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Introduction 
 
EM algorithms extend likelihood estimation to cases with hidden states, such as when 
observations are corrupted and the true population size is unobserved.  The following EM 
algorithm is based on the summary by Ghahramani and Hinton (1996) of the algorithm originally 
by Shumway and Stoffer (1982) for estimating the parameters of linear dynamical systems from 
corrupted observations.  The algorithm consists of an estimation step (“E step”), which estimates 
the true state using a Kalman-Rauch filter, combined with a measurement step (“M step”), which 
gives the maximum likelihood estimates of the parameters given the data and the estimate of the 
true state. 
 
EM algorithms and the Kalman filter are well-known and heavily used in engineering and 
computer science applications.  For some general background on EM algorithms the reader is 
referred to McLachlan (1996) and to Harvey (1991) for EM algorithms for time series data.  
There are a multitude of books on the Kalman filter.  One of the more penetrable introductions is 
chapter 1 of Maybeck (1979). 
 
This presentation of an EM algorithm closely follows Ghahramani and Hinton’s notation and 
derivation but adapts and extends it to the stochastic population model case.   
 
The state-space model 
 
The diffusion approximation for a stochastic exponential growth model can be written as a linear 
state space model (written in the notation familiar in the engineering literature): 
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where xt = log Nt is the true log population size and yt = log Ot is the log observations of the 
population size.  B is µ, the mean population growth rate.  Q is the σ2, otherwise known as the 
process error or environmental variability.  R is the variability associated with sampling error or 
other non-process error.  Only yt, is observed; the underlying parameters, B, Q, and R, and the 
underlying true population size, xt, is hidden.  If we make the assumption that vt is normally 
distributed, then the model is a linear Gaussian state-space model, and we can use the algorithm 
by Shumway and Stoffer (1982) for estimating the parameters of the state-space model from yt 
alone. 
 
From Eqns. 1 and 2 and the assumption that f( ) is normal, we can write the following 
conditional probabilities: 
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Given Eqn. 1 and that we are essentially observing an ongoing stochastic process, which we 
happen to begin observing at t = 1, then x1 is itself a random variable that is normally distributed 
with some mean π1 and variance V1, and thus 
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Using the Markov property implicit in the model, the joint probability of the observed time 
series, Ty 1}{ ={y1, y2, …, yT} and the true state, Tx 1}{ ={x1, x2, …, xT}, is 
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The joint log likelihood of Ty 1}{ , Tx 1}{  is: 
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The goal is to find the estimates of xt, B, R, Q, π1 and V1 that maximize log P( Tx 1}{ , Ty 1}{ ).  The 
following EM algorithm does this. 
 
 
The EM algorithm 
 
This EM algorithm, an extension of the Shumway and Stoffer (1982) algorithm, has four basic 
steps: 

0) Compute some initial parameter estimates, 11
ˆ,ˆ,ˆ,ˆ,ˆ VBQR π , from which to start the 

algorithm. 
1) Generate an estimate of xt by estimating )}{|( 1

T
t yxE  using the Kalman-Raush recursion 

which gives the maximum likelihood estimates of )}{|( 1
T

t yxE  given 11
ˆ,ˆ,ˆ,ˆ,ˆ VBQR π , and yt.  

The maximum likelihood estimate of )}{|( 1
T

t yxE  is denoted tx̂ . 



2) Update the 11
ˆ,ˆ,ˆ,ˆ,ˆ VBQR π  given the new tx̂  by finding the estimates which maximize the 

updated expected log likelihood (using the updated tx̂ ): ]}{|)}{,}({(log 111
TTT yyxPE=ψ . 

3) Check to see if ψ has converged and no longer increases.  If not converged, return to step 
1. 

 
Writing out and describing the algorithm is rather tedious and long, however the actual code is 
quite trivial and encompasses about a page of text, minus the comments.  Matlab code is given at 
the end of this write-up. 
  
 
Step 0.  Compute initial parameter estimates 
 
To get good final estimates one needs to start the algorithm with reasonable initial parameter 
estimates.  I use the following initial estimates which are based on the parameter estimates 
presented in Holmes and Fagan (2002): 
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The estimate of R̂  is based on the estimate of the non-process error presented briefly in the 
appendix of Holmes and Fagan (2002).  Initial estimates of π1 and V1 are also needed.  I used 

11ˆ y=π  and 1.01̂ =V . 
 
 
Step 1.  The Kalman-Raush recursion 
 
The first part uses the Kalman recursion to estimate )}{|( 1

t
t yxE .  This is a forward recursion 

since we work forward to generate it.  The second part uses the Raush recursion to work 
backwards and compute )}{|( 1

T
t yxE  from )}{|( 1

t
t yxE .  First, some notation: 
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The ultimate goal of these recursions is to compute tx̂ , Pt, and Pt,t-1, which will be needed for 
step 2 of the algorithm. 
 
