
Applying MAR(1) and MARSS to an ecological dataset 
Supplement to “Quantifying effects of abiotic and biotic drivers on community dynamics with 
multivariate autoregressive (MAR) models” (S.E. Hampton, E.E. Holmes, L.P. Scheef, M.D. Scheuerell, 
S.L. Katz, D.E. Pendleton, E.J Ward, submitted to Ecology18 July 2013) 
 
 Here we step through an example of applying both MAR(1) and MARSS to an ecological dataset, 
using R, a free open-source software environment for statistical computing and graphics (http://www.r-
project.org/). The example R code is inset in the text, but also available as a block at the end of this 
supplement for those who would prefer to cut and paste the whole block into an R text editor before 
beginning the exercise. At the time of publication, this exercise had been tested in R versions 2.15.1 and 
3.0.1, primarily in 64-bit installations. 
 
MAR1 R package 
 

The tools necessary to apply a basic MAR(1) model to time-series data have been built into the 
MAR1 package for R (Scheef 2013, http://cran.r-project.org/web/packages/MAR1/).  This package uses 
the tcltk package to create pop-up windows. On Mac OS X systems, installation of the Tcl/Tk 8.5.5 
library for X11 may be necessary before the Tcl/Tk interface can successfully load. See http://cran.r-
project.org/bin/macosx/tools/ for details. It is possible to run the package without the pop-up windows.  

 
 From within the R console, the MAR1 package can be installed by typing or pasting in: 
 

install.packages("MAR1", repos="http://cran.rstudio.com", 
dependencies=TRUE) 

 
 
To load the package in the current R session: 
 

library(MAR1) 

 
Prepare the dataset 
 

The MAR1 package includes weekly marine plankton abundance data from the Western Channel 
Observatory (WCO) L4 station (www.pml.ac.uk/L4) as an example of a plankton time-series that is of 
appropriate temporal and taxonomic resolution for MAR application.  See (2010) and (Southward et al. 
2005) for L4 zooplankton and phytoplankton sample collection and processing methods.  The L4 data 
subset included in the MAR1 package is a weekly time-series of sea surface temperature values (°C) and 
abundances for 15 zooplankton groups (individuals m-3) and 3 phytoplankton groups (cells ml-1).  The 
plankton groups were created by summing the abundance values of taxonomically and ecologically 
similar taxa included in the raw L4 time-series for each time-step. 

 
To load the L4 time-series, take a look at the column heads and the first few lines of data, see a statistical 
summary of the dataset, and see additional details about the dataset in its associated help file: 
 

data(L4.AllDates) 
head(L4.AllDates) 
summary(L4.AllDates) 
 
?L4.AllDates 



 
Creating a time-series with evenly spaced intervals 

We can see that the L4 dataset has a format common to time-series data:  sampling dates are 
recorded in the first column and the measured values of each parameter are recorded in the following 
columns.  Columns containing information other than dates and the values of potential variables have 
been removed to simplify the dataset for MAR application.  Because zooplankton and phytoplankton 
were not always sampled on the same date, we can see in the summary that the data include many missing 
(NA) values. 

For MAR, the data need to be averaged into evenly-spaced time-steps.  The MAR1 package 
includes a function for transforming datasets that can average data into monthly, yearly, weekly, or daily 
time-steps.  To apply this function, the dataset must be arranged so that dates are in the first column and 
the numeric values of variables are in the following columns.  Dates must include four-digit year values 
(yyyy) and some character separating year, month, and day (e.g., 1982-07-26 or 2003/11/06).  The order 
that year, month, and day are represented in the date values does not matter.  The L4 dataset we are using 
conforms to these requirements, so the function can be directly applied.  Monthly increments have been 
reported as an appropriate time-scale for the detection of plankton community interactions in other MAR 
studies (e.g., Hampton and Schindler 2006), so we will average the L4 data into monthly time-steps.   
 

To average the data into monthly increments and view the summary and dimensions (number of 
rows and columns) of the new time-series object: 
 

L4.byMonth <- prepare.data(data=L4.AllDates, 
increment="month") 

 
summary(L4.byMonth) 
dim(L4.byMonth) 
 

 
We see that the data have been averaged into 175 continuous time-steps, and all NA values have 

been eliminated in the process.  Note that 175 is not the total number of time-steps in the dataset (which is 
179 according to the dataset dimensions), but the number of time-steps that occur without an adjacent 
missing value in the series.  This is the number of data points that will be used to build the model, as non-
consecutive time-points will be thrown out during the analysis.  A new column ‘contin’ has also been 
created, in which each run of equal values designates a continuous block of time-steps.   

