precise about the level of uncertainty. In this
paper, I discuss two different methods for representing
uncertainty: confidence intervals and posterior proba-
bility distributions.

These methods for evaluating and presenting DA risk
metrics are illustrated using three simulated popula-
tions of different salmonid species. These concrete ex-
amples are intended to illustrate analyses and models
that can be used to assess the performance of a pro-
posed DA approach given the life histories and data
corruption one expects in a particular PVA application.
The paper is divided into four steps, reflecting the steps
of evaluating a proposed DA application: (1) evaluating
whether a diffusion approximation is reasonable for the
population at hand, (2) evaluating and selecting a pa-
rameterization method, (3) evaluating the sensitivity of
proposed risk metrics to parameterization errors, and
(4) estimating parameters and risk metrics given a cen-
sus time series from the concerned population and pre-
senting the uncertainty in these estimates.

EVALUATING THE DIFFUSION APPROXIMATION

FOR THE POPULATION

Simulated data

The first step in evaluating a proposed DA appli-
cation is to develop a model that captures the basic life
history and that has realistic environmental variability,
including the temporal correlation in the environment.
Although a precise model for the population will likely
not be available, given that diffusion approximations
are typically used where data are limited, often enough
natural history information will be available to roughly
parameterize a model for the purpose of evaluating the
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performance of proposed methods. Such an evaluation
is illustrated here using stochastic matrix models for
Snake River spring/summer chinook, Snake River fall
chinook, and upper Columbia River steelhead, which
are currently listed under the U.S. Endangered Species
Act. Although this paper uses matrix models, the sim-
ulated data could be produced by any variety of models
or by using a bootstrapping method to simulate from
actual time series data, e.g., Hinrichsen (2002).

The basic model used here tracks individuals from
age 1 to spawners:

age 1 age 1   
age 2 age 2   
age 3 5 A age 3 (4)   t

_ _   
spawners spawners   t11 t

where At is the Leslie matrix model describing the tran-
sition probabilities from age i to i 1 1. The stochastic
matrices used for the three salmonid populations are
given in Table 1, along with parameter definitions and
estimates.

Stochasticity was added to survivorships and fecun-
dity by multiplying the survivorship and fecundity
terms by a random variable «i with the maximum pos-
sible survivorship capped at 1.0. The «1 term represents
variability in spawner to age 1 ratios. For all matrices,
«1 variables were drawn from a lognormal distribution
specified by exp(normal(mean 5 0, variance 5 0.13)).
The variance was estimated from spawner to smolt
(;age 1.5) data for spring/summer chinook in the
Snake River (P. Levin, unpublished data). The «2 var-
iables associated with age 1 to age 2 survivorship for
spring/summer chinook and steelhead were drawn from
a lognormal distribution specified by exp(normal(mean
5 0, variance 5 0.08)). The variance was estimated
from parr to smolt (;age 0.5 to age 1.5) survivorship
data for spring/summer chinook in the Snake River
(Achord et al. 2003). The «1 and «2 variables were set
to covary slightly (correlation 5 0.2) since both are
associated with basin conditions, although one is as-
sociated more with spawning ground conditions and
the other is associated more with downstream migra-
tion. The «o variables associated with ocean survivor-
ship were drawn from a lognormal distribution speci-
fied by exp(normal(mean 5 0, variance 5 0.02)). The
variance for «o was chosen such that the resulting s2

estimates at the population level reflected approxi-
mately that estimated from actual time series. The «o

variables associated with different ages were set to cov-
ary strongly (correlation coefficient 5 0.8) since they
are all associated with ocean conditions.

In addition, studies of ocean condition indices and
studies of cohort (i.e., all young-of-year t) survivorship
data for Columbia River salmonids suggest that there
is also strong year-to-year correlation in ocean survi-
vorship, i.e., good ocean survivorship one year tends

to be followed by good ocean survivorship the next
year. To model this, the mean ocean survivorship across
ages was chosen such that it covaried strongly (cor-
relation coefficient 5 0.7) with the mean ocean sur-
vivorship in the previous year. The level of correlation
was chosen from the levels seen in time series of cohort
survivorship data. Temporally correlated juvenile sur-
vivorship (in-stream survivorship) was not included
since evidence of this was not seen in the study by
Achord et al. (2003).

Although current densities of salmon in these three
populations are well below historical levels, density
dependence in parr to smolt survivorship has been
shown from studies on Snake River spring/summer chi-
nook (Achord et al. 2003). Achord et al. postulate that
juveniles continue to show density dependence at low
density because of nutrient limitation from the asso-
ciated low densities of spawner carcasses. Density de-
pendence was incorporated into the egg to age-1 sur-
vivorship term (s1) by fitting a linear model to the ju-
venile survivorship data in Achord et al. (their Fig. 3),
giving the following:

s̃ 5 0.7393 3 s 2 0.2607 3 s1,t 1 1

t2111
3 N N (5)Os,t21 s, j1 @ 210 j5t21

where s1 is the mean egg to age-1 survivorship in Table
1 and Ns,t is the number of spawners in year t. The
minimum s̃1,t was set at 0.39s1 and the maximum at
1.17s1. The effect of Eq. 5 was an increase in s̃1,t of up
to 17% over s1 when spawner density was lower than
the previous 10-year mean spawner density and up to
61% lower than s1 survivorship when spawner density
was higher than the 10-year average.

Using the stochastic matrices and Eq. 4, 1000 pop-
ulation time series were generated for each species. The
time series were started from a stable age structure
drawn at random from the stochastic distribution of
stable age structures. The distribution of log Nt /N0 from
the 1000 time series describes the statistical distribu-
tion of population size at time t.

Performance of the diffusion approximation
for simulated salmonid time series

The goal was to determine whether a diffusion model
exists that describes the future distribution and quasi-
extinction risks for the number of current and future
spawners within a salmon population. A weighted total
population at time t was defined as Nt 5 Si wini,t where
wi equals the average fraction of age i fish that will
eventually become spawners. This was used instead of
simply Nt 5 Si ni,t since the age structure is heavily
dominated by age-1 individuals due to low age-1 to
age-2 survivorship and using Si ni,t would mean effec-
tively tracking the dynamics of age-1 individuals alone
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TABLE 1. Matrix models and parameter estimates.

A) Matrix models

Snake River spring/summer chinook (adapted from Kareiva et al. [2000] and modified to separate out the spawner class):

0 0 0 0 ps̃ m« 1,t 1

s « 0 0 0 02 2 
A 5 0 s « 0 0 0 . t o o

0 0 (1 2 b )s « 0 04 o o 
0 0 b s « b s « 04 o o 5 o o 

Snake River fall chinook (adapted from Kareiva et al. [2000]):

0 0 0 0 0 ps̃ m« 1,t 1

(1 2 h )s « 0 0 0 0 02 o o 0 (1 2 h )s (1 2 b )« 0 0 0 03 o 3 o
A 5 . t

0 0 (1 2 h )s (1 2 b )« 0 0 04 o 4 o

0 0 0 (1 2 h )s (1 2 b )« 0 05 o 5 o 
0 (1 2 h )s b « (1 2 h )s b « (1 2 h )s b « (1 2 h )s « 03 o 3 o 4 o 4 o 5 o 5 o 6 o o 

Upper Columbia steelhead:

0 0 0 0 0 ps̃ m« 1,t 1

s (1 2 b )« 0 0 0 0 02 2 2 0 s (1 2 b )« 0 0 0 0o 3 o
A 5 . t

0 0 s (1 2 b )« 0 0 0o 4 o

0 0 0 s (1 2 b )« 0 0o 5 o 
s b « s b « s b « s b « s « 02 2 2 o 3 o o 4 o o 5 o o o 

B) Parameter estimates

Parameter
Spring/summer

chinook Fall chinook Steelhead

p, mouth to spawning ground survival†
s1, egg to age-1 survival
s2, mean age-1 to age-2 survival in-stream
so, ocean survivorship
b2, fraction of age 2 that spawn

0.4815
0.018
0.044
0.8
0

0.36
0.0044167

NA

0.8
0

0.58
0.047
0.009
0.8
0.009

b3, fraction of age 3 that spawn
b4, fraction of age 4 that spawn
b5, fraction of age 5 that spawn
b6, fraction of age 6 that spawn
h2, in ocean harvest of age 2

0
0.216
1.0
NA

NA

0.081
0.65
0.863
1.0
0.0123

0.333
0.693
0.923
1.0
NA

h3, in ocean harvest of age 3
h4, in ocean harvest of age 4
h5, in ocean harvest of age 5
h6, in ocean harvest of age 6
m, average female eggs per female spawner

NA

NA

NA

NA

2747

0.0465
0.1368
0.1838
0.1953

1500

NA

NA

NA

NA

2500

Notes: The parameter estimates for both chinook models are based on estimates for Marsh Creek (1980–1998; M. McClure,
unpublished data). Parameter estimates for steelhead were based on estimates for Methow River steelhead for pre-1998
conditions (T. Cooney, unpublished data).