The Kalman recursion 
To compute t

tx  and t
tV , start at t = 1 and step forward to T.  At each step, compute: 
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This is the well-known Kalman filter, but it looks a little different than what you’ll see in 
engineering texts.  First generally it is assumed that yt is a series of measurements from multiple 
instruments, thus the Kalman filter is always written in matrix form.  Here since yt is one 
measurement, it can be written in scalar form.  Second, the Kalman filter is usually presented for 
the model ,1 tttt wBuAxx ++=+   ttt vCxy += .  In this application, A=1, C=1 and ut =1, so the 
filter is simplified quite a bit. 
 
The Rauch recursion 
Next we work backwards from t = T back to t =  2, to compute T

tx  and T
tV .  This recursion 

requires the t
tx , t

tV , and 1−t
tV  that were generated during the Kalman recursion. 

 



( )( )
( ) 1

1
1

1
11

1
11

1
11

1

1
1

1

−
−

−
−
−−

−
−−

−
−−

−

−
−

−

−+=

+−+=

=

t
t

t
T

tt
t

t
T

t

t
t

T
tt

t
t

T
t

t
t

t
t

t

JVVJVV

BxxJxx

V
V

J

 

 
One more recursion 
Using Jt from the Rauch recursion with Kt and t

tV  from the Kalman recursion, we do another 
backwards recursion to compute, T

ttV 1, − .  Starting from t = T work backwards to t = 2, and at each 
step compute 
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Putting it all together 
Using the three recursions, we can then compute the following, which are needed for step 2 of 
the algorithm. 
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Step 2 Generate new parameter estimates 
The new expected log likelihood function is given by Eqn. 7 with the new xt estimate, tx̂ : 
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To compute the new parameter estimates, we find the new 11

ˆ,ˆ,ˆ,ˆ,ˆ VBQR π  that maximize the new 
ψ.  To do this, we take the partial derivative of ψ with respect to each parameter, set the 
derivative to zero and solve for the maximizing parameter: 
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Step 3 Check for convergence 
A simple way to do this is to compare the new ψ to the previously estimated ψ and check if the 
difference is less than some threshold.  Once the log likelihood converges, you’re done. 
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Matlab code 
 
function [B, Q, R, initx, V1, LL] = PVAKalman(logdata) 
%PVAKalman Find the ML parameters of a stochastic corrupted exponential growth  
%time series using EM 
% 
% [B, Q, R, initx, initV, LL] = PVAKalman(logdata) 
% fits the parameters which are defined as follows 
%   x(t+1) = x(t) + B + w(t), w ~ N(0, Q), x(0) ~ N(initx, initV) 
%   y(t)   = x(t) + v(t), v ~ N(0,R) 
% logdata(t) is a 1 x (1:T) vector of the logged observations; no missing years 
% LL is the vector of the log likelihood values at each iteration; the idea is  
% to maximize this. 
% 
% The algorithm used here is an extension of the method described in  
% Shumway, R. H. and Stoffer, D.S. 1982. An approach to time series smoothing and  
%forecasting using the EM algorithm.  Journal of Time Series Analysis 3(4): 253-264. 
% which is described in Ghahramani, Z. and Hinton, G.E. 1996. Parameter Estimation  
%for LDS.  U. Toronto technical report CRG-TR-96-2. 
% The notation used here follows Ghahramani and Hinton except that I drop the  
%"new" subscripts. 
 
%STEP 0 set the initial estimates 
%Initialize by getting D-H estimates 
T=length(logdata); 
data=exp(logdata); 
runsum = data(1:(T-3))+data(2:(T-2))+data(3:(T-1))+data(4:T); 
B = mean(log(runsum(2:end)./runsum(1:(end-1)))); 
totvar = var(logdata(2:end)-logdata(1:(end-1))); 
Q = (1/3)*(var(log(runsum(4:end)./runsum(1:(end-3))))-... 
   var(log(runsum(2:end)./runsum(1:(end-1))))); 
if(Q < 0) Q = 0.0001; end 
R = (totvar - Q)/2; 
if(R < 0) R = 0.0001; end 
initx = logdata(1); %pi is Ghahramani and Hinton's notation, but pi reserved 
V1 = 0.1; %variance of initx 
y = logdata; 
 
LL=[]; 
converged = 0; 
previous_loglik = -Inf; 
max_iter = 500; 
num_iter = 0; 
 
%run until the max log likelihood is found 
 
while ~converged & (num_iter <= max_iter) 
 
%STEP 1 using these initial estimates generate an estimate of x(t) 
%using a forward and backward pass of the Kalman filter.  This gives 
%you the ML estimate of x(t) given y(1:T) and the parameter estimates. 
 
