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23.1 INTRODUCTION

Population viability analysis (PVA) assesses the rate of population decline
and the risks of extinction or quasiextinction over a defined time horizon for a
population of concern (Gilpin and Soule, 1986; Boyce, 1992; Morris and
Doak, 2002). Although the techniques employed to conduct PVA are varied,
they typically involve building quantitative models that are parameterized by
demographic and environmental data. PVA was first used in the early 1980s
(Shaffer, 1981), and in the past decade it has gained broad acceptance in the
conservation community as a useful tool for assessing and managing “at-risk”
species (Beissinger, 2002; Morris and Doak, 2002; Reed et al., 2002). This is
particularly true for demogaphic PVAs, due in large part to the advancements
in Monte Carlo techniques and desktop computers (Beissinger, 2002). The
International Union for the Conservation of Nature (IUCN)’s Red List Criteria,
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probably the most widely applied set of decision rules for determining the sta-
tus of at risk species, is partially defined by metrics that require some form of
PVA (IUCN, 1994). For instance, under one of the Red List criteria, a taxon
may be classified as endangered if a “reduction of at least 50%, projected or
suspected to be met within the next ten years or three generations” is predicted.

Although many PVAs are focused on single populations in single sites, there
are often needs for spatially explicit PVAs: many populations of conservation
concern are distributed across multiple sites and additionally, the primary
anthropogenic threats facing at-risk species are habitat destruction and alter-
ation, which are fundamentally spatial processes (Wilcove et al., 1998).
Several software packages have been written for spatially explicit PVA, includ-
ing RAMAS Metapop (Akçakaya, 1997) and RAMAS GIS (Boyce, 1996),
ALEX (Possingham and Davies, 1995), and VORTEX (Lacy, 1993). These
models incorporate a diversity of demographic and spatial attributes such as
distance-dependent migration, allee effects, social population structure, hab-
itat quality and spatial arrangement, and genetic variability. The development
of flexible sophisticated PVA software packages such as these has made the
construction and simulation of spatially explicit PVA models feasible for those
who are not highly skilled programmers and has greatly increased the number
of managers and scientists capable of using spatially realistic PVA models.

As the use of PVA has grown in conservation science, so have concerns that
PVAs are often overextended given limited data sets (Reed et al., 2002).
Beissinger and Westpahl (1998) suggested that PVA should be limited to assess-
ing relative risks over short time frames using the simplest models that can rea-
sonably be justified. For single species with spatially simple structure, data needs
can often be met when Beissinger and Westpahl’s call for model moderation and
simplicity are heeded. When one is faced with species with more complex spa-
tial structure, a much larger amount of data is needed to parameterize the
dynamics of individual local populations, the levels and patterns of dispersal,
and the spatial pattern of temporal correlations among local populations
(e.g., Ralls et al., 2002). Unfortunately, collection of data needed to parameter-
ize a spatial model is rare for species of conservation concern, at least in the
United States (Morris et al., 2002), and there is a disconnect between the param-
eter requirements for spatially explicit PVA models and the willingness and/or
ability of management agencies to collect the types of data needed to appropri-
ately apply such tools. Because it is usually impossible to retroactively fulfill data
requirements for a spatial PVA and there will always be cases where collection
of spatial data is infeasible, managers require PVA tools that can help guide con-
servation of metapopulations in the absence of large amounts of spatial data.

Diffusion Approximation for Metapopulations

One approach to the problem of limited population data is to find a diffu-
sion approximation that correctly models the long-run statistical properties of
a complex population process. This approach has been used successfully for
single population models (Karlin and Taylor, 1981; Lande and Orzack, 1988;
Lande, 1993; Dennis et al., 1991; Hill et al., 2002; see also Morris and Doak,
2002; Lande et al., 2003) and reduces the problem of parameterizing a large
model with many parameters to the much simpler task of parameterizing a
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two-parameter diffusion model. One of the main practical implications of the
diffusion approximation approach is that it is not necessary to know the multi-
tude of parameters describing the local dynamics, dispersal levels, spatial pat-
terns of dispersal, and spatial synchrony between local populations in order to
make basic predictions about the statistical distribution of the long-term
metapopulation or local population trajectories. The relevant two parameters
for the diffusion approximation can be estimated from a simple time series of
counts from the population process.

This chapter uses the diffusion approximation approach to model the long-
run behavior of spatially structured populations. Our focus is on stochastic
metapopulations characterized by structured population size, density-inde-
pendent local dynamics, and, in keeping with the assumption of density inde-
pendence, a metapopulation that is declining as a whole. Local populations are
assumed to have patch-specific structured local dynamics and dispersal rates,
with spatial structure among local populations in terms of both their local
dynamics and dispersal patterns. Description of the long-run statistical behav-
ior of the metapopulation trajectories using a diffusion approximation allows
the estimation of PVA risk metrics such as the long-term rate of metapopula-
tion decline and the probability of reaching different threshold declines over
different time horizons (i.e., probabilities of extinction or quasiextinction).
These methods for estimating metapopulation PVA metrics are illustrated using
data from two chinook salmon metapopulations in the U.S. Pacific Northwest.

23.2 A STOCHASTIC METAPOPULATION MODEL

Our focus is on declining metapopulations, and thus what has been termed
nonequilibrium metapopulations. We model a collection of local populations
connected by dispersal where local populations have density-independent local
dynamics, which may be “sources” or “sinks,” but the metapopulation as a
whole is declining. Dispersal levels could be very low, resulting in basically
independent local populations, or extremely high, resulting in essentially one
population. From a practical standpoint, this approach is most appropriate
when dispersal is not insignificant (e.g., above 2% per year localized dispersal
or 0.1% global dispersal), otherwise parameterization of the model requires
inordinately long time series. Data from this type of metapopulation would be
characterized by fluctuating local population trajectories, but actual extinc-
tions would be unusual until the metapopulation has very few individuals. Our
model assumes no density dependence nor carrying capacities within the indi-
vidual local populations. Such a model is only appropriate in cases where the
population is declining and all local populations are well below their carrying
capacities. Our example using data on chinook salmon illustrates a situation
that is likely to be well modeled as this type of metapopulation.

The following section gives a rather parameter-intensive mathematical
description of a stochastic, declining metapopulation. However, the reader
should keep in mind that this model will not be parameterized. Rather the
asymptotic behavior of this model’s trajectories will be derived and that informa-
tion will be used to develop a diffusion approximation of the process. Time series
data will then be used to parameterize the diffusion approximation.
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The Model

Consider an individual local population i with stochastic yearly growth and
stochastic dispersal to and from other local populations. Such a local popula-
tion’s numbers in year t, Ni(t), could be described as follows:

(23.1)

where zi(t) is the stochastic growth rate of local population i in year t and is
a random variable with some unspecified statistical distribution with mean
�i and variance �2

i . The �i term will be referred to as the local population’s
intrinsic growth rate; it will not be observed, as the local population is sub-
ject to immigration and emigration. Some fraction of individuals, di(t),
leaves local population i at year t and disperses to other local populations,
and dispersal into local population i occurs from other local populations.
The fraction of dispersers from local population j that go to local population
i in year t is �ji(t) and can vary depending on the destination, i, thus allow-
ing for spatially structured dispersal. The dispersal parameters, di(t) and
�ji(t), are assumed to be temporally random variables from some unspecified
statistical distribution.

The Model in Matrix Form

The model for the entire metapopulation can be written using a random
transition matrix, A(t), which encapsulates both dispersal and local growth:

(23.2)

where

(23.3)

The ‘(t)’ on the d’s, �’s, and z’s have been left off to remove clutter. There may
be any level or spatial pattern of temporal correlation among the intrinsic local
growth rates, zi’s, dispersal rates, di’s, and dispersal patterns, �ji’s.

In the matrix model, each row represents 1 unit of habitat. Local populations
with multiple units of habitat appear as multiple rows with very high dispersal

A 1t2 � E11�d1 2ez1 �21d2ez2 �31d3ez3 p �k1dkezk

�12d1ez1 11�d2 2ez2 �32d3ez3 p �k2dkezk
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p p p p p
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U

EN1 (t � 1)
N2 (t � 1)
N3 (t � 1)

p

Nk (t � 1)

U � A(t) � EN1 (t)
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Nk (t)

U

   �a
j	i

�ji (t � 1)dj (t � 1) Nj (t � 1)ezj(t�1)

 � Ni(t � 1)ezi(t�1) � di(t � 1)Ni(t � 1)ezi(t�1)

 Ni(t) � growth � dispersal out � dispersal in 
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23. VIABILITY ANALYSIS FOR ENDANGERED METAPOPULATIONS 569

between the units of habitat in that local population. The habitat units within a
local population could vary in quality (i.e., habitat within a local population
need not be uniform) and different local populations certainly differ in the num-
ber of habitat units they contain. The di’s and �ji’s are assumed to be drawn from
some distribution that can be different for each local population or local popu-
lation pair. Although the di’s, �ji and zi’s are temporally random variables, they
are assumed to be stationary, i.e., that there is no overall change in the mean
values over time. For the purposes of this chapter, it will be assumed that the di’s,
�ji’s, and zi’s are all strictly postitive, which means that all local populations are
connected to each other to some (although possibly very low) degree and that
mean yearly geometric growth rates, exp(�i)’s, while possibly very small are not
zero. These assumptions imply that the A(t) describe an ergodic set of matrices
(Caswell, 2001). The assumption of strict positivity is not strictly necessary. It is
possible for A(t) to describe an ergodic set if some elements of A are zero; it
depends on the pattern of zeros within A [cf. Caswell (2001) for a discussion of
the conditions under which matrices are ergodic].