† The parameter p is the fraction that survive harvest during upstream migration 3 fraction that survive upstream migration
to spawning ground 3 survival on the spawning ground.

rather than the individuals with reproductive potential
across all ages.

First the predicted vs. observed distribution of log
Nt /N0 was tested. The predicted distribution is normal
with a mean and variance that increase linearly with
time, such that (1/t) times the mean and variance of

log Nt /N0 equal constants. Fig. 1(a–c) shows the mean
and variance of log Nt /N0, divided by t for the simulated
salmon populations. This figure illustrates that the
mean and variance increased linearly with t as predicted
by theory. The mean and variance of log Nt /N0 divided
by t reached a constant after ;5 years (Fig. 1a–c). The
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distribution of log Nt /N0 approached normality on the
same time frame, as determined by the difference be-
tween the cumulative distribution of log Nt /N0 vs. the
cumulative distribution of a normal with mean mt and
variance s2t (not shown). This evaluation indicates that
for time periods past five years in the future, there exists
a diffusion model that properly describes the statistical
distribution of population sizes at time t . 5. The pa-
rameters, m and s2, for this diffusion model are given
respectively by the two constants: (1/t) times the mean
and variance of log Nt /N0 as t increases. The next step
is to ask whether and over what time frames, a diffusion
model gives reasonable approximations for the extinc-
tion or quasi-extinction metric of interest.

Even though the distribution of log Nt /N0 for t not
too small may be properly characterized by a diffusion
model, the probability of crossing thresholds may not
be since the variance of log Nt /N0 is higher than s2t
for t , 5 and since there is temporal correlation in the
population process due to age structure in the popu-
lation model. Thus the extinction or quasi-extinction
metric itself needs to be tested. For this paper, the ex-
tinction metric of interest was the probability of 90%
decline within different time frames. Although esti-
mating extinction to one individual is a popular risk
metric, and unfortunately sometimes mandated, the
reader is cautioned about using the diffusion approx-
imation to estimate extinction to very low numbers
since factors that drive dynamics at very low popula-
tion sizes (such as demographic stochasticity) and the
catastrophes often associated with ultimate extinction
will likely be poorly represented in a time series of a
relatively larger population declining to low numbers
(e.g., Fagan et al., unpublished manuscript).

The diffusion approximation was tested by compar-
ing the actual probabilities from the 1000 simulations
to those predicted by the diffusion model with param-
eters m and s2 from Fig. 1(a–c). For the diffusion mod-
el, the probability of decline to a threshold population
size Ncrit within t years is (Lande and Orzack 1988,
Dennis et al. 1991):

Pr(decline to N in 0 to t)crit

2log(N /N ) 1 zmzt0 crit5 p9 3 F5 [ ]sÏt

2 log(N /N )zmz0 crit1 exp
2[ ]s

2log(N /N ) 2 zmzt0 crit3 F (6)6[ ]sÏt

where

1 m # 0
p9 5

25exp[22m log(N /N )/s ] m . 0.0 crit

For 90% decline, N0 /Ncrit 5 N0 /(0.1N0) 5 10. F( y) is
the value of the cumulative distribution function at y

of a standard normal distribution with mean 0 and var-
iance 1. Eq. 6 gives the probability of 90% decline at
any time within 0 to t; however in the simulations,
population size is only observed at discrete yearly in-
tervals. In this application, the difference between Eq.
6 and the technically correct comparison, the proba-
bility of observing quasi-extinction at a discrete set of
yearly intervals, is minor, but this is not always the
case. If needed, the probability of observing quasi-
extinction at discrete intervals can be calculated nu-
merically by simulating the diffusion process.

Fig. 1(d–f ) shows the actual (gray lines) vs. diffusion
approximation estimates (black lines) of the probability
of 90% decline. The plots illustrate that the diffusion
model correctly described the probability of 90% de-
cline within different time frames for the simulated
time series of current and future spawners. This was
true despite the fact that these time series were not
strictly speaking a diffusion process. These results are
for a particular passage metric of interest, i.e., the prob-
ability of 90% decline. The results should not be over-
generalized to say that a simple diffusion model would
correctly describe all extinction and quasi-extinction
metrics for salmonids. It is important to test particular
metrics of interest such as done here for the probability
of 90% decline. Also it is important to consider what
segment of the population to track. ‘‘Future and current
spawners’’ integrates over multiple age classes without
over representing any one age class and smoothes out
the year-to-year boom–bust cycles that salmon are
prone to. This effectively limits the nonprocess error
in the time series and enables Eq. 6, which is based on
a diffusion model with no nonprocess error, to work
well.

PARAMETER ESTIMATION FOR DIFFUSION

APPROXIMATIONS

This first evaluation indicated that there exists a dif-
fusion model that correctly approximates the behavior
of these simulated salmon populations for the purposes
of estimating the distribution of future reproductive
population sizes and for estimating the probability of
hitting a critical level of 10% of current size. The next
question is how well the parameters of this diffusion
model can be estimated given realistic data constraints.
Here I review currently available methods for param-
eterizing a diffusion model: maximum likelihood meth-
ods assuming low data corruption (Dennis et al. 1991),
the same methods but using a running sum transfor-
mation of the data (Holmes 2001), maximum likelihood
methods using a Kalman filter (Harvey 1989, Lindley
2003), slope methods (Holmes 2001, Holmes and Fa-
gan 2002), and asymptotically unbiased estimators for
random matrix products (Heyde and Cohen 1985).
Code for these methods is given in Supplement 1. The
different methods have their pluses and minuses de-
pending on the quality and length of data available.
Below these methods are described and in the next
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FIG. 1. Behavior of the population trajectories from the age-structured salmonid models versus the behavior of the diffusion
approximation. For a diffusion model, the mean and variance of log population size (Nt /N0) 3 (1/ t) should be a constant.
The age-structured models had this property beginning at approximately t 5 5 (a–c). The diffusion model also correctly
estimated the probability of 90% decline (Nt /N0 5 1/10) within different time frames (d–f ). ‘‘Spr/Sum chinook’’ indicates
spring/summer chinook.

section, I evaluate the performance of these different
methods given the data constraints faced by a PVA of
Columbia River endangered and threatened salmonid
populations (McClure et al. 2003).

All these methods start with a time series of cen-
suses, O1 O2 O3 · · · Ok, of the population. For the pur-
poses of this paper, I assume Ot represents yearly cen-
suses. The census need not enumerate the entire pop-
ulation; index counts, such as a segment of the popu-
lation or a specific age or stage class, can also be used.

