
An EM algorithm for maximum likelihood estimation given corrupted observations.
E. E. Holmes, National Marine Fisheries Service

Introduction

EM algorithms extend likelihood estimation to cases with hidden states, such as when
observations are corrupted and the true population size is unobserved. The following EM
algorithm is based on the summary by Ghahramani and Hinton (1996) of the algorithm originally
by Shumway and Stoffer (1982) for estimating the parameters of linear dynamical systems from
corrupted observations. The algorithm consists of an estimation step (“E step”), which estimates
the true state using a Kalman-Rauch filter, combined with a measurement step (“M step”), which
gives the maximum likelihood estimates of the parameters given the data and the estimate of the
true state.

EM algorithms and the Kalman filter are well-known and heavily used in engineering and
computer science applications. For some general background on EM algorithms the reader is
referred to McLachlan (1996) and to Harvey (1991) for EM algorithms for time series data.
There are a multitude of books on the Kalman filter. One of the more penetrable introductions is
chapter 1 of Maybeck (1979).

This presentation of an EM algorithm closely follows Ghahramani and Hinton’s notation and
derivation but adapts and extends it to the stochastic population model case.

The state-space model

The diffusion approximation for a stochastic exponential growth model can be written as a linear
state space model (written in the notation familiar in the engineering literature):

),0(Normal~ where, t1 QwwBxx ttt ++=+ [1]
),0(f~ where, t Rvvxy ttt += [2]

where xt = log Nt is the true log population size and yt = log Ot is the log observations of the
population size. B is µ, the mean population growth rate. Q is the σ2, otherwise known as the
process error or environmental variability. R is the variability associated with sampling error or
other non-process error. Only yt, is observed; the underlying parameters, B, Q, and R, and the
underlying true population size, xt, is hidden. If we make the assumption that vt is normally
distributed, then the model is a linear Gaussian state-space model, and we can use the algorithm
by Shumway and Stoffer (1982) for estimating the parameters of the state-space model from yt
alone.

From Eqns. 1 and 2 and the assumption that f() is normal, we can write the following
conditional probabilities:

2/1
2

)2(
2

)(
exp)|(−







 −
−= R

R
xy

xyP tt
tt π [3]

2/1
2

1
1)2(

2
))((

exp)|(−−
−







 +−
−= Q

Q
Bxx

xxP tt
tt π [4]

Given Eqn. 1 and that we are essentially observing an ongoing stochastic process, which we
happen to begin observing at t = 1, then x1 is itself a random variable that is normally distributed
with some mean π1 and variance V1, and thus

2/1
1

1

2
11

1)2(
2

)(exp)(−







 −
−= V

V
xxP π

π [5]

Using the Markov property implicit in the model, the joint probability of the observed time
series, Ty 1}{ ={y1, y2, …, yT} and the true state, Tx 1}{ ={x1, x2, …, xT}, is

)|()|()()}{,}({
1

1
2

111 t

T

t
tt

T

t
t

TT xyPxxPxPyxP ∏∏
=

−
=

= . [6]

The joint log likelihood of Ty 1}{ , Tx 1}{ is:

π
π 2loglog

2
1

2
)(

log
2

1
2

))((

log
22

)(
)}{,}({log

1
1

2
11

2

2
1

1

2

11

TV
V

x

QT
Q

Bxx

RT
R
xy

yxP

T

t

tt

T

t

ttTT

−−
−

−

−
−

+−
−

−
−

−=

∑

∑

=

−

=

 [7]

The goal is to find the estimates of xt, B, R, Q, π1 and V1 that maximize log P(Tx 1}{ , Ty 1}{). The
following EM algorithm does this.

The EM algorithm

This EM algorithm, an extension of the Shumway and Stoffer (1982) algorithm, has four basic
steps:

0) Compute some initial parameter estimates, 11
ˆ,ˆ,ˆ,ˆ,ˆ VBQR π , from which to start the

algorithm.
1) Generate an estimate of xt by estimating)}{|(1

T
t yxE using the Kalman-Raush recursion

which gives the maximum likelihood estimates of)}{|(1
T

t yxE given 11
ˆ,ˆ,ˆ,ˆ,ˆ VBQR π , and yt.

The maximum likelihood estimate of)}{|(1
T

t yxE is denoted tx̂ .

2) Update the 11
ˆ,ˆ,ˆ,ˆ,ˆ VBQR π given the new tx̂ by finding the estimates which maximize the

updated expected log likelihood (using the updated tx̂):]}{|)}{,}({(log 111
TTT yyxPE=ψ .

3) Check to see if ψ has converged and no longer increases. If not converged, return to step
1.

Writing out and describing the algorithm is rather tedious and long, however the actual code is
quite trivial and encompasses about a page of text, minus the comments. Matlab code is given at
the end of this write-up.