The model is very general, allowing some sites to be dispersal sources and
others to be dispersal targets, allowing any spatial pattern of dispersal or spa-
tially correlated local growth rates, allowing any pattern of temporal correl-
ation amongst local growth rates, and allowing any combination or pattern of
habitat sizes of local sites.

Using Random Theory to Understand the Model’s Statistical Behavior

Together, Eqs. (2) and (3) describe a quite generic model of a declining
metapopulation with density-independent local dynamics. From a viability
analysis perspective, one might ask the question: “Can one predict the viability
of the total metapopulation?” In more precise terms, this is asking what are the
statistical properties of the metapopulation trajectories of this type of con-
nected collection of local populations [of the form in Eqs. (2) and (3)]? Clearly,
the matrix A(t) has a large number of parameters that would be difficult, if not
impossible, to estimate for any given metapopulation of conservation concern.
However, using random theory, it can be shown that the long-term dynamics
can be described by only two parameters and that it is unnecessary to know the
multitude of other parameters for the purpose of projecting long-run dynamics.

To use this random theory, we first need to recognize that this stochastic
metapopulation model falls into the class of random processes that involve
products of ergodic random matrices, in this case products of A(t), which can
be seen by using Eq. (2) to project the vector of local population sizes forward:

(23.4)

where N(t) is the column vector of Ni values at time t in Eq. (2). Products of
random ergodic matrices have a well-established theoretical foundation and
have certain well-studied asymptotic statistical properties. A brief review of
two of the key results from this theory is provided in Box 23.1 and a simulated

N(t) � A(0)A(1)A(2) p A(t � 1)N(0)

p

N(2) � A(0)A(1)N(0)

N(1) � A(0)N(0)
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BOX 23.1 Key Results from Random Theory

Two of the fundamental results from the theory of products of random matrices are
reviewed and interpreted in the context of our metapopulation model. The reader is
referred to Caswell (2001) and Tuljapurkar (1990) for other reviews interpreted in the
context of demographic, single population models.

The Metapopulation and Local Populations Decline 
at the Same Rate

One of the basic results from Furstenberg and Kesten’s “Products of Random
Matrices” (1960) is that the product of ergodic random matrices asymptotically goes
to an equilibrium. Say that Xt is an ergodic random “k � k” matrix and that Y (also a
k � k matrix) denotes the product of n of the X matrices: X1,X2,X3, . . . Xn.
Then Furstenberg and Kersten’s results say that Y goes an equilibrium state such that

(B1)

We can use this result to show that the long-run exponential growth rate of the
metapopulation and the local populations will be the same.

Thus from Eq. (B1),

The Distribution of Local Population and Metapopulation Sizes
is Distributed Lognormally

One of the most powerful results, for our purposes at least, concerns the statistical
distribution of the metapopulation and local trajectories. This tells us what distribution
of sizes we would see if we ran our model over and over again and allows us to make
population viability analyses for metapopulations since we have a prediction about the
likelihood of different metapopulation futures. Random theory (Furstenberg and
Kersten, 1960; Tuljapurkar and Orzack, 1980) shows that any sum of the Ni(t)’s, such as
the total metapopulation (all i’s), a single local population (one i), or any other subset,
goes to the same distribution:

(B2)

where the sum of local populations is denoted in matrix terms as côN(t) and c is a
column vector with 0’s and 1’s to show which local populations to sum together.

log
côN(t)
côN(0)

¡t:�
Normal(t�m, t�2

m)

lim
t→�

 
1
t
 loga

j
Yij � lim

t→�
 
1
t
 loga

i
a

j
Yij � a constant � �m

and log M(t) � log a
i
a

j
Yij � log M(0)

Then log Ni(t) � log a
j

Yij � log Ni(0)

Let Y � A(0) A(1) A(2). . .A(t � 1)

N(t) � A(0) A(1) A(2). . . A(t � 1)N(0)  our metapopulation model

lim
t : �

 
1
t
 loga

i � �
a

j
Yij � a constant which is the same for all a
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23. VIABILITY ANALYSIS FOR ENDANGERED METAPOPULATIONS 571

example is shown to illustrate these results. As described in Box 23.1, the the-
ory demonstrates that this stochastic, density-independent metapopulation will
have an asymptotic growth rate and that the metapopulation, M(t) � 
Ni(t),
the individual Ni(t)’s, and sets of Ni(t)’s representing the units of habitat com-
prising a semi-independent local population will be distributed lognormally
with the same parameters:

where a � (23.5)

Figure 23.1 shows an example of this behavior. A metapopulation is simulated
(described in Box 23.1) and, over time, the metapopulation declines at a con-
stant rate and all Ni(t)’s have the same long-term fate. When viewed over short
time frames, t small in Fig. 23.1, the local sites show different growth rates
with some declining more or less than the long-term rate, but over the long-
term their rate of decline is the same.

The model studied here approximates the local dynamics by a simple expo-
nential growth (or decline) model. However, it has been shown that results
from random theory (presented in Box 23.1) also apply to a more compli-
cated metapopulation model where local dynamics are described by stochas-
tic age-structured Leslie matrices (Sanz and Bravo de la Parra, 1998).
Essentially, this occurs because even when the local dynamics are described by
a local matrix model, the system can still be described by products of random
matrices.

5a1, a2,. . . ., am6
log a

i�a
Ni(t)>a

i�a
Ni(0) ¡t: �

Normal(t�m, t�2
m)

log Ni(t)>Ni(0) ¡t: �
Normal(t�m, t�2

m)

log M(t)>M(0) ¡t: �
Normal(t�m, t�2

m)

Example

These results are simple to see with simulations. An example of a linear chain of 10
local populations connected via 2% yearly dispersal to their nearest neighbors and
0.2% to nonnearest neighbors is shown. The local dynamics were where zi is a nor-
mally distributed random variable, Normal(�i, �2

i ). The local growth rates, �i’s, for
local populations 1 to 10 were, respectively, 0.97, 1.00, 0.96, 0.83, 0.88, 1.00, 1.00,
0.89, 0.99, and 0.81. Figure 23.1A shows that the long-run growth rate of the local
population and metapopulations is equal to the same constant. Figure 23.1B shows
that the distribution of metapopulation size after 100 yr is Normal(100�m , 100�2

m).
The expected distribution was estimated using the maximum likelihood (ML) esti-
mates for �m and �2

m [Eq. (9)] from a single 1000-yr time series of metapopulation
counts. The ML estimate for �2

m relies on an assumption of normality for t � 1,
although strictly speaking normality only holds for t large. However, it does quite well
as can be seen in Fig. 23.1B.

ezi
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Fig. 23.1 Illustration of two of the main results from random theory. (A) All local popula-
tions go toward the same long-term rate of population growth (or decline) as t gets large.
(B) The distribution of log M(t) is a normal distribution with mean given by the long-term rate
of growth (or decline) multiplied by t and the variance given by t multiplied by the rate that
variance increases in an individual trajectory, i.e., t � (1/�)log M(t � �)/M(t) for � not overly
small. Here the variance was estimated from one time series using � � 10 and this is used to
predict the distribution at t � 100.

23.3 DIFFUSION APPROXIMATION

The asymptotic distribution of log M(t) in Eq. (5) has the same properties
as the distribution of a diffusion process with drift; it is normal and the mean
and variance of the distribution of log M(t) increase linearly with time, t. This
observation in the context of age-structured matrix population models (Lande
and Orzack, 1988; Dennis et al., 1991) led to the use of a diffusion approxi-
mation to enable parameterization using simple time series and to enable cal-
culation of extinction probabilities. Diffusion approximation methods for
single population populations are an important and established method for
approximating stochastic trajectories (Lande and Orzack, 1988; Dennis et al.,
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23. VIABILITY ANALYSIS FOR ENDANGERED METAPOPULATIONS 573

1991; Chapter 3 in Morris and Doak, 2002; Chapter 5 in Lande et al., 2003).
Models for single populations are mathematically analogous to the models
used here for metapopulations with a stochastic process involving products of
random matrices. However, in single population models, the matrix represents
a life history matrix rather than a growth and dispersal matrix, and the N(t)
vector [in Eq. (2)] represents different age or stage classes, whereas in the
metapopulation matrix, it represents different local sites and populations.