Maximum likelihood methods

I use the following state-space model to model the
relationship between the diffusion model we wish to
estimate from the data, the actual population counts,
and the observed counts:

X 5 X exp(m 1 « ) (7a)t t21 p

where «p ; normal(mean 5 0, variance 5 s 2),

N 5 X exp(« ) (7b)t t n

where «n ; g(mean 5 0, variance 5 s ),2
n

O 5 N exp(« ) (7c)t t se

where «se ; f(mean 5 b, variance 5 s ).2
se

In the above equations, ‘‘;’’ means ‘‘is distributed
as’’ and g(·) and f(·) are some unspecified statistical
distributions. Xt represents the diffusion process, which
correctly approximates the age-structured population
process for t not too small. Nt are the true population
counts, which include process error (the Xt part) and
nonprocess error, , which is variability due for ex-2sn

ample to density-dependent feedback or age-structure
cycles. Nonprocess error is apparent in the time series,
but does not multiply through time as «p does in Eqs.
7. Observations of Nt are made and these observations
are corrupted by some sampling error, «se. Eqs. 7 reduce
to:

X 5 X exp(m 1 « )t t21 p

O 5 X exp(« 1 « ) (8)t t n se

where «n 1 «se ; h(mean 5 b, variance 5 s and2 )np

where h(·) is an unspecified statistical distribution. In
this paper, I refer to this state-space model as a cor-
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rupted diffusion process. The total nonprocess error,
, equals nonprocess error in the age-structured pop-2snp

ulation process, , plus nonprocess error from sam-2sn

pling error in the censuses of the population, .2sse

If we assume that there is no nonprocess error in our
observations, 5 0 and Ot 5 Xt. Then the maximum2snp

likelihood estimates of m and s2 are (Dennis et al.
1991):

m̂ 5 mean of log(O /O )d t11 t

2ŝ 5 variance of log(O /O )d t11 t

for t 5 1, 2, 3, . . . , k 2 1. (9)

Eq. 9 assumes that there are no missing data; cf. Dennis
et al. (1991) for methods when there are missing data.
Although the assumption of no nonprocess error in the
data will never strictly hold for real data, analysis of
a variety of nonsalmon time series suggests that it can
be a reasonable approximation (Fagan et al., unpub-
lished manuscript).

The estimates d and are the maximum likelihood2m̂ ŝd

estimates for the diffusion approximation (Eq. 8) not
of the age-structured process itself. This creates prob-
lems if the life history of the species of concern is such
that there is high nonprocess error in the time series
due to age-structure cycling. If there is also sampling
error in the data, this adds additional nonprocess error
variability. Thus Eq. 9 will produce biased estimates
of s2 because it attributes the nonprocess error in the
data to process error, and the expected value of ,2ŝd

E( ), is s2 1 2 . In this case, it is more appropriate2 2ŝ sd np

to use the full state-space model (Eq. 8) with not2snp

assumed to be zero. Kalman filters are widely used in
time series analysis for maximum likelihood estimation
for state-space models of the form of Eq. 8 with «np

assumed to be normally distributed (Harvey 1989: sec-
tion 3.4). Lindley (2003) gives a specific case of such
an algorithm for population processes of the form of
Eq. 8.

This approach for maximum likelihood estimation
for Eq. 8 can be summarized as follows. Assume h(·)
in Eq. 8 is normal with b 5 0 (if b is non-zero it can
be factored out) and define yt [ log Ot, then the dis-
tribution of yt given all the data prior to yt is:

y z {y , y , . . . , y }t 1 2 t21

; normal[mean 5 E(y z {y , y , . . . , y }),t 1 2 t21

variance 5 F ] (10)t

where E(·) is ‘‘expected value’’ and Ft denotes the var-
iance of yt z {y1, y2, . . . , yt21}. The likelihood of a par-
ticular set of m, and s2 given the data, {y1, y2, . . . ,2snp

yT}, is

2 2L(m, s , s z {y , y , . . . , y })np 1 2 T

T

5 p(y z {y , y , . . . , y })P t 1 2 t21
t51

T 2[y 2 E(y z {y , y , . . . , y })]t t 1 2 t215 exp 2P 5 62Ft51 t

21/23 (2pF )t

and the log likelihood is

2 2log L(m, s , s z {y , y , . . . , y })np 1 2 T

T T 2T 1 1 nt5 2 log 2p 2 logF 2O Ot2 2 2 Ft51 t51 t (11)

where vt 5 yt 2 E( yt z {y1, y2, . . . , yt21}). The Kalman
filter calculates vt and Ft given a particular set of m,

, and s2. The Kalman filter for this application is2snp

given in Appendix A or see Harvey (1989: chapter 3).
The maximum likelihood estimates are the set of m,

, and s2 that maximize Eq. 11 and are denoted here2snp

as ka and .2m̂ ŝka

A variant of the maximum likelihood methods uses
a running sum transformation of the data in place of
Ot in Eq. 9. A running sum is defined in this case as

L21

R 5 a O (12)Ot i t1i
i50

where the ai are weightings. The running sum estimate
for m is

m̂ 5 mean of log(R /R )run t11 t

for t 5 1, 2, 3, . . . , k 2 L. (13)

Often the purpose of the running sum is to transform
the data into a population-level count (see examples in
Dennis et al. 1991 and Holmes 2001). But the trans-
formation has an independent benefit when data are
corrupted by extraneous variability. In this case, runm̂
can have lower variability and bias than d (Holmesm̂
2001, Holmes and Fagan 2002). The process error, s2,
cannot be estimated using Rt in Eq. 9. The running sum
transformation filters out not only the extraneous var-
iability but also the process error that we are trying to
estimate.

Slope method

The slope method was developed to deal with situ-
ations where Ot is corrupted with high nonprocess var-
iability, , that is up to one to two orders of magnitude2snp

.s2 and has an unknown statistical distribution
(Holmes 2001, Holmes and Fagan 2002). It also uses
the corrupted diffusion model, but estimates the pa-
rameters by examining how the distribution of log Ot2t /
Ot changes with t. From Eq. 8:

mean of log(O /O ) 5 mtt1t t

2 2variance of log(O /O ) 5 s t 1 2s (14)t1t t np

where the t are chosen such that consecutive Ot1t /Ot

ratios do not overlap. The slopes of the linear regres-
sions of the mean and variance of log (Ot1t /Ot) vs. t
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give estimates of m and s2, respectively. An unbiased
estimator for s2 can be devised using Eq. 14 with a
long enough time series, however when the available
time series is short (such as ,20 years) such an esti-
mator is prone to negative variance estimates. To sta-
bilize the estimates, regression can be done on the run-
ning sum transformed data, Rt1t /Rt instead (Holmes and
Fagan 2002):

Rt1tm̂ 5 slope of mean log vs. t , intercept 5 0slp 1 2[ ]Rt

Rt1t2ŝ 5 slope of var log vs. t , intercept freeslp 1 2[ ]Rt (15)

for t 5 1, 2, 3, . . . , k 2 L and maximum . ù 5. This
slope estimate for s2 is biased; from numerical simu-
lations E( ) ø 0.5s2 1 0.15 . If nonprocess error2 2ŝ sslp np

is an order of magnitude greater than the process error,
the result is mean estimates that are approximately
200% of the correct value.

Asymptotically unbiased estimator for s2

The previous methods are all based on the diffusion
approximation for log Nt1t /Nt, which has variance s2t
for very small t. The s2 estimates from these methods
will tend to be biased to some degree even if the time
series is infinitely long. This problem is worst for ,2ŝd

which relies on the variance at t 5 1 for estimation of
s2. Heyde and Cohen (1985) provide an estimator for
s2 that is not based on the diffusion approximation but
rather on products of random matrices:

1/2 T211 p 1 Nj111/2 23/2ŝ 5 j log 2 jmOhc 1 2 1 2) )[2 2 log(T 2 1) Nj51 1

T221 Nj1223/21 j log 2 jm . (16)O 1 2) )]log(T 2 2) Nj51 2

This estimator is asymptotically unbiased, i.e., unbi-
ased as the length of the census time series goes to
infinity, although not necessarily unbiased for short
time series as shall be seen. The asymptotically un-
biased estimator for m is the same as d.m̂

Correcting for inputs

All these methods assume that there are no external
inputs into (or subtractions from) the population. If
inputs are occurring, they will mask the true m and thus
must be corrected to prevent bias in the estimation of
m. In Appendix B, a general method to correct for the
input problem is derived. The formulation of the cor-
rection depends on the life history of the species at
hand and the ages at which individuals are externally
input into the population. Thus a specific correction
will have to be derived following the methods in Ap-
pendix B for the species of concern. Here the calcu-
lation is illustrated for salmon populations experienc-
ing regular hatchery fish introductions.

