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Abstract. The random-walk-with-drift model of population dynamics is an important
tool in conservation biology, partly because its parameters are easily estimated from periodic
observations of population size. Estimating the model with noisy data is problematic,
however, because the commonly used estimators of process variation are biased if population
abundance measurements are imprecise, and a recently developed method that attempts to
remove this bias is not robust. In this paper, I show how the random-walk-with-drift model
can be applied to noisy time series of population estimates by converting the random-walk-
with-drift model to state-space form and applying the Kalman filter to yield the likelihood
of the data. The likelihood function allows the variances of the process error and mea-
surement error and the growth rate of the population to be estimated in a way that is robust
and fully supported by statistical theory. Comparative analysis using simulated data indi-
cates that the Kalman-filter method reduces the bias in estimates of process variance without
yielding negative variance estimates. I apply the method to California sea otter and Yel-
lowstone grizzly bear data to illustrate how the method (and simple extensions) can be
used to assess the status of real populations. California sea otters appear to have little risk
of extinction over the next 100 years although the population may not be secure over the
long term if a recent apparent cessation of population growth persists. The grizzly bear
population appears to have responded positively to the 1988 Yellowstone fires, and if the
population continues to grow at the average rate observed over the study period, it is
extremely unlikely to go extinct.

Key words: diffusion approximation; extinction model; grizzly bear, Yellowstone population;
Kalman filter; measurement errors bias parameter estimates; parameter estimation; random walk; sea
otter, California population; state-space model.

INTRODUCTION

Ecologists are often faced with the problem of pre-
dicting the future of populations from periodic counts
of abundance. Simple population models, like the ran-
dom-walk-with-drift (Dennis et al. 1991) or ceiling
(Foley 1994) models, can provide limited but important
inferences from count data such as estimates of pop-
ulation growth rate and the probability of extinction.
The utility of these models is limited in part by im-
precise estimates of population size, which reduce the
accuracy and precision of parameter estimates (Ludwig
1999).

When the parameters of a population model must be
estimated from time-series data, it is usual to assume
that stochasticity arises from measurement error or pro-
cess error, but not both (Hilborn and Mangel 1997). A
process-error model of population dynamics assumes
that variation comes from the population growth pro-
cess (e.g., random birth–death processes, environmen-
tally driven variation in survival) and that observations
are made without error. A measurement-error model
assumes that changes in population size are determin-
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istic and that measurements of population size are made
with error. Measurement errors can be viewed as noise
that obscures the signal of the true population dynam-
ics. Some models, such as the random-walk-with-drift
model of population growth (e.g., Dennis et al. 1991),
are by definition process-error models; however, these
models must be estimated from noisy data. If mea-
surement error is significant but ignored, predictions
about the future behavior of a population can be grossly
in error because process variation is overestimated
(Dennis et al. 1991, Meir and Fagan 2000, Holmes
2001).

Holmes (2001) proposes a method for estimating the
process-error variance ( ) and rate of population2sp

growth (m) for the random-walk-with-drift model from
noisy estimates of population size. The method exploits
the fact that, for a population following a random walk,
Var(Xt 2 Xt2t) increases linearly with t, where Xt is the
log-transformed population size estimate and t is the
time gap between observations. Measurement error, on
the other hand, does not cause Var(Xt 2 Xt2t) to increase
as t increases. Holmes’s (2001) ‘‘slope’’ estimator of

is simply the slope of Var(Xt 2 Xt2t) vs. t, which2sp

can be estimated by linear regression. While this meth-
od is a significant advance over the estimators of Den-
nis et al. (1991), it has a few problems. It is ad hoc,
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and the properties of the estimator are not well under-
stood. One must choose some maximum value of t,
and the results can be sensitive to that choice. The
method is not based on likelihood, which complicates
estimation of parameter uncertainty and precludes tak-
ing advantage of Bayesian analyses. Additionally, the
slope estimator is not robust: it can generate negative
variance estimates when applied to real data or to sim-
ulated data generated by a random-walk process.