A diffusion approximation with drift is a stochastic process with the fol-
lowing properties (cf. Karlin and Taylor 1981):

(23.6)

For any nonoverlapping pair of time periods, t1 
 t2 and t3 
 t4, X(t2) � X(t1),
and X(t4) � X(t3) are independent random variables. X(t � �) is a random
variable with distribution Normal (X(t) � �m�, �2

m �). Correspondingly, the
probability density function for X(t � �) given log X(t) is

(23.7)

Behavior of Metapopulation Trajectories Versus Diffusion
Trajectories

Diffusion approximation is based on the behavior of log M(t) as t goes to infin-
ity; however, in PVA settings the time frame of interest is substantially less than
infinity and is typically in the range of 25 to 100 yr. How well does the diffusion
approximation do over these finite time periods? To explore this, a collection of
50 local populations were simulated that were connected by global dispersal ran-
ging from 0.1 to 5% per year and that had correlated local dynamics, zi(t), drawn
from a Normal(mean � �0.05, variance � 0.09) and a temporal covariance of
(0.2)(0.09) between the zi(t)’s of local populations in any given year.

If the log metapopulation trajectories behave like a diffusion process, and if
we repeatedly generate a large sample of replicate metapopulation trajectories,
the mean and variance of (1/t)logM(t)/M(0) from those trajectories should be a
constants over the time period of interest. Additionally, (1/t)logM(t)/M(0)
should be normally distributed. To examine whether the metapopulation tra-
jectories had these properties, the simulations were started from a distribution
of local population sizes selected from the equilibrium set of local population
distributions and then run forward for 200 yr. This was repeated (using the
same initial distribution of local populations) 1000 times to estimate the distri-
bution of (1/t)logM(t)/M(0). This process was repeated for four randomly cho-
sen initial distributions of local population sizes. The mean and variance of
(1/t)logM(t)/M(0) are denoted as �m(t) and �2

m(t), respectively, in Fig. 23.2 and
in the discussion given later.

Figure 23.2 illustrates the results. For dispersal levels 1% or higher, the trajec-
tories behaved like a diffusion process with �m(t) and �2

m(t) roughly constant and
the distributions approximately normal according to a Kolmogorov–Smirnov test

p(X(t � �) � X(t))�
112��2

m�
exp c�(X(t � �) � X(t) � �m�)2

2�2
m�

d

X(t) � X(0) � �mt � e

e � normal(0 ,�2
mt)

f for t � 1,2,3, p

[AU1]
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at P � 0.05. For low dispersal, 0.1%, the trajectories did not behave like a
diffusion process for t less than 200 at least. Neither �m(t) nor �2

m(t) was con-
stant, except for t � 150, and the normality assumption was generally violated
except again at large t. This means that when dispersal is very low, diffusion
approximations for this metapopulation would be more approximate than for
metapopulations with higher dispersal.

Figure 23.2 illustrates results from one particular model. Repeating this
process for a number of different models indicated some general behaviors.
The higher the dispersal levels, the more trajectories behaved like a diffusion
process. Global dispersal levels of at least 2 to 5% were generally high enough
to result in diffusion-like behavior within a short time frame. Note that local-
ized dispersal has the effect of lowering the effective dispersal rates. The higher
the amount of temporal covariance between local populations in terms of their
yearly growth rates, the more the trajectories behaved like a diffusion process.
The simulations were done with the local population sizes within the equilib-
rium set of local population distributions — indeed the theory is predicated on
the local populations being near equilibrium. For metapopulations with 2 to
5% dispersal, the local populations equilibrated fairly quickly starting from all
local populations with equal numbers. However, at very low dispersal, equili-
bration took thousands of time steps. This suggests that the assumption of
equilibrium should be viewed cautiously for metapopulations that have very
low dispersal rates between local populations.
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Fig. 23.2 Illustration of the performance of a diffusion approximation for modeling the
behavior of a metapopulation with 50 local populations and uniform 0.1, 1, or 5% yearly
dispersal. The diffusion approximation performs well for a given time frame when
�m(t) � (1/t)logM(t)/M(0) and �2

m(t) � (1/t) var [logM(t)/M(0)] are constants over that time
frame and when log M(t)/M(0) is normal.
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23.4 ESTIMATING THE PARAMETERS

Maximum likelihood estimates of �m and �2
m can be calculated using the dif-

fusion approximation for log M(t). Denote the observed time series as M � M(0),
M(1), M(2), . . . , M(n). If we approximate log M(t) as a diffusion process, the
likelihood function L(�m, �2

m ⁄M) is given by the product of the probability
function distributions for the transitions from log M(t � 1) to log M(t), which is
Eq. (7) with � � 1, over t � 0, 1, 2, . . . , n. Thus the log likelihood function is

(23.8)

Maximum likelihood estimates are obtained by solving for �m and �2
m, which

maximize Eqn. (8),

(23.9)

Note that the unbiased estimator for �2
m would use (n � 1) rather than n. The

�̂m and �̂2
m are analogous to the estimates of mean and variance from n sam-

ples from a normal distribution, and confidence intervals on �m and �2
m are

analogous:

(23.10)

where t�,q is the critical value of a t distribution at P � � and q degrees of
freedom and �2

�,q is the critical value of a �2 distribution at P � � and q
degrees of freedom. See Dennis et al. (1991) for a more in-depth discussion
of maximum likelihood estimates for diffusion processes. Following Dennis
et al.’s monograph, parameter estimation based on the diffusion approxi-
mation has been widely used for the analysis of single population trajectories.
For a discussion of parameter estimation that is not based on the diffusion
approximation, the reader is referred to Heyde and Cohen (1985).

Maximum likelihood estimates assume that the metapopulation has
reached a stochastic equilibrium and thus that the diffusion approximation is
reasonable. When exploring these methods using simulations, it is important
to allow the system to equilibrate, after starting the simulation with something
peculiar like all local populations at the same size. Equilibruim can be moni-
tored by waiting for the variance of (log(N(t)i) � log[mean(Ni(t))]) to stabilize.
In simulations done for this chapter, the distribution stabilized relatively
quickly when dispersal was nonzero. If dispersal is zero, however, the distri-
bution never stabilizes and the variance of (log(Ni(t)) � log[mean(Ni(t))])
increases continually. For an actual metapopulation, for which one wants to
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conduct a PVA, it is also critical to test the appropriateness of the diffusion
approximation for one’s time series data. Dennis et al. (1991) and Morris and
Doak (2002) reviewed how to do this, which is based on diagnostic proced-
ures for evaluating the appropriateness of linear models.

Parameter Bias

The estimators are unbiased maximum likelihood estimators for the diffu-
sion approximation, X(t). It is important to understand whether and how these
estimates are biased when working with short time series of metapopulation
trajectories, M(t), as opposed to an actual diffusion process. In particular, �̂2

m is
certain to be biased to some degree, as it relies on the diffusion approximation
holding for � � 1 in log M(t � �)/M(t), regardless of the length of the time
series used for estimation. This is not the case for �̂m, which is also an unbiased
predictor for M(t) given a long time series (Heyde and Cohen, 1985).

To numerically explore parameter bias from short time series, simulations
were used to look at the difference between �̂m and �̂2

m from a 20-yr time series
versus their true values �m and �2

m. An example metapopulation of 50 local sites
was simulated with global dispersal and correlated local growth rates, zi(t),
drawn yearly from a normal distribution with mean � �i, variance � �, and
covariance of 0.2*� between any two local growth rates Two versions of
the simulation were run: one to model uniform site quality (spatially uniform
�i � �0.05) and one to model highly variable site quality (spatially variable �i’s).
To explore biases over a range of different dispersal and variability levels, models
were run with dispersal between 0.1 and 5% per year and local variability, �,
between 0.1 and 0.5. These parameters translated to metapopulation level rates,
�m, in the range of 0.01 to �0.05 and metapopulation level variability, �2

m, in
the range of 0.001 to 0.08. For each dispersal and local variability pair, 1000
replicate metapopulation trajectories were simulated, each with an initial distri-
bution of local population sizes selected randomly from the equilibrium set.

The mean difference between �̂m and �m over the dispersal and local vari-
ability parameter space was very low, 
0.0015, for both uniform and variable
�i simulations. Overall the lack of bias in �̂m supports metrics that rely pri-
marily on this parameter, such as the metapopulation � (next section). For
most of the parameter space explored, 0 
 ��̂2

m � �2
m� 
 0.01, representing a 0

to 20% under- or overestimation of �2
m. Larger biases, ��̂2

m � �2
m� � 0.01, rep-

resenting a �20% under- or overestimation, were seen for some parameter
combinations. The impact of this bias depended on where �̂2

m was used. For
instance, the effect on estimated confidence intervals on �m [Eq. (10)] was
minimal with the width of the interval changing by a median 0.002. The effect
on estimated passage probabilities was higher, although not dramatic. For
example, the estimated probability that the metapopulation will be 10% of
current levels at the end of 50 yr was decreased by 0 to 0.04 (on a scale from
0 to 1) for the uniform �i simulation and increased by 0 to 0.04 for the vari-
able �i simulation. The estimated probability that the metapopulation will
pass below 10% of current levels at any point during the next 50 yr was
changed by 0 to 0.09. Overall, the effect of �̂2

m bias was low in these simula-
tions, but this will depend on the particular metapopulation and will need to
be investigated for individual cases of interest.