 
Data transformations 

In plankton MAR studies, linear interpolation has sometimes been used to fill in small gaps in the 
time-series. However, when data consistently miss a certain time period (e.g., no winter sampling) 
investigators frequently just exclude those time periods from the time-series (e.g., Ives et al. 2003, 
Hampton et al. 2006) and allow MAR to skip estimations between non-consecutive data points. It is also 
common practice to log-transform data in order to better approximate the non-linear relationships 
frequently present in ecological data (Ives et al. 2003). If the data are log-transformed, zeros need to be 
replaced with non-zero values. For some questions investigators standardize the data to dimensionless 
units (Z-scores) so that model results can be directly compared among plankton groups (e.g., Hampton et 
al. 2006).   The same function used to average the data into evenly spaced time-steps can perform these 
transformations as well.  
 
To see all arguments for the prepare.data function and possible values for each argument, and to see 
the help file for the function: 
 



formals(prepare.data) 
 
?prepare.data 
 

 
If we decide to fill gaps in our time-series via linear interpolation, we can choose how large a gap 

we will allow to be filled with fill.gap.  For example, if we set fill.gap=2, gaps two months long 
or less will be interpolated, and larger gaps will be left in the time-series.   

 
If we would like to log10-transform the data (by setting log=TRUE), zeros in the time-series 

must first be replaced.  Zero values occurring in the time-series for a particular plankton group can be 
replaced with a random number between 0 and half the lowest non-zero value for that group 
(replace.0s="rand.half"), or zeros can be eliminated by adding 1 to all values 
(replace.0s="add.ones").   

 
There are two methods that can be used to Z-score the data as well.  The first method 

(z.method="standard") standardizes each value by subtracting the overall mean abundance value 
for the group and dividing by the overall standard deviation for the group.  The second method 
(z.method="deseason") is similar, except the means and standard deviations are month-specific so 
that mean seasonal trends are removed from the data-series.  De-seasoning the abundance data could aid 
in the detection of interactions between plankton groups by dampening seasonal successions that relate to 
seasonally varying abiotic drivers.   
 
We will apply the prepare.data function to the L4 data again, but in addition to averaging the data 
into monthly increments, we will transform the data so that gaps of one month are filled via linear 
interpolation, zeros are replaced with a random number between 0 and half the lowest value for the 
respective group, and the values are log10-transformed and then Z-scored using the “standard” method: 
 

L4.mar1 <- prepare.data(data=L4.AllDates, 
increment="month", fill.gap=1, replace.0s="rand.half", 
log=T, z.method="standard") 

 
R reports that two time gaps were filled, that the time-series now contains 179 continuous time-

steps, and that the log and Z-score transformations were successful.  The function that runs the MAR 
model requires that the data be arranged with the continuous time-block variable in the first column, dates 
in the second column, and the time-series for the variables in the following columns.  Looking at the 
summary of the transformed dataset, we see that it is appropriately formatted for MAR application. 
 

summary(L4.mar1) 

 
To see how the Z-score method used affects the MAR results, we can create a second transformed dataset 
with the “deseason” Z-score method for comparison: 
 

L4.mar2 <- prepare.data(data=L4.AllDates, 
increment="month", fill.gap=1, replace.0s="rand.half", 
log=T, z.method="deseason") 

 
summary(L4.mar2) 



 
 
Build the MAR(1) model 
 
To see the arguments for the function that builds the MAR model and to see the help file for the function: 
 

formals(run.mar) 
 
?run.mar 
 

 
The function run.mar allows the user to select which interactions will be included in the model. 

