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Abstract

We reconcile the findings of Holmes et al. (Ecology Letters, 10, 2007, 1182) that 95%

confidence intervals for quasi-extinction risk were narrow for many vertebrates of

conservation concern, with previous theory predicting wide confidence intervals. We

extend previous theory, concerning the precision of quasi-extinction estimates as a

function of population dynamic parameters, prediction intervals and quasi-extinction

thresholds, and provide an approximation that specifies the prediction interval and

threshold combinations where quasi-extinction estimates are precise (vs. imprecise). This

allows PVA practitioners to define the prediction interval and threshold regions of safety

(low risk with high confidence), danger (high risk with high confidence), and uncertainty.
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How precisely can extinction risk be estimated using only a

time series of population abundance? Theoreticians have

debated this question for > 25 years. Recently Holmes et al.

(2007) showed that across a wide range of different

population dynamics, a population’s probability of crossing

a quasi-extinction threshold can be estimated using a

stochastic approximation, which they termed the CSEG

model (Corrupted Stochastic Exponential with Gaussian

errors):

log Xt ¼ log Xt�1 þ lþ eb;t�1

log Nt ¼ log Xt þ ew;t

: ð1Þ

Xt is a stochastic exponential growth process with mean

annual growth rate l and random variability, eb, in popu-

lation growth due to environmental stochasticity. Nt is Xt

overlaid with random noise, ew, representing observation

error, age structure fluctuations, and the like. Both noise

terms are assumed Gaussian with zero mean, constant

variances r2
b and r2

w , respectively, and no temporal corre-

lations. CSEG approximates the long-run statistical prop-

erties of population count data, Nt, and of the true

unobserved population density, Xt . The CSEG approxi-

mation introduces no appreciable bias in many situations

where the actual mechanisms of population change are

completely different (Holmes et al. 2007), and its low

parameter count makes precision as high as possible. These

findings imply a general method for estimating quasi-

extinction risks that does not require identifying the mech-

anisms driving the population dynamics.

Holmes et al. (2007) applied this method to over 100

20-year time series from vertebrate species of conservation

concern. In many cases, their confidence intervals (CIs) on

estimated 20–50 year quasi-extinction probabilities (P̂e)

spanned only a fraction of the possible range from 0 to 1.

These results challenge the �(0,1) criticism� that extinction

risk estimates are fundamentally imprecise: unless P̂e is near

0 or 1, 95% CIs typically cover most of (0,1) unless the

prediction interval is significantly shorter (e.g. 80% shorter)

than the length of the data series (Ludwig 1999; Fieberg &

Ellner 2000). Holmes et al. argued that the vertebrate species

in their database are characterized by low rb , the standard

deviation of year-to-year population growth, and when rb is

low the (0,1) criticism no longer holds. The mean and

median rb for their database were 0.16 and 0.08, respec-

tively, whereas studies finding extreme (0,1) problems

typically used rb ¼ 0.3–0.7. Thus, Holmes et al. argued

that acceptably precise 20- to 50-year projections could

often be made with only 20 years of data, at least for many

vertebrates.

Rather than writing �tit-for-tat� Ellner vs. Holmes

commentaries on Holmes et al. (2007), we collaborated to

help resolve the debate by developing new theory for the

precision of count-based extinction risk estimation. We
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show that the theory underlying the (0,1) criticism remains

valid for low-rb populations, indeed the CI widths reported

by Holmes et al. (2007) closely match the theoretical CIs.

Thus the original (0,1) criticism still holds at low rb.

However, we show that as rb shrinks, the range of

prediction intervals and quasi-extinction thresholds giving

intermediate P̂e and high uncertainty also shrinks, and finally

collapses to a line when rb ¼ 0. As a result, CIs for many

risk estimates are actually much smaller than (0,1) when rb

is small, as Holmes et al. (2007) found. This resolution of the

(0,1) debate leads to general recommendations for selecting

prediction intervals and quasi-extinction thresholds for

count-based PVA, and for presenting assessments of

extinction risk due to environmental stochasticity.

The original theory underlying the (0,1) criticism is based

on writing the probability of quasi-extinction for Xt in a

CSEG model within prediction interval T as (Fieberg &

Ellner 2000)

PeðU ;V Þ ¼UðU �V Þþ expð2UV ÞU½�ðU þV Þ�; ð2Þ

where U ¼ �l
ffiffiffiffi
T
p

=rb , V ¼ a=ðrb

ffiffiffiffi
T
p
Þ, U is the standard

normal cumulative distribution function, a ¼ log(initial

population size/quasi-extinction threshold) ¼ log (N0/

Ne). To calculate the theoretical minimum uncertainty

(TMU) in P̂e , Fieberg & Ellner (2000) assumed that the only

unknown parameter is l, estimated from error-free popu-

lation counts and that V � 1 (i.e. rb

ffiffiffiffi
T
p
� logðN0=NeÞ),

in which case the second term in eqn (2) goes to 0. Under

these assumptions, the TMU two-sided CIs are:

U U�1ðP̂eÞ� za=2

ffiffiffiffiffiffiffiffi
T =n

ph i
� Pe �U U�1ðP̂eÞþ za=2

ffiffiffiffiffiffiffiffi
T =n

ph i

ð3Þ
where n is the number of observed transitions (e.g. 20

successive counts gives n ¼ 19), 100(1 ) a) is the confi-

dence level (e.g. a ¼ 0.05 for a 95% CI), U and U)1 are the

standard normal cumulative distribution function and its

inverse function, and za/2 is the upper a/2 percentage point

for the standard Normal distribution.

Equation (3) gives an a priori theoretical minimum CI for

any CSEG-based quasi-extinction risk estimate where l is

estimated from the data, which depends only on n, T and P̂e .

Remarkably, Holmes et al.�s (2007) CIs for extinction risk

estimated from real data (their figure 8) come very close to

the TMU CIs (Fig. 1), showing that their CSEG-parame-

terization methods, designed to correct for extraneous

noise, nearly eliminate the extra uncertainty due to sampling

errors and uncertainty in r̂b . At the same time, Fig. 1

confirms that the (0,1) criticism sensu Fieberg & Ellner

(2000) persists at small rb: if P̂e is between 25% and 75%

(the dotted vertical lines in Fig. 1), the 95% CIs cover most

of (0,1). However, as Holmes et al. (2007) noted, relatively

few of their CIs were extremely wide. The reason for this is

indeed the smaller rb values in their data set. Decreasing rb

increases |U ) V| and moves Pe towards 0 or 1, so P̂e

remains between 25% and 75% only for a restricted set of

(Ne, T) combinations near the line lT ¼ log (Ne/N0)

where U ¼ V (see Appendix S1).

Because the TMU closely approximates actual CI widths

(Fig. 1), the TMU can be used to explore the potential

precision of CSEG risk projections. Using eqn (2), we can

calculate TMU CI widths for different combinations of T

and Ne as a function of l̂ and r̂b :

PeðÛ �za=2

ffiffiffiffiffiffiffiffi
T =n

p
;V̂ Þ�Pe�PeðÛ þza=2

ffiffiffiffiffiffiffiffi
T =n

p
;V̂ Þ: ð4Þ

These are the two-sided limits; for one-sided limits, replace

za/2 with za. eqn (4), which uses both terms in eqn (2) rather
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Figure 1 Comparison of theoretical minimum confidence interval

(CI) widths on P̂e (TMU CIs, eqn 3, which assume no uncertainty

in r̂b) with the CIs for P̂e �s estimated from vertebrate time series as

presented in figure 8 of Holmes et al. (2007). The Holmes et al. CIs

required estimation of r̂b from data corrupted with observation

and other noise. All predictions of quasi-extinction probability are

based on a projection interval T ¼ 10 years and 20 successive

population counts (hence n ¼ 19 observations of population

change). Curves show the TMU CIs (solid: 95% CI width, dash:

50% CI width), symbols are the Holmes et al. CIs for real data with

three different quasi-extinction thresholds (triangles: decline to

20% of initial size, diamonds: decline to 50% of initial size, circles:

decline to 80% of initial size). The dashed vertical lines are at P̂e ¼
0.05 and P̂e ¼ 0.95, the dotted vertical lines are at P̂e ¼ 0.25 and

P̂e ¼ 0.75. Code in R (R Development Core Team 2007) for

producing this figure is provided in the online supplement to this

article.
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than just the first, should always be used when analyzing real

data rather than the large-V approximation eqn (3).

Figure 2 shows how the (Ne, T ) region where estimates

are �certain� vs. �highly uncertain� depends on rb. The high

uncertainty region (dark grey) was defined as TMU CI width

> 0.8. The high certainty regions (white) were defined as

�Pe < 0.05 with high certainty� (upper one-sided 95% CI on

Pe entirely below 0.05) or �Pe > 0.95 with high certainty�
(lower one-sided 95% CI entirely above 0.95). In Fig. 2(a),

rb is set at the median estimate (0.08) from the Holmes et al.

(2007) vertebrate database. In this case, the region of high

uncertainty is narrow despite having only 25 years of

population counts for parameterization. In Fig. 2(b) where

rb is much higher (0.25) the high uncertainty region is

extensive, and much > 25 years of data would be needed to

reduce the uncertainty. Plots such as Fig. 2 provide a

comprehensive summary of the theoretical limits to

precision of extinction risk estimates, and thus guide

practitioners towards reliable forecasts and away from

estimates that for theoretical reasons are inevitably highly

unreliable. Figure 2 also shifts attention from extinction

probability to extinction time, so that safe zones can be

identified where extinction risk due to environmental

stochasticity is low and uncertainty is also low.