[AU2]
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In practical applications, one must contend with other factors that can lead
to parameter bias, but which are outside the scope of this chapter. In particu-
lar, observation error, nonequilibrium local population distributions, and tem-
poral autocorrelation can lead to parameter bias. Such problems are being
studied in the context single population PVA. Much of this work is likely to
be relevant for metapopulation PVA. See Morris and Doak (2003) for a review
and discussion of current work in this area.

23.5 METAPOPULATION VIABILITY METRICS

One of the most basic viability metrics is the long-term geometric rate of
decline (or growth) of a population, termed generally � in the PVA literature.
If � is less than 1.0, the population ultimately declines to extinction and
100*(1 � �) is roughly the average yearly percent decline. The metapopula-
tion � is exp(�m) and its estimate is then

(23.11)

This definition of � follows Caswell’s use of the symbol �s as the long-term
average stochastic growth rate: �s � [N(t)/N(0)]1/t as t → � (Caswell, 2001).
This is the long-run geometric growth rate that would be observed in almost
every trajectory. Defined this way, if � 
 1, the population goes extinct with
certainty, eventually. This differs from Dennis et al.’s use of the symbol �
where � is used for exp(� � �2/2) and the long-term average geometric growth
rate is instead denoted by � � exp(�). The maximum likelihood estimate of �
is a biased estimator; because �̂m is normally distributed, the median value of
exp(�̂m) is exp(�m) but the mean value is not. Dennis et al. (1991) gave an
unbiased estimator [mean(�̂) � �] based on Shimizu and Iwase (1981),
although Dennis and colleagues found negligible differences between biased
and unbiased estimators in their examples.

From the asymptotic distribution of log M(t), Eq. (5), the probability that the
metapopulation is below a threshold b at the end of y years can be calculated as

(23.12)

Although this uses asymptotic distribution, this is mitigated by the fact that it
is used for the distribution at the end of y years but not at any time before that.
The estimate of P[M(t) � b � M(0)] replaces �m and �2

m by their estimates �̂m
and �̂2

m. Like the estimate of �, the median estimate of P[M(t) � b � M(0)] is
equal to the true value, but not the mean.

Some metapopulations can have a low long-term risk of being below a
threshold due to a � near 1.0, but high short-term risks of hitting that threshold
due to high variability. Such quasiextinction or extinction probabilities are
commonly used and very important PVA metrics. The diffusion approximation
for log M(t) can be used to estimate these probabilities for the metapopulation.
The probability of that the diffusion process, X(t), experiences a decline below

P[M(t) � b � M(0)] � 
a log(b/M(0)) � �mt1�2
mt

b

�̂ � exp(�̂m).
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a threshold log b at some time T less than y years is calculated by integrating
over the probability density function for first passage times for a diffusion
process with drift (Karlin and Taylor, 1981). Lande and Orzack (1988) go
through the calculation, which leads to

(23.13)

�() is the cumulative distribution function for a standard Normal(mean � 0,
variance � 1). The estimate of P(T � y) for the metapopulation uses �̂m and �̂2

m
with X(0) � log M(0). The estimated probability of extinction (to 1 individual)
is calculated using Eq. (13) and setting b equal to 1. The reader is cautioned that
estimates of extinction are problematic and that estimates of quasiextinction
(e.g., some threshold greater than 1 individual) are more robust (cf. Morris and
Doak, 2002). Also, Eq. (13) uses diffusion approximation over short time scales,
as it calculates the probability of hitting a threshold at any time, including short
times, before y years. This makes Eq. (13) more approximate than other metrics.

Other viability metrics based on diffusion approximation, such as the mean
time to extinction, and median time to extinction, are discussed in Lande and
Orzack (1988) and Dennis et al. (1991).

Risk Metric Uncertainty

The 100(1 � �)% confidence intervals are often used as characterizations
of uncertainty. These can be calculated for risk metrics using the estimated
distributions of �̂m and �̂2

m. The confidence intervals for �̂ are

(23.14)

where t�,q is the critical value of a t distribution at P � � and q degrees of
freedom. The corresponding significance level, �, for a hypothesis test, such as
“Is � 
 b” is the � such that

(23.15)

Confidence intervals on P(T � y) and P[M(y) � b � M(0)] can be calculated by
parametric bootstrapping from the estimated distributions of �̂m and �̂2

m:
Normal(�̂m, �̂2

m/n) and Gamma(shape � (n � 1)/2, scale � 2�̂2
m ⁄(n � 1)). A

large number of (�̂b, �̂2
b) pairs are generated randomly by sampling from these

distributions and the risk metric � is calculated [Eqs. (13) or (12)] for each
pair. The range of � over the (�̂b, �̂2

b) bootstrapped pairs, for which both
parameters are within their respective 100(1��)% confidence intervals, defines
the 100(1 � �)% confidence interval for �. This and other methods for
calculating confidence intervals for diffusion approximation risk metrics are
discussed in Dennis et al. (1991).

�̂m � log b1�̂2
m>n � t�,n�1.

(exp (�̂m � t�/2,n�11�̂2
m>n), exp (�̂m � t�/2,n�11�̂2

m>n)).

 � exp(�2(X(0) � log b)�m>�2
m)
a�(X(0) � log b) � �my1�2

my
b

 P(T � y) � 
a�(X(0) � log b) � �my1�2
my

b

Chapter 23  11/17/03  3:19 PM  Page 578



23. VIABILITY ANALYSIS FOR ENDANGERED METAPOPULATIONS 579

An alternate way to present the level of uncertainty is to estimate the data
support for different values of a risk metric. There are both frequentist and
Bayesian approaches for this [see Wade (2001) for a review geared toward
conservation applications]. Holmes (2003) presented a Bayesian approach,
which uses posterior probability distributions to illustrate data support. That
method is adapted here for estimating the level of data support for the
metapopulation risk metrics. Let � be a risk metric. The probability that � is
greater than some threshold � given the data are

(23.16)

where L(�, �2
m � �̂m) is the likelihood function given �̂m ~ Normal(�m, �2

m/n),
L(�2

m � �̂2
m) is the likelihood function given �̂2

m ~ Gamma((n � 1)/2, 2�2
m/(n � 1)),

�(�m) and �(�2
m) are the priors on �m and �2

m, and the normalizing constant is

(23.17)

The posterior distribution of � is [P(� 
 � � d� � �̂m, �̂2
m) � P(� 
 � � �̂m,

�̂2
m)]/d� over all �. Examples of this calculation for � and the probability of

being below thresholds at the end of 25 yr are shown in the salmon examples.
Holmes (2003) supplied Splus code for these calculations.

23.6 A SIMULATED EXAMPLE

In this example, a collection of 49 local populations in a 7 � 7 grid was
simulated with neighborhood dispersal. Local populations were specified with
variable mean local growth rates; thus, some �i values were much larger than
others. The local growth rates in any given year were slightly correlated
between sites. Thus all sites were more likely than random to have good and
bad years together. Dispersal was variable between 5 and 10% from year to
year and was mainly to the four nearest neighbors (or two and three for cor-
ner or edge sites). In specific terms, A(t) was specified with zi(t)’s drawn from
a normal distribution with mean � �i and a variance of 0.0625. The �i were
different for each local population and were chosen randomly between �0.22
and �0.01. Each year, new zi(t)’s were selected from the normal distribution
for that local population. The zi(t)’s were correlated among the local popula-
tions such that the covariance of zi(t) and zj(t) was (0.1)(0.0625). The di(t) var-
ied from year to year. Each year and separately for each local population, di(t)
was selected from a uniform random distribution between 0.05 and 0.1; thus
the dispersal varied from year to year and between local populations in
any given year. Most of this dispersal, 80%, was to nearest neighbors. Thus
for nearest neighbors, �ji � 0.80 dj(t)/nn, where nn is the number of nearest
neighbors, and for nonnearest neighbors, �ji � 0.2 dj(t)/nnn; where nnn is the
number of nonnearest neighbors.
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The simulation was started from a set of local population sizes drawn ran-
domly from the stochastic equilibrium, and starting sizes were drawn anew
from this distribution for each replicate of the simulation. For each replicate,
a 25-yr time series was generated, and from this time series, �m and �2

m were
estimated using Eq. (9). From the estimates, the probability that the metapopu-
lation would be below different thresholds (50 or 75% of starting levels) at
the end of 25 yr was predicted and compared to the actual probabilities
obtained by repeatedly (1000 times) running the simulation for 25 yr starting
from the point where the initial 25-yr time series stopped. This simulation
was replicated 500 times to generate the distribution of estimated probabil-
ities of 50 and 75% decline in 25 yr versus the true probability. Also, from
each 25-yr simulation, the metapopulation � was estimated and compared
to the actual value calculated by running a 10000-yr simulation. For each
estimated risk metric, confidence intervals were estimated via the methods in
Section 23.5.