Hatchery-reared juvenile fish are regularly released
into Pacific salmon stocks as part of remediation for
impacts or to provide fishing opportunities. If these
hatchery-born fish return to reproduce in the wild, their
offspring are indistinguishable from the offspring of
wild-born fish, for typical census purposes at least. The
goal of the input correction is to estimate what m would
be if no supplementation were occurring. As described
in Appendix B, correcting for inputs requires deter-
mining the relationship between the true mean number
of offspring per wild-born spawner at year t, denoted
R0,t, to the apparent mean number, denoted R̃0,t, based
on the population growth rate with inputs occurring.
The species in this study reproduce once and die, which
makes R0,t /R̃0,t a relatively straightforward calculation
(cf. Appendix B):

R̃ 5 R (1 1 S /S ) 5 R / f (17)0,t 0,t h,t w,t 0,t w,t

where fw,t is an estimate of the fraction of returning
spawners at year t that were wild-born. For notational
simplicity, it is assumed here that hatchery fish repro-
duce at the same rate as wild-born fish. If hatchery fish
reproduce at lower effectiveness, Sh,t can be reexpressed
as wild-equivalents by multiplying Sh,t by the repro-
ductive effectiveness of hatchery fish relative to wild-
born fish.

To solve for the no supplementation population
growth rate at year t, denoted lt, in terms of the ob-
served with supplementation growth rate, denoted t,l̃
the relationship log(l) ø log(R0 )/T was used. Here T
is mean generation time (Caswell 2001: 126–130).
Combining this relationship with Eq. 17 gives

1 R0,tlog(l ) 5 log 1 log(l̃ )t t˜1 2T R0,t

1
5 log( f ) 1 log(l̃ ). (18)w,t tT

As discussed in Appendix B, t could be estimated froml̃
the ratio of wild spawners at year t 1 1 vs. year t, e.g.,
( fw,t11St11 / fw,tSt), or by the ratio of age-1 fish, e.g., (FtSt /
Ft21St21), where Ft is the fecundity of spawners. How-
ever, for Pacific salmon populations, fw,t is often ap-
proximate, and yearly estimates of Ft are unusual. In-
stead, I will use here the total spawner ratios, St11 /St,
to estimate t. This is an approximation since it tacitlyl̃
assumes that either fw,t or Ft remain relatively constant
from year to year, but reflects an approximation that is
required given real data constraints. The input-cor-
rected m estimate is then

1 St11m̂ 5 mean of log( f̂ ) 1 log . (19)ic w,t 1 2[ ]T St

Overview of parameterization performance

Table 2 gives an overview of the four different pa-
rameterization methods in terms of whether they cor-
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TABLE 2. Overview of estimator performance and limitations.

Estimators

Corrects for
sampling

error
Expected

value

No. years
needed (rules

of thumb)

m estimators
Dennis (same as Heyde-Cohen)
Kalman
Runsum
Slope

no
yes
yes
yes

m, sensitive to age-structure perturbations in data
m
m
m

101
101
151
201

s2 estimators
Dennis
Kalman
Slope
Heyde-Cohen

no
yes
yes
no

s2 1 2s2
np

s2†
ø0.5s2 1 0.15s2

np

øs2 1 2s2
np for short series

101
20–501†

201
1001

† Although the mean estimates are equal to the true value, i.e., are unbiased, the distribution of estimates can be highly
skewed for short time series with low s2 and high s2

np (total nonprocess error), such that the vast majority of estimates can
be 0 and a few rare extremely high estimates bring the mean up to s2.

rect for extraneous variability in the time series and
some rough guidelines regarding their data needs. The
table emphasizes that there is a trade-off between data
needs and the ability to correct for error in the data.
When the data contain high extraneous variability, the
reduction in parameter bias warrants the increase in the
variability of parameter estimates. The flip side of this
is that using a method that corrects for error on time
series with low errors will lead to an unnecessary loss
of precision.

PERFORMANCE OF PARAMETERIZATION METHODS

GIVEN DATA CONSTRAINTS

Although Table 2 can help select likely candidate
methods for a particular application, a more quantita-
tive evaluation of the performance of particular param-
eterization methods is needed since actual census data
often have a level extraneous error somewhere between
none and severe and thus the trade-off between pre-
cision and bias is unclear. Such an evaluation is illus-
trated here using the stochastic matrix models for the
three salmonid populations. This evaluation incorpo-
rates the following data constraints faced by a PVA of
these populations (McClure et al. 2003): (1) counts of
only the spawning segment of the populations, (2) time
series limited to 20 years, (3) severe age-structure per-
turbations in the beginning of some time series due to
reproductive collapses during dam construction (Wil-
liams et al. 2001), and (4) high sampling error.

To examine the robustness of the parameter estimation
methods to these constraints, 20-year time series of
spawner only counts were generated using the matrix
models. The time series were generated using either an
initial stable age structure (drawn randomly from the
stable set) or an initial age structure with no age-1 in-
dividuals. The simulated spawner time series, St, were
then corrupted with lognormal sampling error:

O 5 S exp(« )t t se

2with « ; normal(mean 5 a, variance 5 s ).se se

(20)

The observed spawner count at year t is Ot. The DA
parameters, m and s2, were estimated from each 20-
year simulated time series using the Dennis, Kalman,
running sum, Heyde-Cohen, or slope methods. For the
running sum and slope methods observed, spawner
counts were transformed by adding four consecutive
counts: Rt 5 Ot1i. Parameter estimates were com-3Si50

pared with the correct DA parameters determined from
Fig. 1.

Realistic levels of sampling error to add were esti-
mated from studies on sampling error in spawner and
redd surveys (Jones et al. 1998, Dunham and Rieman
2001) and from an examination of the average non-
process error in Columbia River redd count data. Redds
are the egg nests made by spawning salmon, and redd
counts were the most common data type for the Co-
lumbia River PVA in McClure et al. (2003). Using a
lognormal model for observation errors, Jones et al.
(1998) found levels of total within plus between ob-
server sampling error variability of 5 0.09 to 0.78.2sse

These levels of lognormal sampling variability are con-
sistent with those found in another study of variability
between different observers’ counts of redds (Dunham
and Rieman 2001). To find the average total nonprocess
error (which includes sampling variability plus other
nonprocess error) in actual time series, I examined a
collection of 44 20-year redd-count time series from
different spawning areas in the Snake River basin, Ida-
ho (data in supplements of McClure et al. 2003). I
estimated an average total nonprocess error of 52snp

0.56 in this redd-count data. The empirical studies on
sampling errors combined with the average total non-
process error within redd-count time series suggest that
year-to-year sampling error variability is likely to be
in the range of 5 0.1 to 0.75, with 0.1 on the low2sse
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FIG. 2. Performance of the m estimates from the Dennis, runsum, Kalman, and slope methods. One thousand 20-year
spawner time series were generated from the spring/summer chinook, fall chinook, and steelhead stochastic matrix models.
The column labels indicate the type of error added: ‘‘None’’ indicates stable starting age structure and no sampling error;
‘‘Age’’ indicates no sampling error but perturbed age structure; ‘‘Low,’’ ‘‘Med,’’ and ‘‘High’’ indicate stable age structure
plus lognormal sampling error with 5 0.1, 0.5, or 0.75, respectively. The box plots summarize the estimates among all2sse

1000 simulations. The line in the box shows the median estimates, and the box encloses the middle 75% of the estimates;
the whiskers enclose 95% of the estimates.

end given minimum observer variability alone and 0.75
on the high end given that this is more than observed
levels of total nonprocess error. These levels of sam-
pling error are ;10–100 times larger than the median
process error estimates from actual salmonid time se-
ries in the Columbia River basin.

