S Winter ‘23, Astr 597A:

OOOOOOOOOOO

m Astronomy with Rubin Observatory and LSST

Outline for today (these slides: Is.st/fs2):

1) How to estimate distances to stars using LSST data: photo-D
- photo-z methods to estimate distances to galaxies (and quasars)
- photo-D methods to estimate distances to stars

2) A pitch for UW course Astr 598: "Astro-statistics and Machine Learning”
- very useful skills for analysis of Big Data in astronomy, such as LSST
- it will be offered next time probably in Spring 23/24 by Connolly & lvezic
- a year from now but still before Rubin first light
- a few practical examples...
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m Spatial distribution of SDSS galaxies

<h

Left: each dot is one galaxy from SDSS

Note that the galaxy distribution is
highly inhomogeneous: statistical
details of that distribution contain rich
cosmological information

For most LSST galaxies, distances
(i.e. redshifts) will be estimated using
LSST’s broad-band photometry (as
opposed to from spectra): photo-z

LSST redshift limit for galaxies: about an
order of magnitude larger than for SDSS
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m Distance estimates for stars: photo-D

To maximize science output with 20 billions stars measured by LSST, we
need to estimate their distances: go from 2D to 3D studies.

Today: a brief introduction to astrophysics and statistics of stellar photo-D

This is an ongoing research project, and well suited for dissertation work
(please let me know if you interested).
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e Milky Way science with coadded LSST data

OBSERVATORY

One of the four LSST

Turn-off Science Themes:

stars

(stars as tracers of the
structure and evolution of
our Galaxy, interstellar
matter, the physics of
stars)

To make such maps of
the Milky Way with LSST,
we need first to estimate

distances to stars
(~20 billion stars in
LSST)

SDSS example: Juri¢ et al.
(2008, ApJ, 673, 864)
data-based map of stellar
counts shown in the center
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W photo-D: science motivation

;—_) Medion metallicity ([Fe/H]) for 2.5 million blue (F) stars ® If We knOW Ste“ar dIStanceS’ We Can StUdy the
N s Milky Way structure
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photo-D: science motivation

e if we know stellar distances, we can study the
Milky Way structure

e furthermore, at low galactic latitudes, we can
map dust (and its properties), too

o 0.2 0. 0.6 0.8 1.0

o |eft: differences in median
A, forD~1,1.5,2,2.5 kpc

e dustatb~2°and b~13°is
confined to D~1-1.5 kpc

e dustat-3°<b<0°isat
D~2 kpc

Dust tomography

12 108
| (deg)

Stellar counts
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3arcminis 1/10
of the full Moon’s
diameter

Astronomy with Rubin Observg
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r~27

like LSST depth
(but tiny area)

LSST will deliver
5 million such
images

Astronomy with Rubin Observa

LSST will
deliver colors
for about 20
billion stars
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W LSST filter complement: ugrizy

THE ASTROPHYSICAL JOURNAL, 873:111 (44pp), 2019 March 10

System Throughputs

STEHE E§ M S
081 i Per-band survey time allocations:
5_ u: 8%, 9:10%, r: 22%
2% P i: 22%, z: 19%, y:19%
"o ml e etz Optimized using photo-z for galaxies
E | but consistent with star-quasar
N \ N separation and stellar [Fe/H] estimates.
0 a0 S0 e 700 80 %00 100 1% Gimilar Kyt not identical, to SDSS.

Figure 4. LSST bandpasses. The vertical axis shows the total throughput. The
computation includes the atmospheric transmission (assuming an air mass of
1.2; dotted line), optics, and the detector sensitivity.
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m photo-D methodology: stellar astrophysics 0

Data include apparent magnitudes: one magnitude and many colors

Given apparent and absolute magnitudes (and perhaps extinction): Distance follows

Stellar colors determined by: T, [Fe/H], log(g) - or alternatively: Mr, [Fe/H], age
different “populations” along an “isochrone”: MS, giants, WDs (binaries)