Figure 23.3 shows the distribution of � estimates and the estimated prob-
abilities of 50 and 75% decline versus true values. As expected, the median
estimate of � was equal to the true value (�̂m is an unbiased estimator of �m).
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Fig. 23.3 Estimated viability metrics and their estimated confidence intervals versus the
true values for a 49 site metapopulation in a 7 � 7 grid with 5–10% dispersal to the closest
neighboring sites. (Left) True metrics compared to the distribution of estimated metrics from
500 simulations starting from the same initial conditions. (Right) Performance of the estimated
confidence intervals by looking at the fraction of estimated 100(1��)% confidence intervals
that contain the true values.
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The median estimate of � was 0.97 compared to the true value of 0.97. The
median estimates of 50 and 75% decline were 0.63 and 0.14 compared to the
true values of 0.62 and 0.12, respectively. Although the median estimates
were very close to the true values, the estimates were variable. The estimates
of � ranged between 0.9 and 1.0. The estimates of declines to thresholds were
also variable. The variability depended on the threshold and the time frame.
In this example, there was low variability around the estimate of 50% decline
in 25 yr, but high variability in the estimate of 75% decline. The true values
for each of the metrics are shown by the solid lines in the middle of the
distributions.

The variability of the estimates is due to the stochastic nature of the process
and is not a fault of the estimation methods per se; by chance, short trajec-
tories will appear to have underlying parameters that are different than the
true underlying parameters, which leads to variability in the estimated viability
metrics. When estimates are inherently variable, it is critical that the confi-
dence intervals for the estimates be estimated correctly. Figure 23.3 (right)
confirms that the estimated confidence intervals properly characterize the
uncertainty for the estimate risk metrics: e.g., 100(1��)% of the time the
100(1��)% confidence intervals contain the true values.

23.7 SALMON AS METAPOPULATIONS

Salmonid populations (Oncorhynchus spp.) show strong spatial structur-
ing and they have often been referred to as metapopulations (Reiman and
McIntyre, 1995; Policansky and Magnuson, 1998; Cooper and Mangel,
1999; Hill et al., 2002). Spawning and rearing habitats of different salmon
stocks occur on discrete and physically separated river or stream sections.
Salmon have a well-known and strong tendency to return to their natal
streams with a low (1 to 20%) dispersal to other stocks (Fulton and Pearson,
1981; Mathews and Waples, 1991; Quinn, 1993). Within the U.S. Pacific
Northwest, collections of anadromous salmon stocks have been divided into
“evolutionary significant units” (ESUs) (Waples, 1991), which represent sub-
stantially reproductively isolated conspecific groups that can be distinguished
based on their coherence on a genetic level and known dispersal between the
stocks. Salmon within a stock spawn on individual streams or river sections
and the majority of offspring return to spawn in their natal stream or river.
Straying of returning adults to nonnatal streams is spatially structured and
occurs more frequently within subbasins. Stocks within an ESU have some
level of synchrony due to exposure to common migratory corridors between
the ocean and the natal stream and also due to exposure to similar large-scale
ocean dynamics (Pearcy, 1992; Ware, 1995; Mantua et al., 1997). However,
stocks also show a great deal of asynchrony due to exposure to their inde-
pendent spawning and juvenile rearing habitats and variability in migration
timing between stocks (e.g., PSTRT, 2001). Throughout the Pacific
Northwest, most salmonid populations show regional decline with the major-
ity of individual stocks showing steady declines with densities well below his-
torical levels (Rieman and Dunham, 2000; McClure et al., 2003).
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23.8 SNAKE RIVER SPRING/SUMMER CHINOOK ESU

The Snake river spring/summer chinook ESU (Fig. 23.4) includes all spring
and summer chinook spawning within the subbasins of the Tucannon river,
Grande Ronde river, and the south, middle, and east fork Salmon rivers, which
flow into the Snake river below the Hells Canyon dam (Mathews and Waples,
1991). Juvenile fish rear in the mountain streams and then migrate down the
Snake and Columbia rivers to the ocean. After maturing in the ocean, adult
fish return to spawn at variable ages between 3 and 5 yr (mean � 4.5 yr).
Tagging experiments in the Columbia river basin (which the Snake river basin
is a part of) have found that the proportion of individuals that disperse and
spawn away from their natal sites is on the order of 1–3% for wild-born indi-
viduals (Quinn, 1993).

The Snake river spring/summer chinook ESU was listed as threatened
under the U.S. Endangered Species Act in 1992. Stocks within this large and
complex basin, like salmon stocks throughout the Pacific Northwest, are
impacted negatively by a variety of factors (Wissman et al., 1994) and many
have experienced substantial declines (Myers et al., 1998; McClure et al.,
2003). There is habitat degradation in many areas related to forestry, graz-
ing, mining, and irrigation practices, resulting in lack of pools, high tem-
peratures, low flows, poor overwintering conditions, and high sediment
loads in many areas. At the same time, a substantial portion of the ESU is
protected as part of federally designated wilderness (Mathews and Waples,

Fig. 23.4 Map of the Snake river spring/summer chinook ESU. The ESU includes stocks from
the Snake river and its tributaries between Ice Harbor and Hells Canyon dams. The Hells Canyon
hydropower dam has no passage facilities and blocks the migration of salmon into their histor-
ical habitat in the upper Snake river basin.
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1991). The official ESU designation does not include salmon in the
Clearwater basin, as chinook in this subbasin originate from hatchery fish
that were stocked in the subbasin after the original natural fish were extir-
pated in the 1940s. However, from a metapopulation dynamic perspective,
current stocks in the Clearwater river basin interact with stocks within
other subbasins. Thus, in this analysis, all stocks in the entire Snake river
basin were analyzed together.

A total metapopulation level time series was available for this ESU from
counts of the total number of wild-born spawners returning through the Ice
Harbor dam at the downstream end of the ESU (Fig. 23.4). Returning
spawners can be either wild born or hatchery born as hatcheries have been
operating in the basin since the early 1970s. McClure et al. (2003) discussed
the effects of hatchery production on viability analyses. By focusing on the
wild-born spawner time series and not incorporating a correction for hatch-
ery production, the in-stream viability metrics assume that hatchery-born
fish all return to the hatchery and do not spawn in stream (which would
produce wild-born offspring). As discussed by McClure et al. (2003), this
means our viability metrics are optimistic upper bounds, as some unknown
fraction of hatchery fish do stray to the wild spawning grounds and poten-
tially reproduce.

In addition to the metapopulation level dam count, time series of redds per
mile (rpm), which are indices of the density of gravel egg nests made by spawn-
ing females, were available for the majority of stocks within the Snake river
basin. Redds per mile are an index of the redds (and consequently returning
spawners) trend within a stock, but the total redds are unknown, as the total
spawning habitat is not surveyed. The majority of rpm and dam data are avail-
able in the digital appendices of McClure et al. (2003).

Parameter Estimation

Our Ice Harbor dam time series starts in 1962 and ends in 1999. The
wild-born component of the dam count is denoted M(0), M(1), M(2), . . .
M(37), where M(0) is the 1962 count and M(37) is the 1999 count. The
maximum likelihood estimates presented in Eq. (9) assume that data do not
contain sampling error or other nonprocess error; however, salmon data typ-
ically have high levels of sampling error and boom–bust cycles that confound
estimation of �m and especially �2

m (Holmes, 2001). An alternate approach
uses data filtering and examination of the rate at which variance increases
within the time series to improve parameter estimation and separate out
sampling error variance from the time series (Holmes, 2001; Holmes and
Fagan, 2002; cf also Morris and Doak, 2002). These methods have been
cross-validated extensively with salmon data (Holmes and Fagan, 2002;
Fagan et al., 2003) and are used here to estimate parameters. First, data are
transformed using a running sum:

(23.18)M
�

(t) �
1
4a

3

j�0
M(t � j) for t � 0 to 34
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The estimates of �m and �2
m are then

(23.19)

The estimate of �2
m uses the property that the variance of the underlying sto-

chastic process should increase linearly with time: E[var(logM(t)/M(0))] � �2
m t.

The confidence intervals for �̂m and �̂2
m using are slightly different than

Eq. (10) (Holmes and Fagan, 2002):

(23.20)

where L is the number of counts summed together for the running sum and
df � 0.333 � 0.212 (n � 1) � 0.387 L � 6.84 (L � 4 and n � 38 here). The
estimated 95% confidence intervals on �m and �2

m are (�0.133, 0.020) and
(0.017, 0.111), respectively.