State-space modeling, a method of time-series anal-
ysis, offers an alternative to the Holmes method. State-
space population models treat the population process
and the observation process separately and provide a
way to estimate the variances of both the observation
error and the process error. In this paper, I recast the
random-walk-with-drift model as a state-space model
and show how the Kalman filter can be used to calculate
the likelihood of the data, providing a robust way to
estimate from noisy data. The performance of the2sp

Kalman-filter-based method is compared to that of the
slope method and the maximum-likelihood method of
Dennis et al. (1991) by application to simulated data.
To further illustrate the state-space method, I apply it
to population data for the threatened California sea
otter (Enhydra lutris L.) and the Yellowstone grizzly
bear (Ursus arctos L.).

METHODS

In this section I briefly review the random-walk-
with-drift model and show how it can be placed into
state-space form. I then present the likelihood function
and describe two ways it can be used to estimate the
unknown parameters. Finally, I discuss some diagnos-
tics useful for testing whether the assumptions of the
random-walk-with-drift model are met by the data, and
a way to compare formally the simple random-walk-
with-drift model to extensions of the random-walk-
with-drift model.

The random-walk-with-drift model

In the random-walk-with-drift model, a population
grows or declines exponentially with time according
to a randomly varying growth rate:

N 5 N exp(m 1 « )t t21 t (1)

where Nt is the population size at time t, m is the mean
rate of population growth, and «t is a random deviation
in growth rate (a ‘‘process error’’) with mean 0 and
variance . When «t is a normal random variable, Nt

2sp

is a lognormal random variable. If we define Xt 5
log(Nt), the process can be represented as a linear func-
tion:

X 5 X 1 m 1 « .t t21 t (2)

The behavior of the discrete-time random-walk-
with-drift process can be approximated by a continu-
ous-time diffusion process. Based on the diffusion ap-
proximation, analytical expressions for various extinc-

tion parameters (e.g., probability of crossing certain
thresholds within certain times and the mean time to
cross these thresholds) are available that are functions
of Xt, m, and ; see Dennis et al. (1991). The random-2sp

walk-with-drift model is attractive because it can be
applied in situations where only population abundance
data are available and because its theoretical properties
are well understood.

The random-walk-with-drift model of population
growth has several implicit assumptions. One assump-
tion is that the population dynamics can be represented
adequately by a first-order autoregressive process, i.e.,
the age structure of the population is unimportant. Oth-
er assumptions are that the effects of density depen-
dence can be ignored and that serially uncorrelated
Gaussian noise adequately represents the process var-
iation. Finally, it is assumed that Xt is measured without
error. Dennis et al. (1991) discuss why the first three
assumptions are often reasonable. The last assumption
can be relaxed by relying on a probability structure for
the observations associated with the estimation of Xt.
State-space theory and the Kalman filter provide a sta-
tistically rigorous framework for doing exactly that.

State-space models

In this subsection, I show how the random-walk-
with-drift model can be recast as a state-space model.
The term ‘‘state’’ refers to the true state of nature, such
as the real size of a population. Typically, we cannot
know the true state of nature, but must make inferences
about it from observations that may be somewhat un-
certain. State-space models describe two time series
evolving in parallel. The true state of nature produces
the first time series. The state transition equations de-
scribe how the true state of nature evolves stochasti-
cally with time as a first-order Markov process. Ob-
servations of the state form the second time series. The
observation equations describe how observations of the
state are produced. These observations might be im-
precise and inaccurate.

Eq. 2 describes how the true population size changes
with time, and is therefore a state equation. The Kalman
filter operates on matrices, however, which requires that
Eq. 2 be put into matrix notation. This is done by con-
structing the vector xt 5 [Xt m]T. The vector xt is known
as the state vector. The state evolves stochastically over
time according to

x 5 Ax 1 h .t t21 t (3)

The transition matrix A is [1 1;0 1] and ht is a vector
with mean 5 0 and variance–covariance Q 5 [ 0; 02sp

0] that represents process-error variation. Xt is a normal
random variable with mean m 1 Xt21 and variance .2sp