Figure 2 uses the TMU, which assumes rb is known

rather than estimated. In Fig. 3, we show how uncertainty in

rb increases uncertainty in Pe. We estimated l and rb from

simulated data corrupted with observation errors and

calculated CIs using parametric bootstrapping (following

methods for corrupted data described in Holmes et al.

2007). The grey-shaded wedges in Fig. 3 show where the

TMU CI-width is > 0.8. The contours around the grey

wedges show how this wide-CI region expands when

observation errors (rw ¼ 0.2, 0.3 or 0.7) are added to the

data. The top panels show that for high rb, wide CIs are a

barrier to all but the shortest projections. Uncertainty in r̂b

only makes CIs wider. However, at lower rb, representative

of the Holmes et al. (2007) vertebrate database, the wide-CI

region becomes a narrow wedge, especially for rapidly

declining populations. The estimation methods presented in

Holmes et al. (2007) effectively deal with observation error,

except when observation error is very high (rw ¼ 0.7 and

over an order of magnitude > rb). Figure 3 supports the

argument that 20- to 50-year projections can be made with c.

20 years of data for some populations of concern. But this is

not true for all populations, or for any one population at all

(Ne,T) combinations, so it is critical to report CIs along with

point estimates of Pe.

Although we have shown that long-range estimates of

quasi-extinction risk due to environmental stochasticity are

possible for some populations, in general long-range

(25–100 year) projections based solely on environmental

stochasticity are problematic. PVA practitioners are well

aware that environmental stochasticity is only one of many

risk factors facing species of conservation concern (e.g.

Coulson et al. 2001; Doak et al. 2008). Other important risks

include: demographic stochasticity, genetic factors (random

fixation of disadvantageous alleles, inbreeding depression, or

reduced genetic variability), and extreme catastrophic events
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Figure 2 Combinations of prediction interval and quasi-extinction

threshold where estimates of quasi-extinction are highly uncertain

(confidence interval (CI) width > 0.8) and highly certain (one-sided

95% CIs on P̂e are entirely below Pe ¼ 0.05 or above Pe ¼ 0.95).

The light grey region shows where uncertainty is intermediate

between these extremes. These plots were drawn using the TMU

CIs for the CSEG model, eqn (4), which does not involve the

large-V approximation. Panel (a) represents a rapidly declining

species (l ¼ )0.1), with rb set to the median value (0.08) in the

Holmes et al. (2007) database of vertebrate species. In panel (b), rb

is set much higher to 0.25. In both cases, 25 years of count data

with no observation error are assumed (n ¼ 24). Complete code in

R (R Development Core Team 2007) for drawing this figure is

provided in the online supplement to this article. The supplement

also includes an Appendix S1 explaining why the wide-CI region is

wedge-shaped, and showing that the size of the wide-CI region is

proportional to rb as rb fi 0.
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that are hard to estimate because of rarity. In addition, risk

analyses based solely on environmental stochasticity do not

account for unanticipated changes in environmental condi-

tions (habitat loss, climate change, impeded movement) or

in ecological interactions such as introduced predators or

pathogens. Sorting out how risk factors interact and when

one dominates the others is a difficult challenge. However,

summarizing the risk from each factor as a function of
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Figure 3 The T and Ne regions where 95% confindence intervals (CIs) on quasi-extinction probability cover > 80% of the possible (0,1) range

when rb is known vs. estimated. The different panels show the results as a function of the mean and standard deviation of the interannual

population growth rate (l and rb), respectively, for a 20-year time series of population counts (n ¼ 19). The wedge shaded in grey identifies

the combinations of T and Ne where CI width > 0.8 when rb is known and rw ¼ 0 (using eqn 4). The lines moving outward from the grey

wedges show how the region of CI width > 0.8 grows when rb is estimated under different levels of observation error (rw ¼ 0.2, 0.3 and 0.7

from closest to farthest from the grey wedge). The CIs for the rb-unknown cases are estimated using parametric bootstrapping: using l̂, r̂b ,

and r̂w (following Holmes et al. 2007), bootstrapped abundance time series are generated using eqn (1). From each bootstrapped time series,

l̂, r̂b , and r̂w , are estimated and from the bootstapped l̂, r̂b estimates, bootstapped Pe�s and bootstrapped CIs are obtained. Complete code

in R (R Development Core Team 2007) to draw this figure is provided in the online supplement to this article.
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prediction interval and threshold, as in our Fig. 2, would

clarify the time scales over which different risks are

important. Such a comparison moves discussion away from

debates about whether 100-year forecasts from CSEG

models capture all the risks facing a population (clearly not!),

and towards more productive discussions about how much

time remains until different risk factors may put a species in

imminent danger of extinction.
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