To model these sampling error levels, lognormal
sampling error was added to the spawner counts using
Eq. 20 with low ( 5 0.1), medium ( 5 0.5), or2 2s sse se

high ( 5 0.75) sampling error. The bias in error, a,2sse

drops out since the parameter estimates always use the
difference between log counts (e.g., log Ot11 2 log Ot).
Jones et al. (1998) found that observers have a non-
linear tendency to underestimate as the number of ob-
jects to be counted increases. However, they found this
for counts of tens of thousands of salmon; Dunham and
Rieman (2001) did not find this pattern for redd counts

in the hundreds, which are more typical of the counts
for the endangered and threatened salmon populations
simulated in this study. Thus, I assumed that the sam-
pling error was independent of total spawner numbers.

Fig. 2 shows the performance of the m estimators
with either no sampling error and a stable starting age
structure, with only an age-structure perturbation and
no sampling error, or a stable initial age structure and
low, medium, or high sampling error. In the box plots,
the middle line is the median and the box encloses 75%
of the estimates from the 1000 simulations. All meth-
ods gave unbiased estimates of m for the simulations
started with a stable age structure. The Dennis and
slope estimates of m were most variable, and the run-
sum and Kalman estimates were generally least vari-
able. The age-structure perturbation led to an under-
estimation of m that was most apparent for the Dennis
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FIG. 3. Performance of the s2 estimates (log scale) from the Dennis, Heyde-Cohen, Kalman, and slope methods for the
spring/summer chinook, fall chinook, and steelhead simulations. See Fig. 2 for details.

estimate, while the other three methods showed only
slight underestimation. For the runsum and Kalman
estimates, 75% of the estimates were within 60.05 of
the correct value for low and medium sampling errors.
For high sampling error, the range of the estimates
increased to 75% of estimates between 60.08 of the
correct value. These errors can be translated into errors
in percentage yearly growth rate by multiplying by 100.

Fig. 3 shows the performance of the s2 estimators.
The Dennis method overestimated s2 for all cases, with
and without sampling error. For example, with no sam-
pling error and a stable starting age structure, the me-
dian estimates were 0.35, 0.12, and 0.08 vs. the2ŝd

correct values of 0.033, 0.042, and 0.040 for spring/
summer chinook, fall chinook, and steelhead, respec-
tively. The bias was due to the tendency of the salmon
simulations, like real salmon populations, to exhibit
boom and bust cycles. The result was high nonprocess
error in the time series even without added sampling
error. With a perturbed age structure, the more highly2ŝd

overestimated s2, and with sampling error added in
addition, the overestimation was severe. The median

were 2.02, 1.74, and 1.71 for the three species with2sd

the high added sampling error. The Heyde-Cohen es-
timates were similarly highly biased with high non-
process error.

In contrast to the overestimation by these estimators,
the Kalman estimator was prone to underestimating the
correct s2; median Kalman estimates were close to
10216 for spring/summer chinook across all corruption
levels and for fall chinook and steelhead for the higher
sampling error levels. Even when the median estimates
were close to the true values (i.e., for fall chinook and
steelhead with low sampling error), s2 estimates close
to zero were still common and comprised 20–30% of
the estimates. Overall for the 20-year time series es-
pecially the time series with high sampling error levels,
the data were usually most likely under a scenario with
all the variability attributed to nonprocess error and
thus s2 5 0. In contrast, the mean estimate of s2 (rather
than the median) was uniformly close to the true s2

(similar to the results by Lindley [2003]). This differ-
ence between the mean and median estimates occurred
because the distribution of estimates was highly
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skewed, with most estimates essentially zero except for
a few very high estimates, which brought up the mean.
This difference between the median Kalman estimates
and the correct DA values diminished if a longer time
series was used, and largely disappeared for 100-year
time series.

The slope method gave estimates that were overall
closest to the true s2 for the 20-year time series, al-
though with no sampling error added to the time series,
they tended to underestimate the true value as pre-
dicted. With a stable initial age structure and no sam-
pling error, the median estimates were 0.025, 0.022,
and 0.018 relative to the correct values of 0.033, 0.042,
and 0.040 for the three species, respectively. The es-
timates were not appreciably changed by the age-struc-
ture perturbation nor low sampling error. As sampling
error increased to the medium and high levels, however,
the slope estimator began to increase and for the highest
sampling error the median estimates were 0.12, 0.12,
and 0.12, for the three species. These estimates were
still substantially closer to the true values than the Den-
nis and Heyde-Cohen estimators at high sampling error
levels.

Testing the input corrector

To study the robustness of the input correction (Eq.
19), simulations were run as above but with a random
number of age-1 hatchery fish added each year. Be-
tween 1 and 1 3 105 fish were added each year; the
number drawn from a uniform random distribution. All
simulations were started with a stable age structure.
Each simulation produced wild and hatchery spawner
counts of which observations, Ow,t and Oh,t, were made
with medium sampling error. The parameter m was es-
timated using d with either no input correction (Eq.m̂
13 with Ot 5 Ow,t 1 Oh,t) or with input correction (Eq.
19). The wild fraction was estimated from the Ow,t and
Oh,t counts:

Ow,tf̂ 5 . (21)w,t O 1 Ow,t h,t

The slope method (Eq. 15 with Rt 5 Ot1i) was used3Si50

to estimate s2.
The top panel of Fig. 4 contrasts the input-corrected

vs. the uncorrected m estimates. Without correction for
inputs, the median estimates of m were 0.00, 0.02, and
0.00 indicating stable or increasing populations with
the inputs relative to the correct values of 20.093,
20.015, and 20.18, indicative of declining wild dy-
namics for the three species, respectively. With cor-
rection, the median estimates were 20.096, 20.023,
and 20.18. Thus, the input correction successfully ex-
tracted the correct value from population trajectories
that otherwise appeared to come from a process with
much higher m due to hatchery inputs. The lower panel
illustrates that the estimate with no explicit hatch-2ŝslp

ery correction gave a relatively unbiased s2 estimate
despite the variable hatchery inputs.

SENSITIVITY OF RISK METRICS TO PARAMETER

MISESTIMATION

The errors in parameter estimation seen in Figs. 2
and 3 translate into errors in the estimated risk metrics.
Two risk metrics were evaluated for their sensitivity to
parameterization errors: the long-term population
growth rate, l 5 exp(m) and the probability of a 90%
decline within a given time frame (Eq. 6). Fig. 5 com-
pares the estimates of l. The figure shows the proba-
bility density function, i.e., P(a , l , a 1 da)/da.
Since the variability of m estimates was not dramati-
cally different among the estimators, the variability in
l using only run is shown. The figure illustrates thatm̂
50% of the estimates were within 60.04 of the correct
value even for high sampling error; although, much
lower and higher estimates were not uncommon. With
low sampling error 10% of estimates were more than
60.07 greater than the correct values for the three spe-
cies. For high sampling error, this increased to 60.10.
This level of variability indicates that unless the pop-
ulation is declining very rapidly, a 20-year time series
is unlikely to be sufficient to reject a null hypothesis
that the population is stable or increasing (l . 1) at
the P 5 0.05 level using a standard t test.