~ M5 in SDSS

= grmm S T i g O T ———

e Given Mr, [Fe/H] and age, can “predict” colors
from theoretical or empirical isochrones, so
given observed colors, can place constraints
for Mr and [Fe/H] (and sometimes on age)

e Colorscan also constrain dust extinction

M
10 Gyr

13 Gyr

19

20

z models

21

E [Fe/H]=—-0.68 e
© |

22

0O 02 04 0608 1 1.2 0.102030405060.7080.9
T T T

e Distance from: r=Mr+Ar+5*log(D) N Yy a
. N /d’“\
where Mr and Ar constrained by colors . s Used globular clusters to
s Ve derive Mr as a function of
N4 ] metallicity [Fe/H] and (g-i)
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FiG. 23.—The g — r vs. u — g color-color diagrams for all nonvariable point
sources constructed with the improved averaged photometry (dots). Various stellar
models (Kurucz 1979; Bergeron et al. 1995; SmolCi¢ et al. 2004) are shown by

lines, as indicated in the figure. Berry+ (2012, ApJ, 757, 166)

e SDSS color-color diagram (corrected for dust):
- stellar SEDs determined by: T, [Fe/H], log(g)
- different populations: MS, giants, WDs, binaries
- for given Mr and [Fe/H] can “predict” colors:

THE ASTROPHYSICAL JOURNAL, 783:114 (16pp), 2014 March 10

y=ig
00 04 08 12 1600 08 1.6 24
T T T T 7

1 L L ) L L L L
00 03 0.6 09 1.20.00 0.15 0.30 0.45 0.60
i—2z z2-y

-25 -20 -15 -10 -05 0.0
[Fe/H]

Given observed colors, can
estimate Mr and [Fe/H] (and
Ar) by chi2 minimization:

Astronomy with Rubin Observatory and LSST | University of Washington | Winter Quarter 2023
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W photo-D methodology: stellar astrophysics 2
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15 [ Smolcic et al. e o

WD/M dwarf pairs

[ Bergeron WD models: i : o
He: o "

| 05 [ .
ok [Fe/H] log(g)
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FiG. 23.—The g — r vs. u — g color-color diagrams for all nonvariable point
sources constructed with the improved averaged photometry (dots). Various stellar
models (Kurucz 1979; Bergeron et al. 1995; SmolCi¢ et al. 2004) are shown by

lines, as indicated in the figure. Berry+ (201 2, ApJ, 757, 166)

e SDSS color-color diagram (corrected for dust):

- stellar SEDs determined by: T, [Fe/H], log(g)

- different populations: MS, giants, WDs, binaries

- assuming pop: from colors get best-fit SED

- best-fit SED gives Luminosity constraint

- pop probability can be gauged from goodness
of fit, variability, priors, and other information

,,,,,,, e e A et
Obs |
IRy=2.2
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photo-D methodology: impact of dust
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e There are degeneracies with dust:
- need to adopt an extinction curve
(usually 1-parameter family, Ry)
e Two fitting philosophies:
1) use stellar models to fit SEDs, or
2) use high-latitude observations to fit
dust-extincted low-latitude data

e Therole of priors...
e Hierarchical Bayes...
e Robust and fast implementation

Figure 31. Comparison of three different types of best-fit SEDs: using only-SDSS data with fixed Ry = 3.1 (blue line) and using joint SDSS-2MASS data set with
fixed Ry (green line) and with free Ry (red line). As demonstrated by the similarity of best-fit lines, the differences in best-fit parameters, listed in each panel, are due
to degeneracies between intrinsic stellar color, amount of dust, and Ry. The shown cases correspond to blue and red stars (top row vs. bottom row), and small and

large A, (left column vs. right column).
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m photo-D methodology: statistical treatment

2D projections (Ar and “Mr") of the e Berry+(2012): Fit SEDs constructed from high-b
3D parameter space (fixed [Fe/H]) observations and a dust model parametrized by Ry
W e S (shape vs. wavelength) and Av (how much dust) to
< < _‘;‘: SDSS data (very similar to LSST)
o6l o6k ; * Compute best-fit via a brute force ¥?>-minimization process:

2 0,4...1...|:...|... o4t ., ., .
0.0 0.2 0.4 0.6 0.8 2.8 3.0 3.2 N 2
Xpdf 1 (cebs - cmod)