Step 0. Compute initial parameter estimates

To get good final estimates one needs to start the algorithm with reasonable initial parameter
estimates. I use the following initial estimates which are based on the parameter estimates
presented in Holmes and Fagan (2002):

()

()QyyR

yyyyQ

T
yy

B

yy

tt

tttt

T

t

ti
it

ˆ)(Var
2
1ˆ

)~~(Var)~~(Var
3
1ˆ

4
)~~(ˆ

~

1

14

13

3

−−=

−−−=

−
−

=

=

+

++

−

+

=
∑

The estimate of R̂ is based on the estimate of the non-process error presented briefly in the
appendix of Holmes and Fagan (2002). Initial estimates of π1 and V1 are also needed. I used

11ˆ y=π and 1.01̂ =V .

Step 1. The Kalman-Raush recursion

The first part uses the Kalman recursion to estimate)}{|(1

t
t yxE . This is a forward recursion

since we work forward to generate it. The second part uses the Raush recursion to work
backwards and compute)}{|(1

T
t yxE from)}{|(1

t
t yxE . First, some notation:

T
t

T
t

T
tt

T
tttt

T
t

T
t

T
t

T
ttt

tttt

tt

tt

T
tt

xxVyxxEP

xxVyxxEP

yxxV

yxV

yxEx

yxEx

yyyy

11,111,

1

111,

1

1

1

211

]}{|[

]}{|[

]}{|,[Cov

]}{|[Var

]}{|[

]}{|[ˆ
},,,{}{

−−−−

−−

+≡≡

+≡≡

≡

≡

≡

≡

≡

ττ

ττ

ττ

τ
τ K

The ultimate goal of these recursions is to compute tx̂ , Pt, and Pt,t-1, which will be needed for
step 2 of the algorithm.

The Kalman recursion
To compute t

tx and t
tV , start at t = 1 and step forward to T. At each step, compute:

()
()

11

11

1

1

1
1

11

1
1

11

ˆ

1for ˆ
1for ˆ
1for ˆ
1for ˆ

−−

−−

−

−

−
−

−

−
−

−

−=

−+=

+
=





>+
=

=





>+
=

=

t
tt

t
t

t
t

t
ttt

t
t

t
t

t
t

t
t

t

t
t

t
t

t
t

t
t

VKVV

xyKxx

RV
V

K

tQV
tVV

tBx
t

x
π

This is the well-known Kalman filter, but it looks a little different than what you’ll see in
engineering texts. First generally it is assumed that yt is a series of measurements from multiple
instruments, thus the Kalman filter is always written in matrix form. Here since yt is one
measurement, it can be written in scalar form. Second, the Kalman filter is usually presented for
the model ,1 tttt wBuAxx ++=+ ttt vCxy += . In this application, A=1, C=1 and ut =1, so the
filter is simplified quite a bit.

The Rauch recursion
Next we work backwards from t = T back to t = 2, to compute T

tx and T
tV . This recursion

requires the t
tx , t

tV , and 1−t
tV that were generated during the Kalman recursion.

()()
() 1

1
1

1
11

1
11

1
11

1

1
1

1

−
−

−
−
−−

−
−−

−
−−

−

−
−

−

−+=

+−+=

=

t
t

t
T

tt
t

t
T

t

t
t

T
tt

t
t

T
t

t
t

t
t

t

JVVJVV

BxxJxx

V
V

J

One more recursion
Using Jt from the Rauch recursion with Kt and t

tV from the Kalman recursion, we do another
backwards recursion to compute, T

ttV 1, − . Starting from t = T work backwards to t = 2, and at each
step compute

()



<+
=−

=
−

−
−−−−

−
−

−
−

− TtJVVJJV
TtVK

V
t

t
t

T
tttt

t
t

T
TTT

tt for -
for)1(

2
1

11,12
1

1

1
1

1,

Putting it all together
Using the three recursions, we can then compute the following, which are needed for step 2 of
the algorithm.

T
t

T
t

T
tttt

T
t

T
t

T
tt

T
tt

xxVP

xxVP

xx

11,1,

ˆ

−−− +=

+=

=

Step 2 Generate new parameter estimates
The new expected log likelihood function is given by Eqn. 7 with the new xt estimate, tx̂ :

]}{|)}{,}({(log 111
TTT yyxPE=ψ using new tx̂ .