The variables argument designates whether variables will be included as variates (X in Equation 3) or 
covariates (U in Equation 3).  The user can also set restrictions on interactions between the variables:  
interactions can be forced to be included in or excluded from the final model (the restrictions 
argument).  By default, a random search for the best-fit model is performed (search="random") 
following Ives et al. (2003), but options for forward step and exhaustive searches are also available (see 
?run.mar).  The function does a 500 iteration bootstrap of the best-fit model coefficients by default, 
and the number of iterations can be changed (boot=n), or bootstrapping can be skipped altogether 
(boot=FALSE).  The top 10 models (i.e., lowest AIC models, including the best-fit model) are retained 
in the output by default, and this number also can be changed (ntop=n) or excluded (ntop=FALSE).  
All results of the MAR analysis are stored as a list object within R (see ?run.mar for details on the 
structure and components of the list object).  If the export argument is set to TRUE or to a quoted name 
(e.g., export="FolderName"), a folder will be created in the current working directory (which can 
be viewed with getwd()), and all components of the result list will be saved as comma-delimited (.csv) 
files in that folder.  A MAR result list object can also be exported later using the function 
export.MAR() (see ?export.MAR). 

 
For the L4 data, one might be interested in using MAR to assess whether there are detectible 

interactions between invertebrate predators and copepods.  It is thought that cnidarians and chaetognaths 
may have important predatory effects on calanoid copepods in the English Channel (Irigoien and Harris 
2003, Eloire et al. 2010, Bonnet et al. 2010).  To investigate this hypothesis with MAR, we will build a 
model that includes the cnidarian, chaetognath, large calanoid, and small calanoid zooplankton groups 
and the diatom and dinoflagellate phytoplankton groups as variates, and sea surface temperature as a 
covariate. 
 
To initiate the analysis: 
 

run1 <- run.mar(data=L4.mar1) 
 

 
Because no values were provided for the variables argument, a window that allows the user 

to select variates and covariates with toggle buttons appears, along with instructions in the R Console.  
Click the buttons next to cnidarian, chaetognath, calanoid.lg, calanoid.sm, diatom, and dino once to select 
them as variates, and the button next to surface.temp twice to select it as a covariate.  Clicking a button 
three times resets it to ‘not included.’  After clicking Done, another window appears to allow restrictions 
to be set on interactions with toggle buttons.  To see what the MAR model will look like when we don’t 
set any restrictions, click Done.  A progress report shows in the console while the function is working, 
and all results are stored in the ‘run1’ object. 



 
The analysis can also be run without using the windows to select the variables and set restrictions.  

The variables argument can be set equal to a vector in which each column in the dataset is represented by 
a 0 (not included), 1 (variate), or 2 (covariate).  The first two numbers of the vector represent the ‘contin’ 
and time-step columns and should always be 0.  The restrictions argument can be set equal to a matrix 
containing a row for every variate and a column for every variate and covariate, where the interaction of 
each column term on each row variate is represented by a 0.5 (may be included in the model), 0 (forced 
exclusion from the model), or 1 (forced inclusion in the model).  To build the ‘run1’ model above without 
using the pop-up windows: 
 

myvar <- c(0,0,1,0,1,0,0,0,0,1,1,0,0,0,1,1,0,0,0,0,2) 
myres <- matrix(0.5, nrow=length(which(myvar==1)), 

ncol=length(which(myvar!=0))) 
 
run1 <- run.mar(data=L4.mar1, variables=myvar, 

restrictions=myres) 
 

 
To print the main results, see a summary of the results, and plot the model: 
 

run1 
summary(run1) 
plot(run1) 
 

 
In the plot of interaction strengths, bars extending to the right and left of the dotted lines represent 

positive and negative interactions, respectively.  Interactions in the best-fit model that were excluded by 
bootstrapping are plotted as lighter, hatched bars.  It is apparent that the analysis detected mostly positive 
interactions.  All variates exhibit positive density dependence along the diagonal of the B-matrix, and 
large calanoid copepods and diatoms appear to have positive effects on the abundances of nearly all the 
other variates.  Surface temperature, the only covariate included in the model, is shown to have negative 
effects on diatoms and large and small calanoids.  Several of the interactions, including the positive 
effects of large calanoids on both phytoplankton groups and the negative effects of temperature on the 
variates, seem ecologically improbable.  To assess whether the interaction patterns in this model might 
have been influenced by the detection of seasonal successions in the time-series, we can build another 
model with our “deseason” Z-scored dataset: 
 

run2 <- run.mar(data=L4.mar2, variables=run1, 
restrictions=run1) 

 
Since we are using a dataset with identical formatting to the one used in building the first model 

(i.e., same column order and column headers) and we would like to use the same variables and restrictions 
as those set in the first model, we can simply set the variables and restrictions arguments of the function 
equal to the ‘run1’ object. 
 