2 i i
34T R e X R
| | pdf _
N k i=1

3.2 3.2F g;
3.0 30 Qg ]
< 2sf PN ; * ¢, and o, are N adjacent colors and errors (e.g.,u-g, g - 1, etc
26} : 26} L  the number of fitting parameters is k = 2 (the position along the locus
24000t aaliaal 240 0, — 4
00 02 04 06 0 28 30 32 and A,) for fixed-Ry, (Ry=3.1), and k = 3 for free-Ry,
9-i 9~ * model colors are constructed byv:
Fig‘m'eI l‘thz‘:a‘llysif on‘:.he covariance in ﬂlepegt-ﬁ{ values for A, and g — i using d lib
a simulated data set. ‘epanels shqwIhed|smbut|onsof'mebesttﬁt va!ues for mo: _ _
e e e e o A ¢ = (1) + [Ca(Ry) — Cu(Ry)] A,

extinction values (top panels: A, = 1; bottom panels: A, = 3). Photometric
errors in the ugriz bands are generated using Gaussian distributions with
o = 0.02 mag (uncorrelated between different bands). Note that the A, vs.
g — i covariance is larger for the blue star, and does not strongly depend on
assumed A,.

Astronomy with Rubin Observatory and LSST | University of Washington | Winter Quarter 2023 | 14
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photo-D methodology: ongoing work...

Use of model SEDs or empirical isochrones?

- many pros and cons here...

For a fixed (assumed population), use of priors for fitted parameters

- can rely on TRILEGAL models that are available from NOIRLab’s DatalLab, see

https://arxiv.org/abs/2208.00829v1

- what we want to do is nicely described in Green et al. 2014 (ApJ, 783:114)
(but with LSST twice as small distance errors due to u band constraining [Fe/H]!)

Quality assurance using Gaia data products (so-called Bailer-Jones+ distances)

- distances must be consistent with Gaia results

Better code: fast and robust, configuration and metadata management

Documentation!

N.B. There should be many similarities with photo-z frameworks.

Astronomy with Rubin Observatory and LSST | University of Washington | Winter Quarter 2023 15
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W Stellar astrometry & photometry from LSST

Photometry

Photometric accuracy: random errors 0.005 mag,
calibration to 0.01 mag; for light curves, LSST
“takes over from Gaia” around r ~ 17

Proper motion

_fb osROSS Time-resolved measurements: photometric

o e variability, and parallax and proper motions

E L LssT - ] ]

L ; from astrometric measurements
N

e ~ Gaia vs. LSST: complementarity of the two surveys:

ET photometric, proper motion and trigonometric

T e parallax errors are similar around r=20

T E T " P vezie, Beers, Jurié 2012, ARASA, 50, 251

Astronomy with Rubin Observatory and LSST | University of Washington | Winter Quarter 2023 | 122
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photo-D in Green et al. (2014

THE ASTROPHYSICAL JOURNAL, 783:114 (16pp), 2014 March 10

g1 - e Left: empiricalisochrones (colors on Mr-FeH grid)

00 04 08 12 1600 08 16 24

L S S B e e e

| 1\ | Galactic plane (Z)
sl | e Right: distance prior

= 16 frrp-r e e
0
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i—2z =Y

-25 =20 -15 -10 -0.5 0.0
[Fe/H]

Figure 1. Model stellar colors as a function of absolute r magnitude and
metallicity in Pan-STARRS 1 passbands. The stellar templates are based on PS1
color—color relations, and color is related to absolute magnitude and metallicity 25 —90 15 ~1.0 05 0.0 0.5
by SDSS observations of globular clusters (Ivezié et al. 2008a). Our empirical ' . . . . &
templates therefore assume an old stellar population. While the main sequence [Fe / H]
below the turnoff is nearly invariant with age, the giant branch and the location
of the turnoff do, in reality, vary considerably with age. For this reason, we

Figure 3. Metallicity prior, p([Fe/H]| Z), in the solar neighborhood (R =

expect our inferences for main-sequence stars to be more accurate than those SkPC)-. I:Iigh. abpve_the plane of the Galaxy, Wher? the halo dominates, the
for giants. The narrowness of the kink at M, =~ 2.4 is an artifact of our models metallicity distribution has a constant mean and variance. In the plane, where
(see Section 4.1). the disk dominates, the mean decreases with scale height. Adapted from Figure 9

of Ivezi¢ et al. (2008a).