Note that, as in Eq. 2, m is a fixed parameter.
Typically, we cannot know Xt directly, but we can

estimate it with some sort of population survey. A uni-
variate observation at time t (yt) is related to xt by the
measurement equation:
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y 5 cx 1 «*t t t (4)

where c is a row vector [1 0] relating the observation
to the state, and is a measurement error with mean«*t
5 0 and variance 5 r 5 . The observation yt is2sm

therefore a random variable with mean Xt and variance
. Note that c 5 [1 0] implies that m is not observed.2sm

To complete the definition of the probabilistic model,
we must specify an initial distribution for the state,
defined by a mean x0 5 [X0 m]T and variance–covariance
P0 5 [Var(X0) 0; 0 0]. Given the initial state distribution
and A, c, Q, and r, the Kalman filter provides optimal
estimates of xt, as well as the likelihood of the data
(Harvey 1989).

The Kalman filter

The Kalman filter is a recursive algorithm that es-
timates the mean and covariance of the state at time t
from the observation at time t and the mean and co-
variance of the state at time t 2 1. In this subsection,
I provide the form of the Kalman filter as applicable
to the random-walk-with-drift model; Harvey (1989)
provides an accessible explanation of the general form
and a complete derivation of the Kalman filter.

Let x̂t denote the estimate of xt based on observations
up to and including yt. Let Pt denote the covariance
matrix of the estimation error:

TP 5 E[(x 2 x̂ )(x 2 x̂ ) ]. (5)t t t t t

Application of the Kalman filter consists of predicting
the new state value before a new observation is ob-
tained, and then updating the prediction when the new
observation is available. The state is predicted by prop-
agating the previous state estimate through the tran-
sition equation:

x̂ 5 Ax̂ .t zt21 t21 (6)

The covariance of the prediction error is the sum of
the covariance of the estimation error associated with
x̂t21 and the covariance of the process error:

P 5 P 1 Q.t zt21 t21 (7)

Eqs. 6 and 7 are called the ‘‘prediction equations.’’ Note
that in general, Eq. 7 would be Ptzt21 5 APt21AT 1 Q,
but for the random-walk-with-drift model, APt21AT 5
Pt21.

When a new observation yt is obtained, the prediction
error vt is evaluated as

v 5 y 2 cx̂t t t zt21 (8)

and x̂t and Pt are updated. The state estimate is moved
towards the observation according to the observation
accuracy:

T 21x̂ 5 x̂ 1 P c f v (9)t t | t21 t | t21 t t

where

Tf 5 cP c 1 r. (10)t t | t21

Similarly, the uncertainty about x̂t is reduced by in-
formation provided by the new observation:

T 21P 5 P 2 P c f cP . (11)t t | t21 t | t21 t t | t21

Eqs. 9 and 11 are termed the ‘‘updating equations.’’
The recursion is initiated with the initial distribution

of the state defined by a mean x0 and covariance P0.
For population data, usually nothing is known about
x0. In such situations, the filter can be initiated with a
diffuse prior distribution.

Parameter estimation

The key to estimating the unknown parameters m,
, and is the likelihood (L) of the data conditional2 2s sp m

on these parameters, which is a function of ft and vt

(Harvey 1989):

T T 2T 1 1 v tlog L 5 2 log 2p 2 log f 2 (12)O Ot2 2 2 ft51 t51 t

where T is the length of the observation series. This
likelihood could be used directly for parameter esti-
mation, although the dimension of the problem can be
reduced by reparameterizing the model in terms of a
signal-to-noise ratio (Harvey 1989). This is accom-
plished by defining Q as [s 0; 0 0] and letting Var(ht)
5 Q. Likewise, set r 5 1 and let Var( ) 5 r.2 2s «* sm t m

The parameter s is interpreted as the signal-to-noise
ratio. The unknown parameters are then m and s, de-
noted as the vector c; and are functions of c2 2s sp m

and the data. The concentrated likelihood of yt, for t
5 1, . . . T, conditional on c, is given by

T
log L(c) 5 2 log(2p 1 1)

