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Using diffusion approximations for 
estimating quasi-extinction risks

• Some of the problems with count data on 
species of conservation concern and how 
these problems affect DA PVA, especially 
parameterization

• Cross-validation of DA PVA using real data



• Salmon: 
– Leslie matrix model of Snake R. spr/sum chinook
– Has density dependence
– Has environmental autocorrelation

• Petrel: 
– Leslie matrix model of the Hawaiian Dark-rumped

Petrel (Simons 1984); 
– Long-lived; census is of mature breeders
– environmental autocorrelation

• Sea Turtle: 
– Leslie matrix model of the Loggerhead Sea Turtle 

(Crowder et al. 1994); 
– Long-lived; census is of eggs which is highly variable
– environmental autocorrelation



A really simple DA model can  
predict quasi-extinction in age-

structured models
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Monitoring data is often stage 
specific



Example with sea turtles
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Example with salmon
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Good news: a state-space model does 
a good job of modeling age-specific 

counts:
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Bad news: this high non-process 
error makes parameterization 

difficult

• “REML”: Restricted ML estimation (Staples 
et al. 2004)

• Regression estimating the increase in 
variance in log Nt+τ/Nt with τ (Holmes 
2001)

• Kalman filter (Lindley 2003)

Estimation of σ2 (process error).



Petrel: pretty good…
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Salmon: struggling…
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Turtle: more struggling…
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Estimating parameters might be 
challenging for some species

• What does real data tell us about the 
performance of these methods?  Are most 
data “petrel-like” or “sea turtle-like”?
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Distribution of process error estimates
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Cross-validation
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Estimated 75% decline risk vs
actual 75% decline
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In conclusion….

• Separation of process error and non-
process error appears challenging for 
some types of monitoring data
– Still a lot of improvement to be done

• This problem does not appear pervasive in 
data on species of conservation concern

• There appears to be a trade-off between 
precision of estimates versus bias