To compare both models in one plot and create a legend for the plot: 
 

plot(run1, run2, legend=T) 



 
We can see that the second model for the de-seasoned data includes notably fewer interactions 

than the first model.  None of the negative temperature effects were detected in the second model, and the 
only positive effect of large calanoids on any variate is their own density dependence.  The second model 
also includes a plausible negative effect of large calanoids on diatoms that was not detected in the first 
model.  An unlikely positive effect of cnidarians on chaetognaths was detected in both models.  If we 
wanted to recreate the second, de-seasoned data model, but with the interaction of cnidarians on 
chaetognaths excluded, we can set that restriction by toggling the corresponding button (first column, 
second row) to 0 in the Specify Restrictions window before clicking Done: 
 

run3 <- run.mar(data=L4.mar2, variables=run2) 
 

 
Or, to do the same without use of the pop-up window: 
 

myres[2,1] <- 0 
 
run3 <- run.mar(data=L4.mar2, variables=run2, 

restrictions=myres) 
 

 
 
To plot all three models: 
 

plot(run1, run2, run3, legend=T) 
 

 
In the plot, it is apparent that setting this cnidarian-chaetognath restriction (indicated by a red dot) 

had little effect on the results. 
 

To compare the best-fit model to the other top models retained in the analysis, we can plot the 
‘$top.bestfit’ component of the result list object: 
 

dev.new() 
plot(run3$top.bestfit) 
 

 
Here, the best-fit model is represented by the top-most set of bars, and nine other low-AIC 

models are plotted below it in order of increasing AIC.   
 
To view a histogram of the AIC values for the best models: 
 

hist(run3$top.bestfit) 
 

 
 
The AIC value for the selected best-fit model is denoted by the blue star along the bottom of the plot.   

 



Building a state-space MAR model (MARSS) 
 

A state-space MAR model is a MAR(1) model with an observation process: 
 

𝐗! = A + 𝐁𝐗!!! + 𝐂𝐔! + 𝐄! 
𝐘! = 𝐗! + 𝐕! 

S1 

 
The underlying community dynamics are described by the MAR(1) model (X) but the true values of  X 
are “hidden”, and we only observe Yt which is Xt plus some error.  State-space MAR (MARSS) might be 
particularly helpful with this dataset, since we anticipate that the observation error is a real issue in this 
relatively open marine system.  
 
 The MARSS package (Holmes et al. 2013, http://cran.r-project.org/web/packages/MARSS/) is 
available in R for fitting state-space multivariate autoregressive models, and we can use it to fit a state-
space version of the MAR(1) models in the examples above.   
 
To install and load the MARSS package: 
 

install.packages("MARSS", repos="http://cran.rstudio.com", 
dependencies=TRUE) 

 
library(MARSS) 
 

 
The MAR1 package has a function ss.mar1()which will allow you to easily fit the model 

described in eqn. S1:  our observations are Xt plus error and we will treat our covariates Ut, in this case 
surface temperature, as known without observation error.    Although in this example we use the simple 
observation process described by eqn. S2, the MARSS package will allow you to model much more 
general observation processes and can allow one to model, for example, situations with multiple 
measurement sites, measurement equipment or sampling designs that change over time, sampling sites 
with different levels of missing values, or covariates that are measured with error and in multiple 
locations.  See the MARSS User Guide on the MARSS CRAN webpage (http://cran.r-
project.org/web/packages/MARSS) for a discussion of analysis of species interactions using more 
complicated observation models.   
 

The ss.mar1() function uses an aggregated dataset as input.  This is a dataset already 
transformed by prepare.data().   It also needs to have the MAR model B and C matrices specified.  
One way to do this is to pass in a MAR fitted model object generated by run.mar(), and ss.mar1() 
will use the bestfit B and C.   
 