2

T1 T
22 log f 2 log s (c) (13)O t m2 2t51

where

T2 2s (c) 1 vp t2s (c) 5 5 . (14)Om s T ft51 t

To initiate the Kalman filter for the purpose of calcu-
lating the likelihood, the first observation is used to
form a prior distribution for x0. This is accomplished
by setting x1 5 [y1 m]T and P1 5 [ 1 0; 0 0] and2 2s sp m

running the sums in Eq. 13 from t 5 2, . . . , T (Durbin
and Koopman 2001). Numerical stability can be im-
proved by log-transforming the signal-to-noise ratio s
in order to avoid bounding s to nonnegative values.

Point estimates of c can be obtained by numerically
maximizing Eq. 13 with respect to c, and subsequently
these point estimates could be used to calculate esti-
mates of various extinction-risk metrics. Point esti-
mates can be misleading, however, because without
large amounts of data, estimates are often not pre-2sp

cise, regardless of the estimation algorithm used. Mod-
erate uncertainty in can translate into large uncer-2sp

tainty in extinction parameters (Ludwig 1996), making
it desirable to account for parameter uncertainty when
assessing real populations of conservation concern.
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This entails estimating the joint probability density of
c conditional on the observations ( p (c z yT)), and in-
tegrating risk metric equations over this joint proba-
bility distribution. Markov chain Monte Carlo methods
(MCMC), such as the Metropolis-Hastings algorithm
(Metropolis et al. 1953, Hastings 1970), offer a con-
venient way to perform this integration. The Metrop-
olis-Hastings algorithm generates a sample from
p(c z yT) that can be used to estimate the moments of
p(c z yT) as well as the moments of functions of c
(Gilks et al. 1996). While this approach is computa-
tionally intensive, it is easily handled by modern per-
sonal computers and is not difficult to implement.

Diagnostics for state-space models

The assumptions of the random-walk-with-drift
model must be met for the model to provide reasonable
predictions of the distribution of future population size.
For this reason Dennis et al. (1991) suggest that model
diagnostics be used to test assumptions when inter-
preting the results of analyses based on the random-
walk-with-drift model. The algorithm proposed by
Dennis et al. (1991) is based on linear regression, mak-
ing available the full suite of well-developed regression
model diagnostics, many of which are available in com-
mon statistics software packages. For state-space mod-
els, diagnostics are based on the prediction errors,
which by definition should be Normal(0, s2) indepen-
dent random variables (Harvey 1989). Brown et al.
(1975) describe graphical procedures for evaluating the
cumulative prediction errors and cumulative squared
prediction errors that can detect temporal instability of
the model parameters. The prediction errors can also
be checked for nonnormality, heteroscedasticty, and se-
rial autocorrelation with the usual tests. Together, these
procedures test for violation of the assumptions un-
derlying the random-walk-with-drift model.

Another approach to testing some of the assumptions
of the random-walk-with-drift model is to compare its
fit to that of models that relax these assumptions. For
example, one might want to consider models where m
is a function of time or some other covariate. Alter-
native models can be compared rigorously using Akai-
ke’s Information Criterion (AIC), which is a simple
function of the maximized log likelihood and the num-
ber of estimated parameters (K ):

AIC 5 22 log(L(c z y)) 1 2K. (15)

An AIC for an alternative model that is substantially
lower than that of the simple random-walk-with-drift
model (by, say, more than 2) indicates substantial sup-
port for the alternative model (Burnham and Anderson
1998). Because the Kalman filter supplies log(L(c z y))
and the state-space form can accommodate many mod-
els, the state-space framework facilitates such model
comparisons.

Simulation study of estimator performance

While the application of the Kalman filter to models
cast in state-space form offers a theoretically sound
basis for estimating and m from noisy observations,2sp

intuition suggests that short data series might not con-
tain enough information to allow separation of and2sp

. I conducted simulations to test the performance of2sm

the Kalman filter under different conditions of , ,2 2s sp m

and T, and to compare this performance to that of the
Dennis et al. (1991) and Holmes (2001) estimators. In
all cases, simulated data were created using Eqs. 3 and
4. Several values of , , and time-series length were2 2s sp m

explored, and 1000 time series were simulated for each
combination. The Kalman-filter point estimates were
produced by minimizing the negative log likelihood
using the Nelder-Mead simplex algorithm for uncon-
strained minimization of a function with several un-
knowns (Nelder and Mead 1965).