Fig. 6 compares the estimates of the probability of
90% decline from simulated time series with a stable
initial age structure and no sampling error added. Three
methods for estimating the parameters were contrasted.
The first used the Dennis estimators, which assumed
zero nonprocess error (as in Dennis et al. 1991). The
second method used the Kalman estimates with normal
nonprocess error. The third used the slope method for
s2 and the running sum method for m (as in Holmes
and Fagan 2002). Due to high overestimation of s2 by

, the median probability estimates using the Dennis2ŝd

estimators were highly biased relative to the observed
probabilities from the simulated spring/summer chi-
nook and fall chinook time series (Fig. 6, left panels).
The probability of 90% decline for steelhead was dom-
inated by the very low m, and was less affected by
overestimation of s2. The majority of Kalman estimates
for s2 were severe underestimates for spring/summer
chinook (Fig. 3), and the median probability estimates
were correspondingly biased for this species (Fig. 6,
middle panels). For steelhead and fall chinook, the me-
dian Kalman estimates for s2 were close to the true
values when no sampling error was added (Fig. 3), and
in this case the median probability estimates were cor-
respondingly close to the true probabilities. The slope
estimates of s2 were generally close to the true values
for all species, and the median probability estimates
using matched the observed probabilities across2ŝslp

species.
Estimation of the probability of 90% decline using

the parameter estimates, and run, was also tested2ŝ m̂slp

for sensitivity to sampling error levels. Estimation was
generally robust to low to medium sampling error (ex-
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FIG. 4. Error in m and s2 estimates (log scale for s2) due to yearly hatchery inputs into the salmon simulations. The
starting age structure was perturbed, and low sampling error ( 5 0.1) was added. The parameter m was estimated using2sse

d with either no input correction (Eq. 13) or with input correction (Eq. 19). The s2 parameter was estimated using vs.2m̂ ŝd

with no explicit hatchery correction.2ŝslp

FIG. 5. Variability of l estimates using run. See Fig. 2 for simulation details.m̂
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FIG. 6. Estimated vs. true probability of 90% decline within a given time horizon. Probability estimates were calculated
using Eq. 6 with d and (Dennis), Eq. 6 with ka and (Kalman), or Eq. 6 with run and (runsum/slope). The2 2 2m̂ ŝ m̂ ŝ m̂ ŝd ka slp

parameters were estimated from simulated spawner counts. The true probability was calculated from 1000 100-year time
series generated from each stochastic matrix model. Results are shown for simulations with no sampling error added to the
spawner counts. Simulations were started with a stable initial age structure. The solid line shows the median errors observed
in the simulations, and the dashed and dotted lines encompass 75% and 95% of the estimates, respectively.

cept for fall chinook), but a mismatch between median
predictions and the true probabilities became apparent
with high sampling error (Fig. 7) when the difference
between and s2 increased (Fig. 3). This was es-2ŝslp

pecially true for fall chinook with the predicted prob-
abilities bearing little relationship to the true low prob-
abilities. Variability in the estimated probabilities was
highest for fall chinook and lowest for steelhead. These
differences in the variability of estimates between spe-
cies was likely due to differences between their rates
of decline; l was closest to 1.0 for fall chinook (with
l 5 0.98) and farthest for steelhead (with l 5 0.84).
Fig. 7 illustrates that in some cases, e.g., the fall chi-
nook with l close to 1.0, estimated probabilities of
severe declines were so variable as to provide little
useful risk information. In other cases, however, e.g.,
the spring/summer chinook and steelhead with l values
farther from 1.0, the median estimated probabilities

correctly tracked the true probabilities. Nonetheless the
probability estimates were variable and accurately rep-
resenting the variability is critical to the use of prob-
ability metrics in applications, as discussed in the next
section.

APPLICATION TO ACTUAL DATA

The previous sections have focused on using simu-
lated data to evaluate the appropriateness of the dif-
fusion approximation for a given application and to
select parameterization methods. Once this is com-
pleted, the next step is to use the diffusion approxi-
mation to estimate risk metrics using the actual time
series data from the population of concern. This final
step is illustrated using a 38-year time series from
spring chinook in the Upper Columbia River basin (T.
Cooney, unpublished data). To analyze this data, two
approaches were used. The first focuses on point es-
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FIG. 7. Effect of sampling error on estimated vs. actual probability of 90% decline within a given time horizon. Probabilities
were calculated using Eq. 6 with run and . Results are shown for simulations with low, medium, or high sampling error2m̂ ŝslp

added to the spawner counts. Simulations were started with a stable initial age structure. The solid line shows the median
errors observed in the simulations, and the dashed and dotted lines encompass 75% and 95% of the estimates, respectively.

timates and confidence intervals. The second uses a
Bayesian approach and estimates the probability of the
parameters and risk metrics given the data. This ap-
proach gives a measure of the data support for different
potential true risk levels. Preliminary diagnostic tests
for the data, namely testing log Nt11 /Nt for normality,
outliers, and serial correlation, are not discussed here,
but are reviewed in Dennis et al. (1991).

Point estimates and confidence intervals

The approach here consists of four steps: (1) select
estimators and make the needed assumptions about
their expected values, (2) calculate the point estimates,
(3) specify their expected distributions, and (4) use
parametric bootstrapping to estimate confidence inter-
vals.

1) Estimators and their expected values.—The pre-
vious analyses suggest that given the expected levels
of process and nonprocess error in salmonid data:

2 2E(ŝ ) ø sslp

2 2 2 2E(ŝ ) ø 2s (since s k s )d np np

E(m̂ ) 5 m. (22)run

2) Point estimates.—From the time series, the fol-
lowing estimates were calculated: run 5 20.07, 52m̂ ŝslp

0.01, and 5 0.50. Using the assumptions in Eq. 22,2ŝd

the point estimates of the risk metrics can be calculated.
The point estimate of l for this population is 5l̂
exp( run) 5 0.93, indicating a 7% per year decline. Them̂
point estimate for a 90% decline within 25 years uses
Eq. 6 with m 5 run and s2 5 : P(N25 , 0.1 3 N0)2m̂ ŝslp

5 0.44.
3) Their estimated distributions.—The statistical

distributions of the parameter estimates are themselves
estimated using the known distribution of the parameter
estimates (Holmes and Fagan 2002) and in place of the
expected or true value of the parameters, which appear
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in these distributions, using the point estimates for the
parameters (from step 2):

22ŝ dfslp2ŝ ; gamma ,1 2df 2

is the estimated distribution given2ŝ

22E(ŝ ) dfslp2ŝ ; gamma ,slp [ ]df 2

and using as an estimate of2 2ŝ E(ŝ );slp slp

21 ŝ n 2 1d2 2ŝ 5 ŝ ; gamma ,np d 1 22 n 2 1 2

is the estimated distribution given2ŝ np

22E(ŝ ) n 2 1dp2ŝ ; gamma ,d [ ]n 2 1 2

and using 2 2E(ŝ ) 5 ŝ ;d d

22 2ŝŝ np
m̂ ; normal m̂ , 1run 21 2n 2 L (n 2 L)

is the estimated distribution givenm̂

22 2ss np
m̂ ; normal m, 1 (23)run 2[ ]n 2 L (n 2 L)

and using the estimated s2 and . The parameter n is2snp

the length of the time series, L is the number of counts
summed together to form a running sum, and df ø 0.333
1 0.212n 2 0.387L. The distribution gamma(b,v) de-
notes a gamma distribution with scale b and shape v,
a x2(a) denotes a chi-square distribution with a degrees
of freedom and a normal(a, b) denotes a normal dis-
tribution with mean a and variance b.

4) Confidence intervals via parametric bootstrap-
ping.—The confidence intervals were estimated by
generating thousands of parameter estimates from their
estimated distributions (Eq. 23). First 2 and were2ŝ ŝnp

drawn using their estimated distributions, and then a
was generated using the 2 and draws. For each2m̂ ŝ ŝnp

parameter set, l and P(N25 , 0.1 3 N0) were calculated.
This was repeated 10 000 times. The 95% confidence
intervals contain 95% of the estimates: l 95% confi-
dence intervals were (0.85, 1.04) and P(N25 , 0.1 3
N0) 95% confidence intervals were (0.04, 0.94).