I ] e Middle: [Fe/H] prior as a function of distance from the

13—
B disk
N halo

12 16 20 24
7

Figure 2. Distance prior for (¢, b) = (90°, 10°). The contributions of the disk
and halo are shown individually in green and purple, respectively, while the
total prior is given by the gray contour. The break in the contribution from the
halo is due to the use of a broken power law for the number density of stars in
this component.
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W photo-D in Green et al. (2014)
— 0 . . .
[ e Left: test of isochronesin PS1 color-color diagrams
12 5
- | =t -3 e Below: test using PS1 data for globular clusters,
«06F 1 EB-V)=0.010 . . H H
N | indicates need for isochrone improvements
= NGC 2506 M5 M 12 M 13
5 Ogl”"'””””',,l'” T R IR EU | LS NP P 0
0.6} ! i 1
nof i [ ] -3
I o3k 251 1 - 1
L L a i i ey
K ~ i W N N
[ . L R SN~—
0.0 25.0» 1 i 1T o =
—t I - ]
0.30 | 7.5 — . — B - - e
=3 RN RS W | B AT S| P EETININ EATETED (VI | PSRN A A —15
| 015 -1 0 1 2 00 06 1.2 00 08 16 —08 00 08
N g—1 g—ti g—1 g—1
000 Figure 11. PS1 color-magnitude diagrams of three globular and one open cluster. For each cluster, the model isochrone with the catalog metallicity of the cluster is
L= : T ! . 1., . . 1 overplotted. The stellar photometry has been de-reddened and shifted by the catalog distance modulus to produce absolute magnitudes. The reddening vector is plotted
00 06 12z 00 06 12 00 03 s in the top left corner of each panel in red for reference. Each star is colored by its evidence, with red stars unlikely to be drawn from our stellar model. In particular,
g—r r—i i— 2 stars which are blueward of the main-sequence turnoff, which are bluer than any star in our template library, have low evidence.

Figure 10. Comparison of PS1 stellar colors in the vicinity of the North Galactic

Pole with our model colors. Each object is colored according to the evidence Z .
we compute. Objects represented by red dots have a low probability of being o An adva nta ge Of LSST: the u ba nd photometry WI “
drawn from our stellar model and are rejected for the line-of-sight reddening

determination. The solid black line traces our model stellar colors. Our main-

sequence model colors do not depend on metallicity, while the model colors for p rOVi d e m u C h St rO n ge r CO n St ra i n tS fO r [ Fe / H ] !

the giant branch have a slight metallicity dependence.
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m Priors from TRILEGAL (Galaxy simulation code)

e TRILEGAL & LSST paper: Dal Tio+ (2022, arXiv:2208.00829)
e fornow let’s assume distant halo stars with known Ar (dust extinction)
e priorsin Mrvs. [Fe/H] plane as a function of (R.A., Dec) and r magnitude from TRILEGAL:

r= 21.5 to 22.5 N= 1098767 Ns= 74878 r= 26.5 to 27.5 N= 1098767 Ns= 144188

-2 -2
0 0 -
-1
24 10 2 Lo
v
4 4 © 4. =
i b
_ 61 2 6 - g
= 5 5 §
8 1 L 10-2 ) 8 1 z
108 L1072 2
10 | ° °
10 |
12 4 12 -
14 - 14 |
T T T T —- 103 T T T T - 1073
-25 -20 -15 -10 -05 -25 -20 -15 -10 -05
FeH FeH

Astronomy with Rubin Observatory and LSST | University of Washington | Winter Quarter 2023 19


https://ui.adsabs.harvard.edu/link_gateway/2022ApJS..262...22D/arxiv:2208.00829

=
5
VERA C.RUBIN

m Bayes: posterior  likelihood * prior

rmagStar = 23.68 true Mr= 6.63 true FeH= -2.19

Fefi= 11.9333472394579039 - 0.3349617551726989 ALGORITHM:
- — rstaion _ e forgiven healpixel (from RA, Dec)
' — get TRILEGAL simulated sample
‘ ‘ % @ selectstars with similarr band
£ O Jum— 5 |m— . :
: : magnitudes (~0.5 mag) and
. ) * construct prior map
Gede e 4w g0 s 9w asoae oo oo @ With given isochrones, construct
, , likelihood map
e multiply likelihood and prior
e oo maps to get posterior pdf, and
= oo f o then marginalize to get 1-D
posteriors for Mr and [Fe/H]
oo { —— I Jow]! P S e demonstrably working!