Examples

The method outlined above was applied to California
sea otter and Yellowstone grizzly bear population data.
In both cases, the population might have experienced
a change in m during the period of observation, so a
step-change model that admits such a change is com-
pared to the basic constant-m version of the random-
walk-with-drift model. In the step-change model, m is
assumed to be constant within time periods separated
by a change point tc, but may vary between time pe-
riods:

m for t , tc
m 5 (16)t 5m 1 d for t $ t .c

For both models, I used the Metropolis algorithm to
generate a sample from the posterior distribution of
p(c z yT) (note that c now contains d for the step-change
model). I then used the sample to estimate central prob-
ability intervals and modes of p(c z yT) and functions
of p(c z yT), such as , , and various extinction pa-2 2s sp m

rameters. Weak prior distributions (Normal(0, 5)) were
placed on the log-transformed s to create a proper pos-
terior. This can be important for models containing the
parameter s because the log likelihood of some data is
flat as s → ` and as s → 0.

Sea otters.—Sea otters (Enhydra lutris) were once
abundant in near-shore waters from Baja California to
northern Japan, but were hunted to the brink of ex-
tinction by the late 1800s. Hunting was banned in 1911,
and sea otter populations subsequently increased. The
California sea otter population comprises a distinct
subspecies (E. lutris nereis) and has grown at a slower
rate than other populations (Estes 1990). The popula-
tion now numbers somewhat more than 2000 individ-
uals. The California sea otter was listed as a threatened
species under the U.S. Endangered Species Act (ESA)
in 1973. It has been hypothesized that the California
sea otter population ceased growing about 1995, per-
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haps due to increased mortality as indicated by obser-
vations of beach-cast carcasses (USGS, public com-
munication).2 The constant-m and step-change model,
with tc 5 1995, were fit to the data.

The entire California sea otter population has been
counted twice annually since 1983. Observations are
made from shore and fixed-wing aircraft by two-person
teams. Surveys extend from Santa Barbara to Half
Moon Bay. The data used in this analysis are total
springtime otter abundance, obtained from the USGS
Western Ecological Research Center (Sacramento, Cal-
ifornia, USA). Estes and Jameson (1988) estimated that
these surveys have a sighting probability of 0.945,
which implies that, given binomial sampling variation,
estimates of a sea otter population of 2000 individuals
have a coefficient of variation of about 0.005. This is
a lower bound for measurement error because other
sources of variation are presumably present in the sur-
vey estimates.

Grizzly bears.—Grizzly bears (Ursus arctos horri-
bilis) once ranged over a third of the continental United
States, but have been reduced to a few isolated pop-
ulations in wilderness areas of Idaho, Montana, Wash-
ington, and Wyoming. Grizzly bears in the continental
United States are currently listed as threatened under
the ESA. Yellowstone National Park contains the larg-
est, but most isolated, of the five remaining populations
of grizzly bears in the continental United States. The
Yellowstone grizzly bear population data were ana-
lyzed by Dennis et al. (1991) using the data available
up to 1987, and the random-walk-with-drift model in-
dicated that Yellowstone’s grizzly bear population was
doomed to extinction, although extinction was not ex-
pected within 500 years. The data consist of visual
counts of unique females with cubs made by observers
on the ground and in the air. The field methods are
described by Knight et al. (1995), and more recent data
are reported in Haroldson (2000). A three-year running
sum is applied to the annual counts to reflect the fact
that females reproduce no more frequently than every
three years (Knight and Eberhardt 1985).

Dennis et al. (1991) speculated that effects of the
large fires in 1988 might be detectable in a future anal-
ysis of the grizzly bear population data. I therefore
analyzed the grizzly bear data with the constant-m and
step-change models (with tc 5 1988).