To compute the new parameter estimates, we find the new 11

ˆ,ˆ,ˆ,ˆ,ˆ VBQR π that maximize the new
ψ. To do this, we take the partial derivative of ψ with respect to each parameter, set the
derivative to zero and solve for the maximizing parameter:

∑

∑

∑∑

=

=

=

−

=

−
−

=

=+−=
∂
∂

T

t
t

T

t
tt

new

t

T

t
tt

T

t

P

xy
C

PRxyR
R

1

1

1

1

1

1
1

ˆ
ˆ

0ˆψ

()
1
ˆˆˆˆˆ

0ˆˆ

1

2
1

1
1

2

1

2

1

−
−

=−=

=++−=
∂
∂

∑

∑∑

=
−

−
−

=

−

=

−

T
xxxxB

BQxQxQ
B

T
T

t
ttnew

t

T

t

T

t
t

ψ

()

()

()

()∑

∑

∑

∑

∑

=
−−

=
−

=
−−−

=
−−−

=
−−−

−+−
−

=

−=

+−−+−−
−

=

+++=−−−
−

=

+++−−
−

=
∂
∂

T

t
newttttnew

T

t
tt

T

t
tttttt

T

t
tttttt

T

t
tttt

BPPP
T

Q

xxB

BxxBxxxxQT

BxBxBxxxxQT

BxBxxxQT
Q

2

2
11,

2
1

2

2
1

2
11

2

2

2
1

2
11

2

2

2
11

2
1

ˆ2
1

1ˆ

)ˆˆ(ˆ given that

)ˆˆ(2ˆˆˆ2ˆ
2
1

2
1

ˆ2ˆ)ˆ2ˆˆ2ˆ
2
1

2
1

)ˆ()ˆ(ˆ2ˆ
2
1

2
1ψ

1,1

1

11

1

ˆˆ

0
)ˆ(

x
V

x

new =

=
−

=
∂
∂

π

π
π
ψ

()
2

,11,1

2
111

2
111

1

1

1

ˆ

0ˆ2ˆ
2
1

2
1

newnew PV

xxV
V

π

ππψ

−=

=+−−=
∂
∂

−

Step 3 Check for convergence
A simple way to do this is to compare the new ψ to the previously estimated ψ and check if the
difference is less than some threshold. Once the log likelihood converges, you’re done.

References

Ghahramani, Z. and G. E. Hinton. 1996. Parameter estimation for linear dynamical systems.
Technical report CRG-TR-96-2. University of Toronto, Department of Computer Science,
Toronto, Canada.

Harvey, A. C. 1991. Forecasting, structural time series models and the Kalman filter.
Cambridge University Press, Cambridge, UK.

Holmes, E. E. and W. F. Fagan. 2002. Validating population viability analysis for corrupted
data sets. Ecology 83: 2379-2386.

McLachlan, G. M. 1996. The EM algorithm and extensions. Wiley, USA.
Maybeck, P. S. 1979. Stochastic models, estimation and control. Volume 1. Academic

Press, New York, USA.

Shumway, R. H. and Stoffer, D. S. 1982. An approach to time series smoothing and forecasting
using the EM algorithm. Journal of Time Series Analysis 3(4):253-264.

Matlab code

function [B, Q, R, initx, V1, LL] = PVAKalman(logdata)
%PVAKalman Find the ML parameters of a stochastic corrupted exponential growth
%time series using EM
%
% [B, Q, R, initx, initV, LL] = PVAKalman(logdata)
% fits the parameters which are defined as follows
% x(t+1) = x(t) + B + w(t), w ~ N(0, Q), x(0) ~ N(initx, initV)
% y(t) = x(t) + v(t), v ~ N(0,R)
% logdata(t) is a 1 x (1:T) vector of the logged observations; no missing years
% LL is the vector of the log likelihood values at each iteration; the idea is
% to maximize this.
%
% The algorithm used here is an extension of the method described in
% Shumway, R. H. and Stoffer, D.S. 1982. An approach to time series smoothing and
%forecasting using the EM algorithm. Journal of Time Series Analysis 3(4): 253-264.
% which is described in Ghahramani, Z. and Hinton, G.E. 1996. Parameter Estimation
%for LDS. U. Toronto technical report CRG-TR-96-2.
% The notation used here follows Ghahramani and Hinton except that I drop the
%"new" subscripts.

%STEP 0 set the initial estimates
%Initialize by getting D-H estimates
T=length(logdata);
data=exp(logdata);
runsum = data(1:(T-3))+data(2:(T-2))+data(3:(T-1))+data(4:T);
B = mean(log(runsum(2:end)./runsum(1:(end-1))));
totvar = var(logdata(2:end)-logdata(1:(end-1)));
Q = (1/3)*(var(log(runsum(4:end)./runsum(1:(end-3))))-...
 var(log(runsum(2:end)./runsum(1:(end-1)))));
if(Q < 0) Q = 0.0001; end
R = (totvar - Q)/2;
if(R < 0) R = 0.0001; end
initx = logdata(1); %pi is Ghahramani and Hinton's notation, but pi reserved
V1 = 0.1; %variance of initx
y = logdata;

LL=[];
converged = 0;
previous_loglik = -Inf;
max_iter = 500;
num_iter = 0;

%run until the max log likelihood is found

while ~converged & (num_iter <= max_iter)

%STEP 1 using these initial estimates generate an estimate of x(t)
%using a forward and backward pass of the Kalman filter. This gives
%you the ML estimate of x(t) given y(1:T) and the parameter estimates.