Posterior probability distributions

The point estimates do not take into account the un-
certainty in the parameter estimates, and the confidence
intervals, which do, are difficult to use in a decision-
making framework. For example, the 95% confidence
intervals on l include 1.0. However, this population
has declined 93% over the last 38 years, and the data
are most consistent with a l , 1.0, even though it is
possible for such a decline to have occurred by chance
in a population with long-term nondeclining dynamics
(i.e., true l . 1). Statistical decision theory (e.g., Ber-
ger 1985) presents a framework for incorporating un-

certainty in the true risk levels and the costs of different
management decisions given different true risk levels.
Wade (2000) and Dorazio and Johnson (2003) provide
recent discussions of this Bayesian decision framework
in conservation biology and resource management con-
texts. This framework relies on calculating the prob-
ability of different risk levels (i.e., the posterior prob-
ability distributions) given the uncertainty in the un-
derlying true parameters, in this case in m, s2, and

.2snp

Calculation of the posterior probability distribution
for a given risk metric, C, involves calculating the
probability that the risk metric is some particular value,
f, given the data. This is calculated by integrating ‘‘the
probability of the data given a particular set of param-
eter values, u, times the probability of that u set’’ over
all sets of parameter sets, u, for which the risk metric
equals f:

p(C 5 f z data)

L(u z data)p (u)
5 du (24)E h(data)all u for which C5f

where p(C 5 f z data) is the probability density at C
5 f given the data (i.e., the posterior probability den-
sity function for C), L(u z data) is the probability of the
data given the parameters u (i.e., the likelihood func-
tion), p(u) is the initial assumption regarding the prob-
ability of different true process parameters (i.e., the
prior), and h(data) is a normalizing constant. There are
many texts on Bayesian statistics. The sections in Hil-
born and Mangel (1997) on Bayesian methods are par-
ticularly accessible for ecological applications.

The following algorithm calculates p(C 5 f z data)
using run, , as the data. Similar algorithms can2 2m̂ ŝ ŝd slp

be found in Hilborn and Mangel (1997:256–260). The
code to run this algorithm and produce Figs. 8 and 9
is given in Supplement 1.

Step 1.—Specify prior distributions for m, s2, and
. For this example, I used a uniform distribution of2snp

m on (20.2, 0.2) and a uniform distribution of on2snp

(0, 1). As will be seen, the data provide much infor-
mation on m and , and so the posterior distributions2snp

are quite different than the priors. The same cannot be
said for s2. My subjective prior having examined hun-
dreds of salmonid time series, is that s2 is between
0.001 and 0.1. To express this, I used a prior for s2 of
a gamma distribution with scale of 0.25 and shape of
5. I compared this with an alternate prior of a uniform
distribution on (0, 0.5). This prior says the prior belief
is that s2 . 0.1 by a factor of four to one, which seems
unlikely. A standard reference prior for normal vari-
ances is uniform on log s2 (cf. Lee 1989: section 2.7),
but for the corrupted diffusion model, L(s2 z data) goes
to a constant as log s2 goes to negative infinity since
s2 5 0 is perfectly plausible from the model’s stand-
point. Thus this prior will lead to infinite probability
densities when Eq. 24 is integrated.
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FIG. 8. Priors and estimated posterior probability distributions for m, s2, and . This analysis used a 1960–1998 spawner2snp

count time series from Methow River spring chinook in the Upper Columbia River basin. The right panels show the estimated
distributions using an informative prior, which put most prior probability on s2 between 0 and 0.1. The left panels show the
estimated distributions using a uniform prior which put an even prior probability on s2 between 0 and 0.5.

Step 2.—Randomly draw values of m, s2, and 2snp

from their priors.
Step 3.—Calculate the C using the values of m, s2

from step 2. If the risk of interest is the probability of
90% decline in a given time frame, this means putting
these parameters into Eq. 6 to calculate C. If the risk
metric of interest is l, C 5 exp(m).

Step 4.—Calculate the total likelihood, L, of the m,
s2, and parameters generated in step 2 given the2snp

actual run, , estimates from the data:2 2m̂ ŝ ŝd slp

L 5 L(m, s2, z run) 3 L(m, s2, z )2 2 2s m̂ s ŝnp np slp

3 L(m, s2, z ).2 2s ŝnp d

Note that run is independent of and . To simplify2 2m̂ ŝ ŝd slp
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FIG. 9. Priors and estimated posterior probability distributions for l, the probability that the population ever experiences
a 90% decline at some point in the future, and the expected value of the probability of 90% decline within different time
frames.

this step, I also assumed that and are indepen-2 2ŝ ŝd slp

dent, given a particular set of parameters. This is not
entirely true. In simulations, I have found correlation
coefficients of ;0.2.

The likelihoods are calculated from the probability
of run, , given the m, s2, and parameters2 2 2m̂ ŝ ŝ sd slp np

generated in step 2. The distributions of run, , and2m̂ ŝd

are given in Eq. 23, and from these the likelihoods2ŝslp

are calculated. The L(m, s2, z run) equals the prob-2s m̂np

ability density at run of a normal with mean m andm̂
variance (s2 1 2 )/(n 2 L). The L(m, s2, z )2 2 2s s ŝnp np slp

equals the probability density at of a gamma with2ŝslp

scale b and shape v where b ø (0.5s2 1 0.15 /v2s )np

and ø (0.333 1 0.212n 2 0.387L)/2. Recall fromv̄
Eq. 15 that E( ) ø (0.5s2 1 0.15 ). The L(m, s2,2 2ŝ sslp np

z ) equals the probability density at of a gamma2 2 2s ŝ ŝnp d d

with scale b and shape v where b 5 (s2 1
2 5 (n 2 1)/2. Recall the introduction of2s )/v̄ and v̄np

that E( ) 5 (s2 1 2 ). See any statistics text for2 2 2ŝ ŝ sd d np

the probability density functions for normal and gamma
distributions. The gamma distribution arises given that
q 2/E(s2) ; x2(q); thus 2 ; x2(q)E(s2)/q, which equalsŝ ŝ
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a gamma distribution with scale 5 2E(s2)/q and shape
5 q/2.

Step 5.—Repeat steps 2–4 thousands of times, re-
cording the parameters (step 2), the risk values (step
3), and total likelihood (step 4) for each iteration.

Step 6.—Divide the outputs of interest, e.g., risk val-
ues and parameters, into discrete intervals and calculate
the proportion of the total likelihood (L summed over
all the iterations) within each interval. Divide the prob-
abilities by the size of the interval. This gives the pos-
terior probability distribution for the output of interest.

Fig. 8 shows the posterior probability distributions
for m, s2, and relative to the priors for the 1960–2snp

1998 Methow River spring chinook data. The plots
(Fig. 8d–f ) show the posterior distributions using the
uniform prior on s2. The posterior on s2 is not uniform
and gives more weight to s2 , 0.2 than s2 . 0.2. The
plots (Fig. 8a–b) show the posterior distributions using
my quite informative prior on s2 based on previous
analyses. The posterior distribution for s2 is the same
as the prior in this case. Together, this indicates that
the data are not providing much information beyond
that s2 is more likely to be ,0.2. For m and , the2snp

data provide much more information, and the posteriors
are quite different than the uniform priors. Putting a
strong prior on small s2 decreases the uncertainty in m
and , and their posterior distributions are more peak-2snp

ed, but even with a prior that gives weight to higher
s2, there is still considerable information on m and

.2snp

Fig. 9 shows the posterior probability distributions
for the following risk metrics: l 5 exp(m), the prob-
ability that the population ever experiences a 90% at
some point in the future (this is p9 in Eq. 6), and the
expected value of the probability of 90% decline within
different time frames. The expected value of the prob-
ability of extinction multiplies the probability of ex-
tinction given a particular set of true parameters by the
probability of those parameters (specified by the pos-
terior probability distribution) and integrates this over
all possible parameter values. See Ludwig (1996a) for
an extensive discussion of the expected value of the
probability of extinction, which he terms the Bayesian
probability. A simple algorithm to calculate the ex-
pected probability is to divide 0 to 1 into regular in-
tervals, take the value of the posterior probability den-
sity of P(90% decline in x years) from step 6 at the
center of those intervals and multiply that by the width
of the interval, and then sum these together to calculate
the expected value of P(90% decline in x years).