RESULTS AND DISCUSSION

Analysis of simulated data

Estimation accuracy and precision for the mean rate
of population growth, m, was similar for all three al-
gorithms (results not shown), but different for the pro-
cess-error variance, . Fig. 1 shows the distribution2sp

of for different combinations of true and with2 2 2ŝ s sp p m

different amounts of data (T). Several patterns are ap-
parent. As expected, the Dennis algorithm (Dennis et

2 URL: ^http://www.werc.usgs.gov/news/1999-06-21.html&

al. 1991) overestimates when series contain sub-2sp

stantial measurement error (Fig. 1A and C). The mean
and variance of estimates are similar for both the2sp

Kalman-filter algorithm and Holmes (2001) algorithm.
The Holmes algorithm, however, is prone to negative

estimates when . (Fig. 1B) and T is short.2 2 2s s sp m p

Both the Kalman-filter algorithm and Holmes algorithm
tend to underestimate when T is short, but this bias2sp

declines with increasing T. When # , (Fig. 1A2 2s sp m

and C), both the Kalman-filter algorithm and Holmes
algorithm do a much better job of estimating than2sp

the Dennis algorithm.
Negative bias in estimates when time series are2sp

short is worrisome because extinction risk will tend to
be underestimated in these cases. If any independent
information is available on measurement precision,
bias could be reduced and precision increased by spec-
ifying an informative prior distribution for . Taking2sm

a Bayesian approach would also address the problem
of imprecision in estimates. None of the three al-2sp

gorithms provide very precise estimates of , even2sp

when T is fairly large ($60 observations). Because
extinction-risk metrics are highly nonlinear functions
of , the uncertainty in estimates should be ac-2 2s sp p

counted for in any population assessment used for man-
agement. A Bayesian assessment is therefore appro-
priate (Ludwig 1996).

Analysis of empirical data

California sea otter.—Fig. 2 shows the time series
of sea otter observations and estimates of the true pop-
ulation size produced by the Kalman filter using the
maximum-likelihood estimates (MLEs) for m, , and2sp

for the constant-m model. Table 1 gives MLEs and2sm

90% central probability intervals of m, , , and as-2 2s sp m

sociated extinction parameters for the step-change and
constant-m models. The AIC for the step-change model
is 3.22 lower than for the constant-m model, which
indicates the step-change model is a substantially better
approximation to the data than the constant-m model.
For both models, about half the variance is attributed
to process variation, although the estimate of the sig-
nal-to-noise ratio (s) is not very precise (CV [coefficient
of variation] 5 0.43–0.47). This indicates substantial
uncertainty about the relative importance of process
and measurement variation in generating variation in
abundance estimates.

The estimate of can be compared to the CV ex-2sm

pected from binomial sampling, noting that is the2Ïsm

standard deviation of the (multiplicative) measurement
error assumed by the random-walk-with-drift model
and therefore comparable to a CV. The CV expected
from sampling 94.5% of a population of roughly 2000
individuals falls towards the lower end of the 90%
central probability interval of , implying that other2Ïsm

sources of sampling variation are present (e.g., varia-
tion in observation conditions) or that the proportion
of the population observed is ,0.945.
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FIG. 1. Distribution of process-error variance ( ) estimates for the Kalman filter (KF), Holmes algorithm (HA; Holmes2sp

2001), and Dennis algorithm (DA; Dennis et al. 1991) when applied to simulated random-walk-with-drift data of different
length created with various levels of process variation and measurement variation. Boxes span the central 75th percentile
interval, and whiskers span the 95% interval; the horizontal line inside the box marks the mean; the shade of gray denotes
the length of the data series: white 5 15 yr, light gray 5 30 yr, medium gray 5 60 yr, and dark gray 5 120 yr. The dashed
horizontal line denotes the actual value of used to generate the simulated data. (A) 5 0.10, 5 0.50; (B) 5 0.50,2 2 2 2s s s sp p m p

5 0.10; (C) 5 5 0.50.2 2 2s s sm p m

FIG. 2. Observed (solid squares) and model-estimated
(thick line) California sea otter abundance. Dashed lines rep-
resent the standard deviation (61 SD) of the model estimation
error.

