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Astrophysical Transients on Human Timescales

Astrophysical objects that change in brightness are transient or variable.
Transient behaviour lasts for a “short” time and does not repeat.

Today we’re focusing on intrinsic transients, and skipping extrinsic transients,
changes in brightness with external causes, like microlensing events.

Some variables have fransient features; we’re not covering these today either.

E.g., Active Galactic Nuclei (AGN)

- they turn on and off

- have “changing look” spectral features
- but are variable on human timescales

E.g., variable stars
- can flare or erupt

Betelgeuse gif credit: NASA, ESA, and E. Wheatley (STScl)
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Figure 2. Taxonomy tree used in the current version of the ALeRCE light curve classifier.
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Compact white dwarf binaries
e Double-degenerate compact white dwarf binaries 2| g
will be dominant source of gravitational wave o L
emission for the LISA mission. % 0 e

e Around 100 systems are predicted to show
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measurable variations in both gravitational waves 2L t—13.5 Gyr
and electromagnetic radiation 1
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Symbiotics are accreting binaries where a ‘E”’*
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Young stellar objects

Wide range of processes causing photometric variability

Knots in stellar jets
Stellar rotation and starspots
Warps in envelopes and disks

The proposal is to observe star-forming regions, e.g., like

Carina Nebula (11,000 member identified)

Mass accretion events from circumstellar disks
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Young stellar objects

Wide range of processes causing photometric variability

Knots in stellar jets
Stellar rotation and starspots
Warps in envelopes and disks

The proposal is to observe star-forming regions, e.g., like

Carina Nebula (11,000 member identified)

Survey Cadence Optimization Committee: The YSO proposal (which includes
the Carina Nebula and other star-forming regions): this proposal for time-series
observations to characterize variable young stellar objects has not been shown to
clearly take advantage of the unique characteristics of Rubin, and many of the
scientific goals appear to be achievable with smaller field-of-view imagers, such as
DECam. The number of YSOs per star-forming region as well as the number of
different regions that need to be observed to accomplish the scientific goals are not
Justified clearly enough to demonstrate that the survey is time-sensitive to be

undertaken in year 1 of Rubin operations.

Mass accretion events from circumstellar disks
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Long period M dwarf variability

Most common type of star, but difficult to observe
due to their intrinsic low luminosities.

Most long-lived stars, making them important for
understanding the oldest limits of gyrochronology.

Bimodal distribution of periods, with peaks at ~1
and ~100 days - but currently difficult to measure
periods at >28 days.

“If the period distribution we have detected so far
results from the age of the local thick disk and M
dwarfs continue to slowly spindown at ages
beyond this, we should see M dwarfs with >140
day rotation periods with LSST”
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Microlensing

Street+, 2018
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By monitoring a few billion stars in the
Galactic Plane we expect hundreds of
black hole events.

No. of detected events (deg2yr 1)
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Expand to other fields

Galactic latitude (deg)

High cadence survey of two fields in the SMC for microlensing:
this proposal is not demonstrably time-sensitive to do in year 1 1073 107
of Rubin operations.
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Number of microlensing events detect by LSST per
year per sq. deg assuming only baseline coverage



Why we study AGN

Closely connected with the evolution of galaxies and tied with
output from black holes as AGN feedback regulates star
formation

Mass is accreted onto a supermassive black hole. The
accretion disk forms naturally. The viscosity in the disk acts as
a mechanism by which angular momentum in transported
outwards while mass moves towards the centre.

LSST will enable

e Statistical study of AGN population
e Comprehensive study of AGN variability

Let’s start by how we select AGNs!
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AGN Selection - Color
Selection

At low redshifts AGNs are blue (especially
in u-g, g-r) and well separated from the
stars in ugrizy color-color space. This has
been a standard method of AGN selection
in wide-field optical surveys (e.g.,SDSS).