Astronomy with Rubin Observatory and LSST | University of Washington | Winter Quarter 2023 | 20
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W (a lot of) Remaining work...

WORK: ALGORITHM:

e automate the production of maps o forgiven healpixel (from RA, Dec)
with priors from TRILEGAL get TRILEGAL simulated sample

e complete the isochrone library e select stars with similar r band

e implement “unknown Ar” use case magnitudes .("0'5 mag) and

e develop better code: fast and construct prior map (Mr - [Fe/H])
robust, with configuration and e with given isochrones, construct
metadata management likelihood map (Mr - [Fe/H])

e test. test. test! e multiply likelihood and prior

° doc:Jmer;tation maps to get posterior pdf, and

e papers then marginalize to get 1-D

posteriors for Mr and [Fe/H]
e demonstrably working!

Astronomy with Rubin Observatory and LSST | University of Washington | Winter Quarter 2023 | 21
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“““““““““““ Astr 598: “Astro-statistics and Machine Learning in Astronomy”

Topics:

Introduction to statistics (probability, distributions, robust statistics, Central Limit
Theorem, hypothesis testing).

Maximum likelihood and applications in astronomy (point-spread-function
photometry, astrometry)

Bayesian statistics and introduction to Markov Chain Monte Carlo

Model parameter estimation and model selection

Regression and Time series analysis

Dimensionality reduction

Density estimation and clustering

Supervised Classification

Class repository: https://github.com/dirac-institute/uw-astr598-w18

Astronomy with Rubin Observatory and LSST | University of Washington | Winter Quarter 2023
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Astr 598: Astro-statistics and Machine Learning in Astronomy”

These Astr 598 topics follow this book: STATISTICS,

DATA MINING
& MACHINE

LEARNING IN
ASTRONOMY

All numerical examples from the book are fully
reproducible. They rely on astroML.org:
astraiitr User Guide Examples Book Figures Development

Search the docss A PRACTICAL PYTHON GUIDE FOR
B y THE ANALYSIS OF SURVEY DATA

ZELJKO IVEZIC,
Downloads - ANDREW J. CUNNULLY.
JACOB T. VANDERPLAS

AstroML is a Python module for machine learning and

data mining built on numpy, scipy, scikit-learn, matplotlib,

and astropy, and distributed under the 3-clause BSD ® Released Versions: Python
license. It contains a growing library of statistical and Package Index & AL E XANDER GRAY
machine learning routines for analyzing astronomical data * Bleeding-edge Source: github -

in Python, loaders for several open astronomical datasets,
and a large suite of examples of analyzing and visualizing astronomical datasets.
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Example Notebooks

AstroML Interactive
Book

Q, Search the docs ...

Chapter 1: Introduction and Data
Sets

Chapter 2: Fast Computation and
Massive Datasets

Chapter 3: Probability and Statistical
Distributions

Chapter 4: Classical Statistical
Inference

Chapter 5: Bayesian Statistical
Inference

AstroML Interactive Book

astroML is a Python module for machine learning and data mining that accompanies
the book “Statistics, Data Mining, and Machine Learning in Astronomy”, by Zeljko
Ivezi¢, Andrew Connolly, Jacob Vanderplas, and Alex Gray. astroML is built on
numpy, scipy, scikit-learn, matplotlib, and astropy, and contains a growing library of
statistical and machine learning routines for analyzing astronomical data.

In this interactive book we provide notebooks that describe the statistical and
machine learning methods used in astroML together with code that runs these
methods on existing astronomical data sets. The structure of this interactive book
follows the chapters of “Statistics, Data Mining, and Machine Learning in
Astronomy”. Each notebook can viewed through the browser (with navigation links
at the side of the page), be downloaded to your own computer, or be executed
directly using Binder or Google Colab

Astronomy with Rubin Observatory and LSST | University of Washington | Winter Quarter 2023
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And now an astroML-based notebook with a few examples...

1) Model selection using Bayesian Information

2) Bayesian Blocks Algorithm

Notebook available as: |s.st/f23

full link:
https://github.com/ivezic/Notebooks/blob/master/Astr597A astroMLexamples.ipynb
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