Metapopulation Viability Metrics

The estimate of � for the Snake river spring/summer chinook ESU is
�̂ � exp(�̂m) � 0.94. To the extent that long-term trends continue, the
expected population size in 25 yr is 21% of current levels (� �̂25). The point
estimate of the probability of that the ESU drops below 10% of current levels
at any time over the next 25 yr is

(23.21)

The corresponding estimate of 90% decline over the next 50 yr is 0.74. The
probability of extinction was not estimated, as this requires an estimate of the
total population size. The number of returning spawners is not the total popu-
lation size, as nonmature fish remain in the ocean. However, if the true � of
the metapopulation is less than 1.0, the population will eventually go extinct.

The posterior probability density functions [Eq. (16)] for the estimated
metrics are shown in Fig. 23.5. The posterior probability distributions give an
indication of the degree to which data support different risk levels. The distri-
bution for � shows considerable data support for a � 
 1, indicating a declin-
ing metapopulation. There is also strong data support for a high risk of 90%
decline over the next 50 yrs; however, the estimate of 90% decline over 25 yr
is very uncertain. The mean value is 0.23, but the probability distribution is

� 0.23
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very broad over the 0 to 1 range. This illustrates that uncertainty in estimates
of probabilities of quasiextinction can vary widely depending on the time
frame over which one is interested.

23.9 PUGET SOUND CHINOOK ESU

The Puget Sound ESU is a subset of the major chinook salmon group in
Washington’s northern coastal basins and Puget Sound. The ESU (Fig. 23.6)
includes all spring, summer, and fall runs in the Puget Sound region from the
north fork Nooksack river to the Elwha river on the Olympic peninsula (Myers
et al., 1998). The Elwha and Dungeness coastal basins of the Strait of Juan de
Fuca, Hood Canal, and the Puget Sound area north to the northern Nooksack
river basin and the U.S. Canadian border are all a part of the Puget Sound ESU.
Basin-to-basin dispersal rates have been observed at between 0.1 and 6% based
on recoveries of tagged juveniles returning as adults (PSTRT, 2001). Fish in this
ESU typically mature at ages 3 and 4 and are coastally oriented during the ocean
phase of their life history. The Puget Sound ESU does not include Canadian or
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Fig. 23.5 Estimated posterior probability distributions for � and the probability of 90%
decline in 25 and 50 yr. Posterior probability distributions, which were calculated using uniform
priors on �m and �2

m, indicate the relative levels of data support for different risk metric values.
Distributions for Snake river spring/summer chinook (left) and Puget Sound ESUs (right).
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coastal Washington populations. The Puget Sound ESU was listed as threatened
under the Endangered Species Act in March of 1999. Trends in abundance
throughout the ESU are predominantly downward, with several populations
exhibiting severe short-term declines. Degraded spawning and rearing habitats,
as well as access restrictions to spawning grounds and migration routes, have all
likely contributed to population declines. Salmon in this ESU do not migrate
through a hydropower system as the Columbia river ESUs do.

Data for this ESU consist of yearly estimates of the total returning spawn-
ers (wild-plus hatchery-born) to the 44 separate river and creek systems feed-
ing into the Puget Sound (Fig. 23.6). These time series were compiled by the
National Marine Fisheries Service (Seattle, WA) based on a variety of data:
redd counts, carcass counts, in-stream harvest records, weir counts, and hatch-
ery return counts. An independent metapopulation level count was not avail-
able; unlike spawners returning to the Columbia river basin, spawners here do
not pass through a hydropower system where they can be enumerated.
Instead, a 1979–1997 index of the metapopulation was constructed by added
together the 29 time series for the local populations with data over the

Fig. 23.6 Map of the Puget Sound chinook ESU.
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1979–1997 period. As for Snake river analyses, our viability metrics implicitly
assumes that hatchery fish have not been reproducing and will be optimistic if
some hatchery fish do not return to the hatchery and instead spawn success-
fully in the wild.

Metapopulation Viability Metrics

Parameters were estimated as for the Snake river. The parameter estimates
are �̂m � 0.0036, and �̂2

m � 0.012. The estimate of � for the Puget Sound chi-
nook ESU is �̂ � exp(�̂m) � 1.003. The point estimate of the probability that
the ESU drops below 10% of current levels at any time over the next 25 yr is
0.000 and over the next 50 yr is 0.001.

The posterior probability distributions (Fig. 23.5, right) illustrate the high
uncertainty, given the data, as to whether this ESU is declining, stable, or
increasing. The most that can be said from these data is that there is low data
support for a severely declining (� 
 0.9) or increasing (� � 1.1) metapopula-
tion. Interestingly, the low support for small � values translates into high data
support for a low risk of 90% decline in the short term (over 25 yr). Over the
longer term, however, the uncertainty as to whether the metapopulation is
declining or increasing gives rise to a U-shaped distribution, meaning that data
give the most support to a probability of 0 or 1, reflecting that � could be either
less than or greater than 1.0. This example illustrates that while data may be
equivocal on some questions of conservation concern, such as “is � 
 1?”, data
may still give information on other questions, such as “is the short-term risk of
severe decline high?”

23.10 USING THE STOCHASTIC METAPOPULATION MODEL TO
INVESTIGATE EFFECTS OF MANAGEMENT

Determining how to distribute effort in order to recover an at-risk species
is a routine, and challenging, task of conservation managers. For salmon, man-
agement actions tend as a generality to affect an entire ESU or multiple ESUs
or to affect individual stocks. Management actions such as harvest reductions
or increases to survival during migration (between spawning areas and the
ocean) or improvements to estuarine environments are examples of actions
that will tend to improve conditions for all stocks within an ESU or multiple
ESUs. Habitat improvements or protections that affect spawning areas and
management of in-stream water levels are examples of actions that tend to
affect individual stocks. Without knowing the local stock dynamics or disper-
sal rates, one can still give certain types of guidance about how much effort is
required for recovery of a declining metapopulation and about how effort
should be distributed across all local populations.

Metapopulation Level Actions

When management actions affect all local populations roughly equally,
it can be estimated how change would change the metapopulation �.
Mathematically, this means that all �i values increase by some d�.
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An absolute d� change in all �i values is equivalent to multiplying all ele-
ments in A(t) by a constant � exp(d�). The mean of the distribution of
logM(t)/M(0) becomes (�m � d�)t � (log�new)t. Thus log(�new/�old) � d�.
The change, d�, can be translated into currency that is more meaningful
from a management standpoint by using the relationship � � R0

1/T,
between �, the net reproductive rate, R0, and the mean generation time, T
(Caswell, 2001). This is illustrated here for harvest and hydropower effects
on salmon in the Snake river spring/summer chinook ESU (cf. McClure
et al., 2003).

Harvest

In the Pacific Northwest, harvest rates for salmon are generally expressed
in terms of the fraction of spawners that did not return to the spawning
grounds but that would have without harvest, e.g., a harvest rate of 0.8 indi-
cates that the actual number of returning spawners is 20% of what it would
have been if there had been no harvest. Harvest rates are expressed in this way
so that harvest that occurs in the stream versus in the ocean can be compared
via a common currency. We can write the net reproductive rate using fecund-
ity and age-specific survival (cf. Caswell 2001) as

R0 � s1F1(1 � h)f � s1(1 � F1)s2F2(1 � h)f � s1(1 � F1)s2

(1 � F2)s3F3(1 � h)f . . . (23.22)

where h is the harvest rate, si is the survival from age i � 1 to i, Fi is the frac-
tion of spawners that return at age i, and f is the mean offspring per spawner.
Using Eq. (22), the change in � from a change in h alone is

(23.23)

Hydropower

Juvenile salmon from the Snake river basin must migrate through the
mainstem of the Snake river, enter the Columbia river, and descend down the
Columbia river on their journey to the ocean. This migration, and the return
migration of spawning adults, involves passage through four large
hydropower dams on the Columbia river and four Snake river hydropower
dams. Improving the survival of both juvenile and adult fish migrating
through the Columbia and Snake river hydropower systems has been the
focus of much effort and is one of the human impacts that has been relatively
well quantified.