While the constant-m model indicates essentially no
risk of extinction, the better-fitting step-change model
suggests that the sea otter population is doomed to
extinction because the current growth rate is negative
(m 1 d 5 20.015). The step-change model predicts a
mean time to extinction of 518 years. While it is likely
that the growth rate of this population will change again

in the future, the post-1995 data should motivate in-
vestigations of the causes of the population decline.

Although the step-change model appears to fit the
data better, model diagnostics are satisfactory for both
models. The plot of the cumulative sum of normalized
residuals does not indicate any change in m or Var(Xt)
during the time period of observation, and the plot of
the cumulative sum of squared normalized residuals
shows no sign of heteroscedasticity. Prediction errors
appear to be normally distributed according to the Sha-
piro-Wilks test (P 5 0.37). Neither the Box-Ljung Q
test (P 5 0.74) or the prediction-error autocorrelation
function indicate significant serial correlation in the
prediction errors.

Grizzly bear.—Fig. 3 shows the observed running-
summed counts of female grizzly bears with cubs and
the number estimated according to the constant-m mod-
el. Parameter estimates for the two models are shown
in Table 2. As in the sea otter example, the step-change
model is a better approximation of the data, with an
AIC 2.45 less than the constant-m model. For the con-
stant-m model, the MLE of s (the signal-to-noise ratio)
suggests that roughly 67% of the variation in grizzly
bear counts comes from process variation, while the
step-change model assigns 58% of the variation to pro-
cess variation. For both models, the upper bound of the
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TABLE 1. California sea otter population growth and ex-
tinction parameter estimates.

Para-
meter†

Model

Constant m Step-change m

m

d

s

s2
p

s2
m

P100(ext)

0.0253
(0.00677, 0.0467)

NA

NA

1.23
(0.638, 2.50)

0.00231
(0.00179, 0.00329)

0.00188
(0.00000289, 0.00448)

0.0
···

0.0442
(0.0234, 0.0655)

20.0596
(20.0985, 20.0189)

0.978
(0.542, 2.29)

0.00149
(0.00113, 0.00269)

0.00152
(0.00106, 0.00233)

0.0
···

Notes: Point estimates of m are maximum-likelihood esti-
mates; 90% central probability intervals (PI) are in paren-
theses. Values ,1 3 1026 are indicated as 0.0. NA 5 not
applicable.

† Parameters: m 5 mean rate of population growth; d 5
change in rate of population growth; s 5 signal-to-noise ratio;
s 5 process-error variance; s 5 measurement-error vari-2 2

p m

ance; and P100(ext) 5 probability of extinction within 100
years.

FIG. 3. Observed (solid squares) and model-estimated
(thick line) grizzly bear abundance in Yellowstone Park.
Dashed lines represent the standard deviation (61 SD) of the
model estimation error.

TABLE 2. Yellowstone grizzly bear population growth and
extinction parameter estimates.

Para-
meter

Model

Constant m Step-change m

m

d

s

s2
p

s2
m

P100(ext)

0.0200
(20.00536, 0.0465)

NA

NA

2.71
(1.12, 4400)

0.00719
(0.00504, 0.0130)

0.00251
(0.00000289, 0.00448)

0.0
(0.0, 0.000145)

0.0221
(20.0252, 0.0313)

0.0586
(0.00583, 0.110)

1.37
(0.532, 1450)

0.00413
(0.00292, 0.0125)

0.00387
(0.00000853, 0.00551)

0.0
···

Notes: Point estimates of m are maximum-likelihood esti-
mates; 90% central probability intervals (PI) are in paren-
theses. Values ,1 3 1026 are indicated as 0.0. NA 5 not
applicable. Parameter definitions are as in Table 1.

95% central probability interval (PI) for ’s is quite2sp

large, which means that almost all of the variation in
the data is potentially process variation; the lower
bounds indicate that is it unlikely that measurement
error contributes more than 52% or 35% to the total
variation for the constant-m and step-change models,
respectively.