Most of the area of posterior probability distribution
of l is in the region l , 1 (Fig. 9a,d) indicating that
the data give high support to long-term declining dy-
namics (l , 1). The support is considerably higher
when strong prior information on s2 is included (Fig.
9a), but is still high when less specific prior information
on s2 is used (Fig. 9d). Fig. 9(b,e) shows the posterior
distributions of the probability of eventual 90% de-

cline. The prior (based on the parameter priors) gave
roughly equal weight to a 0 or 1 probability. The pos-
terior distribution was strongly skewed toward a prob-
ability of 1 for eventual 90% decline indicating that
the data strongly support a high probability of eventual
90% decline. This occurred because either m , 0, which
means 90% decline is certain eventually, or if m . 0,
s2 was large since that is the only way we could have
observed a 7% yearly decline over the last 38 years by
chance with m . 0. Thus the probability of eventual
90% decline was still high. Given that data strongly
support eventual probability of a 90% decline, when is
it likely to occur? Fig. 9(c,f ) shows the expected value
of the probability of 90% decline within different time
frames. Fifty percent of the population trajectories gen-
erated by sampling from the posterior distributions of
the parameters would have declined 90% within 30
years. Over 65% would have declined 90% within 50
years.

Overall, l appeared to be the most straightforward
metric to use. It behaved well and is not overly sensitive
to estimation of s2, which is imprecise. The l metric
is also transparent. If l , 1, the population is declining;
if l , 0.9, it is collapsing. If the population needs to
be recovered from low levels, l must be increased
above 1.0. Risk metrics involving probabilities are
much more problematic. They are highly variable and
sensitive to estimation of s2. This section gave an ex-
ample of how to incorporate uncertainty into proba-
bility metrics and how to express that uncertainty, how-
ever much work remains to be done in this area. It is
tempting to argue that because of their high uncertainty,
metrics involving extinction or quasi-extinction prob-
abilities are bad and should simply be abandoned; in-
deed others have argued as much. However, a measure
of extinction risk is integral to the legal definition of
‘‘jeopardy’’ under the U.S. Endangered Species Act.
While this is true, research into how to quantify and
express the extinction risk in a way that properly char-
acterizes what we do and do not know about the prob-
ability of population declines to critical levels is es-
sential to science-based decision making for threatened
and endangered species.

CONCLUDING REMARKS

The diffusion approximation approach has a solid
foundation on theory concerning the behavior of sto-
chastic age-structured models and opens a large tool-
box of quantitative methods for linear stochastic mod-
els. In addition, the fact that many population processes
with a multitude of parameters can be approximated
by a three parameter model means that parameters can
be estimated with increased statistical power (relative
to trying to estimate a large number of parameters with
limited data). However, the diffusion approximation
approach makes simplifying assumptions, which will
always be violated to some degree for real populations.
This paper describes a method for evaluating the ap-
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propriateness of the diffusion approximation for a par-
ticular PVA application and for selecting among the
currently available parameterization methods. The sal-
monid populations modeled in this paper exhibit sub-
stantial deviations from the diffusion model, such as
nonstable age structure, high temporal autocorrelation
in ocean survivorship, and juvenile density depen-
dence, yet the diffusion model does approximate the
behavior of the simulated population trajectories, in
terms of probabilities of crossing severe decline thresh-
olds and of the predicted distribution of future popu-
lation sizes.

The analyses also illustrate that careful estimation
of the diffusion parameters is critical and that poor
performance of estimators should not be confused with
poor performance of the diffusion approximation. In
particular, one should be cautious about assuming that
nonprocess error within the data is low even if sampling
error is known to be low. In the simulated salmonid
populations, density dependence in the juvenile stage
and perturbation of the age structure created feedbacks
that led to nonprocess error variability within the data.
The result was high nonprocess error variability even
with no sampling error added. This led to overesti-
mation of the process error with parameterization meth-
ods that are not designed to deal with high nonprocess
error. Two estimators designed to deal with high non-
process error were tested: a Kalman filter maximum
likelihood estimator and a slope estimator. For the 20-
year salmon time series with small process error, the
majority of Kalman filter maximum likelihood esti-
mates of s2 were essentially zero. In other words, a
model with nonprocess error alone had the highest like-
lihood of producing the data. An alternative estimator,
the slope estimator for s2, performed better for the
simulated salmon populations and gave s2 estimates
that were within 50–150% of the true value. For low
to medium sampling error levels relative to those ex-
pected within actual salmon censuses (but still 5–50
times higher than the expected process error), gave2ŝslp

median estimates that did not appear to substantially
degrade quasi-extinction estimates; however for high
sampling error, s2 estimates were an order of magnitude
too high and this did degrade the estimates. The ro-
bustness of to nonprocess error due to density de-2ŝslp

pendence is encouraging; similar robustness was also
found in a cross-validation of diffusion-approximation
methods using a large collection of real salmon time
series (Holmes and Fagan 2002).

The purpose of this paper is to illustrate a method
for investigating the appropriateness of diffusion ap-
proximation for a specific population and to evaluate
its parameterization given the data constraints for that
population. New parameterization methods are being
continually refined, and no doubt better methods than
those presented here will eventually be available. The
methods described here can be used to evaluate and
compare these new methods to existing ones. Experi-

ence suggests that the best parameterization method is
application specific; that is, it may not be possible to
find a method that is best for all situations. In particular,
the relative performances of the different parameteri-
zation methods for the simulated salmonid time series
in this paper should not be overgeneralized to their
performance for other population time series. The max-
imum likelihood estimates assuming zero nonprocess
error did especially poorly for the salmonid time series.
However, a study of the performance of these esti-
mators on a large collection of real time series found
that they provided good estimates for time series of a
wide variety of species, just not for salmon (Fagan et
al., unpublished manuscript). Presumably, the level of
nonprocess error in many nonsalmonid time series is
not so large as to significantly bias s2 estimates. Sim-
ilarly, maximum likelihood estimation assuming non-
zero nonprocess error (the Kalman estimates) produced
severe underestimates of s2 for the 20-year salmonid
time series. However this was not a problem with lon-
ger simulations (1001 years), and for nonsalmonid
population processes, it may perform well for short
time series. It is also worth noting that the Kalman
algorithm does estimate the parameters with the highest
likelihood of producing the data, assuming all param-
eters are equally likely. In the real world, all parameters
are not equally likely; specifically process error equal-
ing essentially zero is unlikely given that year-to-year
variability in survivorship and fecundity is occurring.
Incorporating informative priors on s2 into the Kalman
algorithm may be a way to formally avoid unrealistic
parameter estimates.

Regardless of the PVA model used, a certain amount
of variability in estimated parameters and risk metrics
is an unavoidable aspect of the analysis of stochastic
population processes, simply due to the nature of these
processes. One of the strengths of DA methods is that
the statistical distributions of the estimated parameters
are known. As a result, the uncertainty in the estimated
risks can be calculated. This is often not the case for
other PVA approaches, such as Leslie matrix models
or individual-based simulations, where uncertainty in
the estimated model parameters is often poorly known,
if known at all. Even though the uncertainty in DA risk
metrics can be calculated, this uncertainty is definitely
high. In this situation, examining either the likelihood
functions or the posterior probability distributions for
the risk metrics, rather than simply the point estimates
and confidence intervals, will help to clarify the level
of data support for different risks and to choose risk
metrics that are most informative. Statistical decision
theory (e.g., Berger 1985) provides a framework for
integrating estimates of the data support for different
risk levels with the consequences of different true risk
levels. Taking an approach that assesses the degree of
data support for questions of conservation concern em-
phasizes that while uncertainty does exist, being un-
certain does not mean we know nothing.
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APPENDIX A

The Kalman filter for maximum likelihood estimation given corrupted observations is available in ESA’s Electronic Data
Archive: Ecological Archives A014-023-A1.
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APPENDIX B

The development of a general method for correcting for age-specific inputs into the censused population is available in
ESA’s Electronic Data Archive: Ecological Archives A014-023-A2.

SUPPLEMENT 1

The Splus code for estimating parameters and calculating the posterior probability distributions for DA risk metrics is
available in ESA’s Electronic Data Archive: Ecological Archives A014-023-S1.

SUPPLEMENT 2

The Matlab code for running a stochastic matrix model and generating diagnostic plots is available in ESA’s Electronic
Data Archive: Ecological Archives A014-023-S2.