%initialize 
xtt=zeros(1,T);  Vtt=zeros(1,T); xtt1=zeros(1,T); Vtt1=zeros(1,T); 
xtT=zeros(1,T);  VtT=zeros(1,T); J=zeros(1,T); Vtt1T=zeros(1,T); 
 
%forward pass gets you E[x(t) given y(1:t)] 
x10=initx;   



V10=V1;  
for(t=1:T) 
   if(t==1) 
    xtt1(1) = initx; %denotes x_1^0 
      Vtt1(1) = V1; %denotes V_1^0 
   else 
      xtt1(t) = xtt(t-1) + B; %xtt1 denotes x_t^(t-1) 
      Vtt1(t) = Vtt(t-1) + Q; 
   end 
   Kt = Vtt1(t)/(Vtt1(t)+R); 
   xtt(t) = xtt1(t) + Kt*(y(t) - xtt1(t)); 
   Vtt(t) = Vtt1(t)-Kt*Vtt1(t); 
end 
KT = Kt; 
 
%backward pass gets you E[x(t)|y(1:T)] from E[x(t)|y(1:t)] 
xtT(T) = xtt(T); 
VtT(T) = Vtt(T); 
for(t=T:-1:2) 
   J(t-1) = Vtt(t-1)/Vtt1(t); 
   xtT(t-1) = xtt(t-1) + J(t-1)*(xtT(t)-(xtt(t-1)+B)); 
   VtT(t-1) = Vtt(t-1) + J(t-1)*(VtT(t)-Vtt1(t))*J(t-1); 
end 
xhat = xtT; %estimate of x(t) 
Pt = VtT + xtT.*xtT; %E(x^2 | y] 
 
%run another backward recursion to get E[x(t)x(t-1)|y(T)] 
Vtt1T(T) = (1 - KT)*Vtt(T-1); %this is Var(x(T)x(T-1)|y(T)) 
for(t=T:-1:3) 
   Vtt1T(t-1) = Vtt(t-1)*J(t-2) + J(t-1)*(Vtt1T(t)-Vtt(t-1))*J(t-2); 
end 
Ptt1=[NaN Vtt1T(2:T)+xtT(2:T).*xtT(1:(T-1))]; %Ptt1(1) = NA since 1-1 = 0 
 
%Calculate negative log likelihood for this xhat + B,Q,R,initx,initV1 combo 
loglik = - sum((y-xhat).^2)/(2*R) - T*log(abs(R))/2 ... 
   - sum((xhat(2:T)-(xhat(1:(T-1))+B)).^2)/(2*Q) - (T-1)*log(abs(Q))/2 ... 
   - (xhat(1)-initx)^2/(2*V1) - log(abs(V1))/2 - T*log(2*pi); 
LL=[LL loglik]; 
 
%STEP 2 Re-estimate B,Q,R,initx,initV1 via ML given x(t) estimate 
R = (1/T)*sum(y.*y - xhat.*y); 
B = (xhat(T)-xhat(1))/(T-1); 
Q = sum(Pt(2:T) - 2*Ptt1(2:T) + Pt(1:(T-1)) - B^2)/(T-1); 
initx = xhat(1); 
V1 = Pt(1)-xhat(1)*xhat(1); 
 
%STEP 3 check for convergence 
num_iter = num_iter+1; 
converged = em_converged(loglik, previous_loglik); %subfunction below 
previous_loglik = loglik; 
 
end %while not converged 
 
function converged = em_converged(loglik, previous_loglik, threshold) 
% EM_CONVERGED Has EM converged? 
% [converged, decrease] = em_converged(loglik, previous_loglik, threshold) 
% 
% We have converged if 
%   |f(t) - f(t-1)| / avg < threshold, 
% where avg = (|f(t)| + |f(t-1)|)/2 and f is log lik. 
% threshold defaults to 1e-4. 
% This stopping criterion is from Numerical Recipes in C p423 
 



if nargin < 3 
  threshold = 1e-4; 
end 
 
%log likelihood should increase 
if loglik - previous_loglik < -1e-3 % allow for a little imprecision 
  fprintf(1, '******likelihood decreased from %6.4f to %6.4f!\n', previous_loglik, 
loglik); 
end 
 
delta_loglik = abs(loglik - previous_loglik); 
avg_loglik = (abs(loglik) + abs(previous_loglik) + eps)/2; 
if (delta_loglik / avg_loglik) < threshold 
   converged = 1;  
else converged = 0; end 
 
 