Following a strategy similar to that used for harvest, the effect of changes
in survival through the hydropower system on the rate of decline at the ESU
level can be estimated. Denoting by cd and cu the proportional increase in
down- and upstream passage survival due to improvement in the hydropower
system, the improved net reproductive rate is

R0,new � cdcu(s1F1f � s1(1 � F1)s2F2f � s1 (1 � F1)s2(1 � F2)s3F3f . . .). (23.24)

�new

�old
 � aR0,new

R0,old
b1/T

 � a1 � hnew

1 � hold
b1/T
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Thus, for assessing the impacts of increased survival through the hydropower
system:

(23.25)

Estimates of the Impacts of Harvest and Hydropower Changes to
the Snake River ESU

The mean ocean and in-river 1980–1999 harvest rate for the Snake river
spring/summer chinook ESU was h � 0.08 (McClure et al., 2003). By setting
hnew � 0, we can examine the effect of successful selective harvest manage-
ment that would substantially eliminate harvest impacts on salmon in this
ESU. Using Eq. (23) and a mean generation time of 4.5 yr, the estimated
increase in � with hnew � 0 is roughly 2%. NMFS (2000) has required that
agencies operating the Federal Columbia river power system implement a var-
iety of activities, including increased spill, improved passage facilities, and
increased barging of salmon around the dams as a means of improving sur-
vival through the system. The estimated improvement in passage survival from
the improvements proposed by NMFS are on the order of 5–6% (i.e., cdcu �
1.05–1.06) for the Snake river spring/summer chinook (McClure et al., 2003).
This translates into a 1% improvement in � for this particular ESU using
Eq. (25). Thus if the combined effects of substantially reduced harvest and the
proposed passage improvements are additive, then roughly a 3% increase in �
is estimated for these actions. If the true � is less than 0.97, a 3% increase
would not be sufficient to achieve � � 1. Figure 23.5 indicates that data can-
not rule out that the � in this is ESU is greater than 0.97, but data certainly
give more support to a lower �. This suggests that other recovery actions, such
as improvements at the stock level, will also be necessary.

Local Population Level Actions

The effects of changes to individual units of habitat are harder to quan-
tify than the effects of metapopulaion level changes. The change in �
achieved by a change at the level of a specific unit of habitat depends on the
level of dispersal, the spatial pattern of dispersal, whether that habitat is
connected to source or sink habitat, the level and pattern of synchrony
between sites, and so on. In other words, it depends on the type of detailed
information that has traditionally been difficult to obtain for metapopula-
tions of conservation concern. Interestingly, although it is difficult to deter-
mine how much change in � can be achieved, it appears possible to estimate
where the largest d� from a given d� change (per unit of habitat) in the
local growth rate is achieved, even though the size of the resultant d� can-
not be determined.

Recall that each row of A represents a unit of habitat and that a local popu-
lation is composed of some set of units of habitat with high connectivity.
When the intrinsic growth rate, �j, in a unit of habitat j is changed by d�, to

�new

�old
 � aR0,new

R0,old
b1/T

 � (cdcu)1/T
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exp(�j � d�), all the aij elements of column j in matrix A(t) are multiplied by
exp(d�). The goal is to calculate the total change in � from this d� change to
all elements in column j by summing over rows i:

(23.26)

The term ∂log�/∂logaij is the elasticity of �. Caswell (2001) presented the cal-
culation for the elasticity of � for products of stochastic matrices:

(23.27)

where R(t) is the relationship between the right eigenvector and A(t),
R(t)w(t � 1) � A(t)w(t). Thus, the d� from a d� change in a unit of habitat j
can be solved for by summing Eq. (27) over i:

(23.28)

This can be translated into matrix form:

(23.29)

where “o” denotes the scalar product. Using the relationship between the left
eigenvector and A(t), Q(t � 1)vT (t) � vT (t � 1)A(t),

(23.30)

Thus d� from a change in a unit of habitat j is a weighted temporal average of
the reproductive value of local population j times its density:

(23.31)

where c(t) is a constant that depends on t but not j. A local population a is
composed of units of habitat in the set a � {a1, a2, a3, . . ., am}, where {a1, a2,
a3, . . . , am} denotes which rows of A correspond to the units of habitat in
local population a. The d� per d� per unit habitat for a particular local popu-
lation a is where m is the number of units of habitat 
in local population a. In words, this means the change in � is proportional
to the product of the “average” density of individuals in a particular local
population times the “average” reproductive value of its units of habitat.

Although reproductive values are unknown, there are many cases where
the product �jwj is a positive function of �j as long as dispersal is not too

d�a � (1/m)a j�a d�j,
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1
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unidirectional (meaning, dispersal from A to B but not B to A). This can be
shown analytically in three extreme cases: (a) 100% uniform and equal
dispersal, (b) all �j values equal, or (c) dispersal extremely low. In cases (a)
and (b), the reproductive values are all equal and �jwj � (a constant) � �j.
In case (c), wj ≈ �j and �jwj ≈ (�j)2. However, this positive relationship was
also found in simulations with variable local growth rates, neighborhood
dispersal, and dispersal sources and targets. An obvious exception to this
positive relationship is if dispersal is unidirectional, for example, a linear
chain of local populations with dispersal via a steady directional wind or
ocean current. However, as the following simulations illustrate, the general
relationship can still hold even when dispersal is strongly, although not
strictly, directional.

Density and � Sensitivity

Three different types of metapopulation models were used to look at the
relationship between average densities in units of habitat versus the d� from a
small increase in the local growth rate in each unit of habitat. In each model,
dispersal was nonuniform among the local populations so that some sites were
dispersal sources (more dispersal out than in) and others dispersal targets
(more dispersal in than out). In the first model, local growth rates were equal
among all sites and dispersers were distributed globally among all sites. In the
second model, local growth rates were variable so that some sites had much
higher local growth rates than others and dispersal was mainly to nearest
neighbors. In the third model, local growth rates were again variable and dis-
persal mainly to the two south and east neighbors; however, a small propor-
tion of dispersers were distributed globally. Thus the three examples illustrate
global, local, and directional dispersal.

A hundred randomly generated matrix models in each of these three cat-
egories were made and d�j calculated via Eq. (30). Figure 23.7 shows the rela-
tionship between the average density of a local population and the d� from
increasing the local growth rate in that unit of habitat. The x axis ranks the
d�j, thus “1” indicates the local population with the highest d�j in any simu-
lation and “49” the lowest. The y axis shows the corresponding mean density
rank of that local population; “1” indicates the population had the highest
density among the 49 sites and “49” the lowest. Results from the 100 ran-
domly generated models are summarized by showing a box plot, which shows
the median and range of all density ranks for the sites with a given d�j /d�
rank. Thus, the box plot at the x axis position “1” shows the range of density
ranks for the units of habitat with the highest d�/d� in each model. Model
results show a strong positive relationship between the relative density rank
within a unit of habitat and which unit of habitat produced the largest
increases in the metapopulation � for a given d�. The two to three units of
habitat with the highest average densities were consistently the units that pro-
duced the largest d� for a given d�. This suggests that plotting the distribution
of the relative densities within local populations in a metapopulation could
give a rapid indication of the sensitivity of the metapopulation to changes to
individual local populations.
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Fig. 23.7 Relationship between the influence of a given habitat unit on the metapopulation �
and the average density in that habitat unit. One hundred 7 � 7 metapopulations with spatially
variable dispersal rates (some sites dispersal sinks and others targets) were generated randomly in
each of three classes: (1) spatially uniform growth rates and global dispersal, (2) spatially variable
growth rates with neighborhood dispersal, and (3) spatially variable growth rates with directional
neighborhood dispersal to the S and E two neighbors only. The x axis shows the rank in terms of
d�/d�, and the y axis shows a box plot of the distribution of density ranks for sites with a given
d�/d� rank across all 100 models in each class. Thus the box plot at x � 1 shows the distribution
of ranks for the sites with the highest d�/d� in each model. The line in each box shows the median
density rank for the sites with a given d�/d� rank, the box encloses 50% of the ranks, and the
whiskers show the range from all 100 randomly generated models.
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One application of this would be to estimate where negative impacts would
lead to the greatest decrease in �, thus suggesting where protection in most
critical. It would also suggest where local improvements would be most effect-
ive for a given increase in the local growth rate. However, in actual manage-
ment situations where improvements are being sited, one is generally trying to
maximize the “bang per buck,” d�j/d$ � d�j/d�j � d�j/d$. The cost, d$, is the
actual monetary cost or some combination of monetary, logistical, and polit-
ical costs and d�j/d$ is the cost of a unit improvement to a unit of habitat j.
Thus d�j/d� is one part of the equation, and the other part, the cost of a unit
improvement in different habitats, would have to come from a specific analy-
sis of the costs and estimated effects of management actions on different local
populations.

Example Using the Snake River ESU

The overall level of salmon dispersal between and among stocks within
this ESU is known to be fairly low and spatially localized (Mathews and
Waples, 1991; Quinn, 1993). In addition, there is high variability in the
habitat quality between stocks, with some stocks relatively pristine and pro-
tected within wilderness areas, whereas others are exposed to high and mul-
tiple impacts (such as stream degradation and disturbance, pollution,
in-stream harvest, and irrigation impacts). Figure 23.8 (top) shows the dis-
tribution of average normed redds per mile for 50 Snake river spring/sum-
mer chinook stocks. For each year between 1980 and 1995, the
redds-per-mile count for each stock was divided by the maximum count
among the 50 stocks in that year. The average over the 16 yr was then used
as an estimate of the average normed redds per mile. The long-tailed distri-
bution is the expectation from theory given low dispersal and high variability
in stock habitat quality.