The population, in light of the post-1998 data, appears
to be growing, although for the constant-m model, the
90% PI includes negative values. It is possible to com-
pare these model-estimated growth rates to independent,
demographically based estimates of annual rate of pop-
ulation growth on the arithmetic scale (l; l 5 exp(m 1

/2). Estimates of m and for the constant-m model2 2s sp p

yield a l 5 1.02, in close agreement with a recent es-
timate of l based on mortality and fecundity observa-
tions (Pease and Mattson 1999).

The most likely probability of ultimate extinction,
according to the constant-m model, is ,1.0 3 1029, but
the 90% PI for this parameter includes 1.0, and there
is a 0.1% chance of extinction within 100 years. The
step-change model, which fits the data better, paints a
somewhat different picture. If the post-1988 growth
rate continues indefinitely, the population would be ex-
ceedingly unlikely ever to go extinct. While the step-
change model may be better in the sense of having a
lower AIC, the constant-m model might be better at
capturing long-term processes and should be consid-
ered when making extinction predictions. It is likely
that the grizzly bear population will not continue to
grow at recent high rates because (1) the beneficial
effects of the 1988 fires are probably transitory and (2)
grizzly bear mortality is expected to increase as the

size of the human population increases and the abun-
dance of whitebark pine declines in the Yellowstone
area (Pease and Mattson 1999).

Model diagnostics are not entirely satisfactory for
the grizzly bear data: the plot of cumulative squared
prediction errors for both models indicates that the var-
iance of Xt is not constant throughout the time series.
Visual inspection of the squared prediction errors
shows that the variance is higher in the last third of
the series, with a change perhaps occurring in 1988.
This may be due to a change in the population or a
change in the observations related to the fire effects,
or to other changes in the Yellowstone ecosystem.
While there are not enough data or auxiliary infor-
mation available to identify the cause of the change in
variance, the effects of different sources of variance on
population projections can be examined. Var(Xt 2 Xt21)
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was about 0.010 for t # 1987 and 0.020 for t . 1987.
Taking a worst-case view, if all of the increased vari-
ance was due to an increase in process variation, and
we assume that the additional variance is applicable in
the future, then the most likely probability of ultimate
extinction predicted by the constant-m model increases
from ,1.0 3 1029 to 6.6 3 1024. Other diagnostics are
acceptable for both models.

CONCLUSIONS AND FURTHER DIRECTIONS

The state-space approach and Kalman filter provide
a practical, robust, and rigorous way to estimate the
parameters of the random-walk-with-drift model from
noisy data. Arbitrarily accurate estimates of parameter
uncertainty and the uncertainty of functions of these
estimated parameters can be obtained conveniently us-
ing MCMC (Markov chain Monte Carlo) methods. This
is possible because the estimates of uncertainty are
based on the likelihood function for the data rather than
on large-sample approximations. An additional advan-
tage of state-space models, not exploited in the models
and data presented here, is the ease with which missing
data can be handled (Harvey 1989, Durbin and Koop-
man 2001).

The random-walk-with-drift model can be extended
within the state-space framework, allowing models to
be compared quantitatively. Obvious extensions in-
clude time-varying parameters, more elaborate state
representations (such as stage- or age-structured pop-
ulations), nonlinear state transitions (e.g., density-de-
pendent reproduction), non-normal error structures,
and inclusion of covariates influencing growth rate. In
particular, an age-structured state-space model could
be used to overcome the problem that arises when only
semelparous breeding adults are observed, such as ob-
servations of spawning salmon.

One problem with more complex models is that they
tend to be nonlinear, precluding the use of the Kalman
filter. Other filtering methods, such as the extended
Kalman filter (Kitagawa 1981), grid-based numerical
approaches (Rein 1993, de Valpine and Hastings 2002),
and sequential Monte Carlo filtering methods (Doucet
et al. 2001), while more computationally intensive, may
be useful for estimating more complex models of pop-
ulation abundance.
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