Here we pass the de-seasoned L4 dataset and the third MAR model we generated above to the state-space 
function.  (Note:  This may take a few moments to run. On 32-bit R installations, error messages 
sometimes occur in this step though results are comparable; if you receive errors, to generate your final 
results you may want to experiment with a different version or installation.) 
 

ss.run3 <- ss.mar1(L4.mar2, MAR.obj=run3) 
 

 



We can compare the B matrices from the non-state-space MAR and the state-space MAR by printing 
them and/or plotting them: 
 

run3$bestfit$B 
ss.run3$B 
 
ss.run3.plot <- 

list(restrictions.set=run1$restrictions.set, 
bestfit=list(B=ss.run3$B,C=ss.run3$C), bootstrap=NULL) 

class(ss.run3.plot) <- "MAR" 
 
dev.new() 
plot(run3, ss.run3.plot, legend=T) 
 

 
The first thing that is apparent is that the interaction strengths along the diagonal are larger, 

potentially indicating that the observation error is now being more appropriately accounted for.  
Observation error tends to make time-series look like white-noise and thus moves the diagonal terms 
towards 0.  We also see that the off-diagonal terms are farther from 0 with the state-space MAR model.  
This is also suggestive of better partitioning of the variance.  Observation error tends to make species look 
less correlated and thus their interactions strengths are closer to 0.   Overall however, the direction of the 
interactions are largely concordant with the results from the MAR(1) model. 

 
The L4.mar2 dataset had gaps of 1 filled by linear interpolation.  A state-space MAR model can 

handle missing values fine because it incorporates an observation model.   
 
We can compare the B estimates if we do not do linear interpolation. 
 

# L4 data aggregated by month with gaps not filled 
 
L4.mar3 <- prepare.data(data=L4.AllDates, 

increment="month", fill.gap=0, replace.0s="rand.half", 
log=TRUE, z.method="deseason") 

 
ss.run3.no.interp <- ss.mar1(L4.mar3, MAR.obj=run3) 
 
ss.run3.no.interp$B 
 

 
 These models take a long time to fit because estimating both the observation and process variance 
matrices is difficult.  We can also fix the observation variance by passing an explicit Vt matrix into 
ss.mar1().  The observation variance matrix is termed R, and we will set the observation variance of 
the zooplankton to be 0.1 and the dinoflagellates and diatoms to be 0.05.  The model now fits much faster. 
 

# Set observation variance matrix instead of estimating it 
 
R <- diag(c(0.1,0.1,0.1,0.1,0.05,0.05)) 
 
ss.run3.fixed.R <- ss.mar1(L4.mar3, MAR.obj=run3, 



model=list(R=R)) 
 
ss.run3.fixed.R$B 
 

 
To compare the non-state-space and all three state-space MAR models in a plot: 
 

ss.run3.no.interp.plot <- 
list(restrictions.set=run1$restrictions.set, 
bestfit=list(B=ss.run3.no.interp$B,C=ss.run3.no.interp
$C), bootstrap=NULL) 

class(ss.run3.no.interp.plot) <- "MAR" 
 
ss.run3.fixed.R.plot <- 

list(restrictions.set=run1$restrictions.set, 
bestfit=list(B=ss.run3.fixed.R$B,C=ss.run3.fixed.R$C), 
bootstrap=NULL) 

class(ss.run3.fixed.R.plot) <- "MAR" 
 
dev.new() 
plot(run3, ss.run3.plot, ss.run3.no.interp.plot, 

ss.run3.fixed.R.plot, legend=T) 
 

 
 
Code from this exercise 
 
 Some readers may find it easiest to just cut and paste this whole block into an R text editor before 
working through the exercise. 
 

######## MAR1 R Package ######## 
 
# Install MAR1 package 
 
install.packages("MAR1", repos="http://cran.rstudio.com", 

dependencies=TRUE) 
 
# Load package 
 
library(MAR1) 
 
######## Prepare the dataset ######## 
 
# Load and view L4 dataset included in MAR1 package 
 
data(L4.AllDates) 
head(L4.AllDates) 
summary(L4.AllDates) 
 



?L4.AllDates 
 
# Begin transformations – average into monthly time steps 
 
L4.byMonth <- prepare.data(data=L4.AllDates, 

increment="month") 
 
summary(L4.byMonth) 
dim(L4.byMonth) 
 
# See all arguments and help file for prepare.data function 
 
formals(prepare.data) 
?prepare.data 
 
# Fill gaps with linear interpolation, perform log and z-

score transformations 
 
L4.mar1 <- prepare.data(data=L4.AllDates, 

increment="month", fill.gap=1, replace.0s="rand.half", 
log=T, z.method="standard") 

 
# Look at summary of transformed dataset 
 
summary(L4.mar1) 
 
# Create another dataset using the de-seasoning z-score 

method 
 
L4.mar2 <- prepare.data(data=L4.AllDates, 

increment="month", fill.gap=1, replace.0s="rand.half", 
log=T, z.method="deseason") 

 
summary(L4.mar2) 
 