Sample contamination at z~3 as AGN
overlap with stellar locust

At higher redshift, no u- and g- band flux
makes things more complicated
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Figure 10.1:  Color-color plots of known quasars from SDSS (colored dots) and stars (black dots) in the LSST
photometric system. The quasars are color coded by redshift according to the color key, and for clarity, the dot size
is inversely proportional to the expected surface density as a function of redshift. Since there is no y filter in the



AGN Selection - Color
Selection

At low redshifts AGNs are blue (especially
in u-g, g-r) and well separated from the
stars in ugrizy color-color space. This has
been a standard method of AGN selection
in wide-field optical surveys (e.g.,SDSS).

Sample contamination at z~3; as AGN
overlap with stellar locust

At higher redshift, no u- and g- band flux
makes things more complicated
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F1G. 9.—Spectra of a sample mid-z quasar (z = 2.67) and a star with sim-
ilar colors superimposed on the SDSS filter curves. Note that the g* — r*
color is nearly the same for both objects. See Fig. 1 in Fan (1999), who used
simulated spectra to demonstrate that this is true for u* — g* as well.
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AGN Selection - Color
Selection
Quoting Gordon Richards:

e Perfectly fine when coupled with
spectroscopy to find specific needles

in haystack.
e Completely inadequate for LSST

Richards+,
2002
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AGN Selection - Color
Selection

Quoting Gordon Richards:

e Perfectly fine when coupled with
spectroscopy to find specific needles
in haystack.

e Completely inadequate for LSST
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Figure 2. Quasar N(z) redshift distributions. The dotted red histogram shows
the redshift distribution for the full SDSS-III: BOSS DR9 quasar dataset, while
the solid red line shows those objects uniformly selected by the “XDQSO”
method across 2.2 < z < 3.5. The black histogram is the final distribution from
the DR7Q catalog of Schneider et al. (2010).



AGN Selection - Lack of proper motion

3 sigma upper limit on proper motion in LSST - 3 mas at r=24, 0.6 mas at r=21 for 10 year survey.

With this it will be possible to eliminate the relatively nearby L and T dwarfs and to remove many of the
white dwarfs and subdwarfs (which contaminate AGNs at z~3)

Table 10.1: Elimination of White Dwarf Contaminants

Quasar z WD My for WD T Distance (pc) 3o limit vian Fraction
quasars (V — 1) at T =24 km s excluded

32 13.7 6500 1260 17.6 7%

3.6 187 4500 660 94 88%

4.0 16.5 3500 500 71 92%




AGN Selection - Variability

The amplitude of AGN variability depends on

e Variability timescale
e \Wavelength
e Luminosity

How to estimate the fractions of AGNs that may be detected as significantly variable in the LSST

® E.g., Calculate the magnitude difference at which only 1% of the non-variable stars will be flagged

as variable candidates due to measurement uncertainty.



AGN Selection

Variability
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Figure 10.2: The probability of detecting an AGN as variable as a function of redshift and absolute magnitude. Left:
two epochs separated by 30 days. Right: 12 epochs spanning a total of 360 days. Nearly all of the AGN between the
limiting apparent magnitudes would be detected as variable after one year.



AGN Selection - Variability

Variability is particularly useful for selection
because

e Sensitive to low-luminosity AGN which may
have large galaxy contribution
o But large galaxy contribution
dilutes signal
e Ortogonal to color selection, especially
useful at mid-redshifts (z~3)
o But still, works even better when
combined
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AGN Selection - Variability

Variability is particularly useful for selection
because

e Sensitive to low-luminosity AGN which may
have large galaxy contribution
o Butlarge galaxy contribution
dilutes signal
e Ortogonal to color selection, especially
useful at mid-redshifts (z~3)
o But still, works even better when
combined

Alerce: We encourage researchers interested in
classifying stochastic and transient sources in
particular to use the novel (or modified) features
presented in this work, like the IAR_phi parameter,
the MHPS features, the SPM features, and the
non-detection features.

e |AR phi: Level of autocorrelation using a
discrete-time representation of a damped
random-walk model

e SPM: Supernova parametric model features
(seven in total)

e MHPS: Mexican hat power spectrum



Multiwavelength + Differential Chromatic Refraction
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AGN: Photometric Redshifts

Redshift estimates for the vast majority of LSST AGN will have to rely on photometric redshift.