Estimation of the average normed redds per mile was repeated using a var-
iety of different time periods. Regardless of the time period or number of years
used for averaging, six stocks consistently appeared among the top five stocks
with the highest density of redds: Johnson Cr., Poverty Cr., and Secesh R. in
the south fork of the Salmon R., the Lostine R. in the Grande Ronde subbasin,
Marsh Cr. in the middle fork of the Salmon R., and the Imnaha R. Perhaps not
surprisingly, all of these are in relatively low impacted regions of the ESU. At
a subbasin level, the overall highest redd density was in the south fork of the
Salmon river where summer-run chinook primarily occur (Fig. 23.8, bottom).
The other regions are primarily spring-run chinook. The south fork of the
Salmon river is relatively pristine and few hatchery fish have been released into
this subbasin; the stocks presumably have experienced relatively low inter-
breeding with hatchery-reared stocks. In addition, the later run timing may
somehow be associated with less straying, lower harvest, or lower hydropower
impacts.

This analysis predicts that the � of the Snake river spring/summer chinook
ESU would be most sensitive to changes to the summer-run stocks in the
south fork of the Salmon river and to the spring-run stocks, the Lostine R.,
Imnaha River, and Marsh Creek and should be protected preferentially from
impacts. This can be counterintuitive in some situations. For example, imag-
ine making choices about where to allow a limited catch-and-release sport
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fishery. Sites with the highest density would seem to be the prime candidates,
whereas the analysis of d�/d� indicates just the opposite. In terms of deter-
mining where to direct improvements, the d�/d� suggests that these pristine
sites are where a given d� would produce the greatest metapopulation �;
however, the regions where d�/d� is the highest are not necessarily the
regions where � is improved most easily. Indeed a given unit of improvement
may be more difficult in pristine sites. Choosing where to direct stock
improvements requires consideration of the cost and difficulty of a given d�
for different stocks in combination with the estimate of the sensitivity of �
to local changes.
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Fig. 23.8 Distribution of densities of redds in the Snake river spring/summer chinook ESU at
a stock and subbasin level. The average normed redds densities (top) are shown for the 50
stocks with 1980–1995 data (the years were chosen to maximum the number of stocks with
data). For each stock the normed redd density was averaged over the 16 yr to get an estimate
of the normed average density. In the lower plot, relative average densities over all stocks within
different basins are shown (with the number of stocks in each basin shown above the bars). The
basin designations are GR, Grande Ronde; I, Imnaha; SFS, south fork salmon; MFS, middle fork
salmon; US, upper salmon; C, Clearwater. Redds due to hatchery fish released into stocks were
removed before doing these analyses, as the density will be artificially high simply due to hatch-
ery fish releases. This correction could not be done for the upper salmon or Clearwater regions
because the fraction of spawners that are hatchery strays were unknown; however, the hatch-
ery releases are very high in these basins and thus the corrected relative densities would be
much lower than shown.
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23.11 POPULATION VIABILITY ANALYSIS IN PRACTICE

The purpose of this chapter is to present a theoretical framework for
metapopulation PVA using time series data and diffusion approximations. These
methods are then illustrated using data from two salmon metapopulations. The
salmon analyses are intended as an example of how to calculate the diffusion
parameters and metrics. An actual PVA must grapple with other important
issues that are outside the scope of this chapter, but which anyone contemplat-
ing an actual PVA must be aware. Morris and Doak (2002) gave a review of the
criticisms and caveats surrounding the use of PVA and outlined general recom-
mendations and cautions when conducting a PVA. In the context of diffusion
approximation methods in particular, Holmes (2003) outlined an approach
using matrix models to conduct sensitivity analyses in order to choose among
different parameterization methods and metrics for a specific PVA application.

One of the issues that is especially pertinent for our chapter is the issue of
variability in estimated risk metrics. A number of recent PVA cross-validations
using actual data on a large number of different populations have shown that
careful PVA analyses give unbiased risk estimates (Brook et al., 2000; Holmes
and Fagan, 2002; Fagan et al., 2003). Although this is very encouraging, a dif-
ficult issue is the high inherent variability associated with estimated probabil-
ities (such as probability of extinction), even though they may be unbiased
(Ludwig, 1996, 1999; Fieberg and Ellner, 2000; Holmes, 2001; Ellner et al.,
2002). How to properly use risk metrics that have high variability is currently
being debated within the field with arguments ranging from “don’t use them”
(Ludwig, 1996, 1999; Fieberg and Ellner, 2000), to “use to estimate risks within
collections of populations” (Fagan et al., 2001; Holmes and Fagan, 2002), to
“use where data are extensive and high quality” (Coulson et al., 2001), to “PVA
metrics based on data, even if variable, are better than the alternatives” (Brook
et al., 2002). An encouraging aspect of diffusion approximation methods is that
cross-validations using real time series data have indicated that the uncertainty
in the estimated metrics appears to be characterized properly (Holmes and
Fagan, 2002). Nonetheless, how to use and present metrics with high variability,
albeit well characterized, is not an easy question to answer. Presentation of
100(1��)% is an oft-used approach, but experience in the forum of salmon
recovery planning in the Pacific Northwest has shown that it is easy to misin-
terpret confidence intervals. For example, it is easy to interpret 95% confidence
intervals for � that overlap 1.0 as an indication that data are equivocal as to
whether the population is declining or increasing, whereas there may be consid-
erable data support for a declining population. Graphic presentations of data
support for different risk levels have been more compelling and informative,
although translating levels of data support into numbers that policy makers can
use to take uncertainty into account in policy decisions has been challenging.

23.12 DISCUSSION

This chapter focused on the calculation of metapopulation PVA metrics; how-
ever, there are other more general PVA insights from an examination of stochastic
metapopulations and of this specific class of declining density-independent
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metapopulations. First, by definition the trajectory of a stochastic metapop-
ulation is subject to random processes and thus the metapopulation trajectory
observed in any one snippet of time is unlikely to capture the long-term
dynamics. The shorter the time frame, the farther the observed trend is likely to
be from the long-term trend. Thus the trends in any two adjacent time periods
are unlikely to be identical, and the difference indicates not necessarily a change
in the underlying rate of decline, can be due simply to chance. The variability
of observed rates of decline can be estimated from the level of the variability
driving the long-term dynamics, and thus statistical tests performed to deter-
mine the likelihood that an apparent change in trend occurred due to the
stochastic nature of the process rather than an underlying change in conditions.

Second, the local populations within a metapopulation are linked and experi-
ence the same long-term growth rates, regardless of the underlying difference
in local population conditions (i.e., whether they are “sources” or “sinks”).
However, measured over a short time period, there will be differences in the
observed local population trends due to chance and local conditions. This
means that over a given time period, local populations will appear to be
declining at different rates, but this is not an indication the long-term trends
and not necessarily related local conditions being better or worse than other
areas. That the long-term trends of the individual local populations are the
same as the metapopulation has a direct impact on PVA for local populations
within a metapopulation. The rate of decline observed among the different
local populations will differ, as will the apparent level of variability in the local
time series. Thus if an individual viability analysis is done using parameters
estimated from local population time series alone, it will appear that there is
tremendous variability among the local populations risk levels when in fact
their long-term risks are similar. When looking at the long-term risks, use of
metapopulation level parameters leads to better estimates of the long-term
local population risks. Short-term risks, however, are still strongly influenced
by local conditions. Clearly estimates of both short-term and long-term risks
are needed to capture the whole viability picture for a metapopulation.
Although local populations within the type of metapopulations modeled here
will be eventually repopulated by dispersal if they undergo extreme declines,
the resulting loss of genetic diversity leads to a gradual erosion of the genetic
health of the metapopulation. Indeed this has happened for salmon species
throughout the Pacific Northwest.

Recovery planning for endangered and threatened species typically requires
determining where to put the most effort. Rarely is it the case that maximal
effort can be applied everywhere. Using the stochastic metapopulation model,
a sensitivity analysis was used to look for local characteristics that predict
where local changes would produce the biggest change in the metapopulation
growth rate. Interestingly, local density (not absolute numbers) was a strong
predictor of where a unit change in local growth rates led to the largest
metapopulation growth rate. This relationship was observed even in simula-
tions with dispersal sources and targets and strongly directional dispersal,
although it will break down when dispersal is strictly unidirectional.
Determining which local populations are best suited for restoration efforts also
requires assessing the feasibility, cost, and acceptance of restoration efforts.
Indeed when it comes to actually implementing recovery actions, optimizing

[AU3]
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the efficiency of effort in terms affecting recovery requires solving a complex
function of biological, economic, and political information. However, under-
standing the population dynamics of the species of concern and gaining insight
regarding how the demography of the species will respond to alternative
management actions are fundamental and primary components of this conser-
vation equation.
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