######## Build the MAR(1) model ######## 
 
# Look at the arguments available in run.mar and view help 

file 
 
formals(run.mar) 
?run.mar 
 
# Initiate MAR(1) analysis using pop-up windows to select 

variables and set interaction restrictions 
 # Set cnidarian, chaetognath, calanoid.lg, 

calanoid.sm, diatom, and dino as variates and 
surface.temp as a covariate 

 # Do not set any restrictions 
 
run1 <- run.mar(data=L4.mar1) 



 
# Same model can be built without using the pop-up windows 
 
myvar <- c(0,0,1,0,1,0,0,0,0,1,1,0,0,0,1,1,0,0,0,0,2) 
myres <- matrix(0.5, nrow=length(which(myvar==1)), 

ncol=length(which(myvar!=0))) 
 
run1 <- run.mar(data=L4.mar1, variables=myvar, 

restrictions=myres) 
 
# Summarize and plot main results 
 
run1 
summary(run1) 
plot(run1) 
 
# Build another model using the de-seasoned dataset 
 
run2<-run.mar(data=L4.mar2, variables=run1, 

restrictions=run1) 
 
# Compare results of 1st and 2nd model in a plot 
 
plot(run1, run2, legend=T) 
 
# Run a 3rd model – this time you can toggle off one of the 

biologically implausible interactions (cnidarians on 
chaetognaths) 

 
run3 <- run.mar(data=L4.mar2, variables=run2) 
 
# Same model can be built without using the pop-up window 
 
myres[2,1]<-0 
 
run3 <- run.mar(data=L4.mar2, variables=run2, 

restrictions=myres) 
 
# Compare results of all three models in a plot 
 
plot(run1, run2, run3, legend=T) 
 
# For top model (lowest AIC) from 3rd model, compare to 

other top models in a plot 
 
dev.new() 
plot(run3$top.bestfit) 
 
# Compare AIC values of top models using a histogram 
 
hist(run3$top.bestfit) 



 
 
######## Building a state-space MAR model (MARSS) ######## 
 
# Install and load the MARSS package 
 
install.packages("MARSS", repos="http://cran.rstudio.com", 

dependencies=TRUE) 
 
library(MARSS) 
 
# Compare non-state-space MAR to a state-space MAR 
 
ss.run3 <- ss.mar1(L4.mar2, MAR.obj=run3) 
 
ss.run3$B 
run3$bestfit$B 
 
ss.run3.plot <- 

list(restrictions.set=run1$restrictions.set, 
bestfit=list(B=ss.run3$B,C=ss.run3$C), bootstrap=NULL) 

class(ss.run3.plot) <- "MAR" 
 
dev.new() 
plot(run3, ss.run3.plot, legend=T) 
 
# Use a state-space model with L4 data aggregated by month 

with gaps not filled 
 
L4.mar3 <- prepare.data(data=L4.AllDates, 

increment="month", fill.gap=0, replace.0s="rand.half", 
log=TRUE, z.method="deseason") 

 
ss.run3.no.interp <- ss.mar1(L4.mar3, MAR.obj=run3) 
 
ss.run3.no.interp$B 
 
# Use a state-space model with a fixed observation variance 
 
R <- diag(c(.1,.1,.1,.1,.05,.05)) 
 
ss.run3.fixed.R <- ss.mar1(L4.mar3, MAR.obj=run3, 

model=list(R=R)) 
 
ss.run3.fixed.R$B 
 
# Compare non-state-space and all three state-space MAR 

models in a plot 
 
ss.run3.no.interp.plot <- 

list(restrictions.set=run1$restrictions.set, 



bestfit=list(B=ss.run3.no.interp$B,C=ss.run3.no.interp
$C), bootstrap=NULL) 

class(ss.run3.no.interp.plot) <- "MAR" 
 
ss.run3.fixed.R.plot <- 

list(restrictions.set=run1$restrictions.set, 
bestfit=list(B=ss.run3.fixed.R$B,C=ss.run3.fixed.R$C), 
bootstrap=NULL) 

class(ss.run3.fixed.R.plot) <- "MAR" 
 
dev.new() 
plot(run3, ss.run3.plot, ss.run3.no.interp.plot, 

ss.run3.fixed.R.plot, legend=T) 
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