%initialize
xtt=zeros(1,T); Vtt=zeros(1,T); xtt1=zeros(1,T); Vtt1=zeros(1,T);
xtT=zeros(1,T); VtT=zeros(1,T); J=zeros(1,T); Vtt1T=zeros(1,T);

%forward pass gets you E[x(t) given y(1:t)]
x10=initx;

V10=V1;
for(t=1:T)
 if(t==1)
 xtt1(1) = initx; %denotes x_1^0
 Vtt1(1) = V1; %denotes V_1^0
 else
 xtt1(t) = xtt(t-1) + B; %xtt1 denotes x_t^(t-1)
 Vtt1(t) = Vtt(t-1) + Q;
 end
 Kt = Vtt1(t)/(Vtt1(t)+R);
 xtt(t) = xtt1(t) + Kt*(y(t) - xtt1(t));
 Vtt(t) = Vtt1(t)-Kt*Vtt1(t);
end
KT = Kt;

%backward pass gets you E[x(t)|y(1:T)] from E[x(t)|y(1:t)]
xtT(T) = xtt(T);
VtT(T) = Vtt(T);
for(t=T:-1:2)
 J(t-1) = Vtt(t-1)/Vtt1(t);
 xtT(t-1) = xtt(t-1) + J(t-1)*(xtT(t)-(xtt(t-1)+B));
 VtT(t-1) = Vtt(t-1) + J(t-1)*(VtT(t)-Vtt1(t))*J(t-1);
end
xhat = xtT; %estimate of x(t)
Pt = VtT + xtT.*xtT; %E(x^2 | y]

%run another backward recursion to get E[x(t)x(t-1)|y(T)]
Vtt1T(T) = (1 - KT)*Vtt(T-1); %this is Var(x(T)x(T-1)|y(T))
for(t=T:-1:3)
 Vtt1T(t-1) = Vtt(t-1)*J(t-2) + J(t-1)*(Vtt1T(t)-Vtt(t-1))*J(t-2);
end
Ptt1=[NaN Vtt1T(2:T)+xtT(2:T).*xtT(1:(T-1))]; %Ptt1(1) = NA since 1-1 = 0

%Calculate negative log likelihood for this xhat + B,Q,R,initx,initV1 combo
loglik = - sum((y-xhat).^2)/(2*R) - T*log(abs(R))/2 ...
 - sum((xhat(2:T)-(xhat(1:(T-1))+B)).^2)/(2*Q) - (T-1)*log(abs(Q))/2 ...
 - (xhat(1)-initx)^2/(2*V1) - log(abs(V1))/2 - T*log(2*pi);
LL=[LL loglik];

%STEP 2 Re-estimate B,Q,R,initx,initV1 via ML given x(t) estimate
R = (1/T)*sum(y.*y - xhat.*y);
B = (xhat(T)-xhat(1))/(T-1);
Q = sum(Pt(2:T) - 2*Ptt1(2:T) + Pt(1:(T-1)) - B^2)/(T-1);
initx = xhat(1);
V1 = Pt(1)-xhat(1)*xhat(1);

%STEP 3 check for convergence
num_iter = num_iter+1;
converged = em_converged(loglik, previous_loglik); %subfunction below
previous_loglik = loglik;

end %while not converged

function converged = em_converged(loglik, previous_loglik, threshold)
% EM_CONVERGED Has EM converged?
% [converged, decrease] = em_converged(loglik, previous_loglik, threshold)
%
% We have converged if
% |f(t) - f(t-1)| / avg < threshold,
% where avg = (|f(t)| + |f(t-1)|)/2 and f is log lik.
% threshold defaults to 1e-4.
% This stopping criterion is from Numerical Recipes in C p423

if nargin < 3
 threshold = 1e-4;
end

%log likelihood should increase
if loglik - previous_loglik < -1e-3 % allow for a little imprecision
 fprintf(1, '******likelihood decreased from %6.4f to %6.4f!\n', previous_loglik,
loglik);
end

delta_loglik = abs(loglik - previous_loglik);
avg_loglik = (abs(loglik) + abs(previous_loglik) + eps)/2;
if (delta_loglik / avg_loglik) < threshold
 converged = 1;
else converged = 0; end