AGNs (unobscured) have relatively simple spectrum

e Continuum longward of Lyman-alpha is a power law + emission lines

e Power law shape results in a degeneracy of the color-redshift space

e Emission lines with large equivalent widths (broad Balmer lines) can help break the degeneracy
e Stronger spectral feature (Ly-alpha, Lyman break, Lyman forest) can break degeneracy above

z~2.5

SDSS was able to determine redshift for quasars to 0.3 accuracy for

80% of SDSS quasars (up to i~19).
LSST is expected to do as least that well up to i~24.

Netzer, 2007

thin disk

hot corona

S 1 10 100 1000 10000 10°
Energy (eV)

Figure 4.3. A schematic of a combined disk—corona spectrum. The maximum
temperature of the geometrically thin, optically thick accretion disk is Ty =
10°K, and its outer boundary temperature is determined by the conditions at
the self-gravity radius. The disk is surrounded by an optically thin corona with
Tou=100 K



AGN - Expected Number

N~10 (1960s)

N~100 (1980s)

N~1000 (1990s)

N = 25000 (2dF QSO Redshift Survey Catalog - 2004)
N = 100000+ (SDSS, 2011)

N = 1 million (today) sowe MILLIQUAS - Million Quasars Catalog, Version 7.9 ——
N = 20 to 80 million bl (5 February 2023) "~ Amhive

e ~300 million detected

200-1000 AGNS at z~6.5-7.5

Overview

This table contains the Million Quasars (MILLIQUAS) Catalog, Version 7.9 (5 February 2023). It is a compendium of 844,587 type-I QSOs
and AGN, largely complete from the literature to 5 February 2023. 568,956 QSO candidates are also included, which are those calculated (via
radio/X-ray association including double radio lobes) to be 50%-100% likely to be quasars. Blazars and type-II objects are also included,
bringing the total count to 1,461,834. About 73% of all objects show Gaia-EDR3 or Pan-STARRS astrometry.

(Richards): LSST alone will provide significant numbers of AGNs to z ~ 7.5 (to L_Opt ~ 10"44 erg/s)
« LSST+Euclid: ~1360 at z>7 and 24 at z>10
* LSST+WFIRST: ~1490 at z>7 and ~29 at z>10
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AGN - variability

Variability provides information about immediate surrounding of actively accreting super massive black
hole, namely:

e Accretion disk
e Broad emission line region

What are possible explanations for the variability

Accretion disk instabilites
Changes in accretion rate
Influence of hot corona
Relativistic jet changes
Line-of-sight absorption changes



AGN - variability (SF)

25000 AGN from SDSS in 2004
Using two measurements for each
AGN

Compute structure function -
effectively variance of
measurements separated by some
time

Anticorrelation of amplitude with
wavelength

Anticorrelation of amplitude with
luminosity

Correlation with redshift?

Struclure Funclion, ((n/2)<|am|>? = <g?>)/2
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Vanden Berk+, 2004
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AGN - variability (SF)

Damped random walk explains a /ot of AGN
variability. The process has two parameters;
basically amplitude and decorellation time.
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AGN - variability (SF)

Damped random walk explains a /ot of AGN
variability. The process has two parameters;
basically amplitude and decorellation time.
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AGN - variability (SF)

To be sensitive to decorrelation time-scale
we have to observe AGN for (much) longer
time than decorrelation scale.

So it is necessary to patch multiple
surveys to get long enough baselines to
accurately measure this behavior.
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AGN - variability (disk)

Standard viscous disk theory has great difficulties
explaining the observations. For instance, different
wavelengths come from different radii, which means
that changes should propagate through disk. But,
the changes are way too quick!
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AGN - variability (disk)

Standard viscous disk theory has great difficulties
explaining the observations. For instance, different
wavelengths come from different radii, which means
that changes should propagate through disk. But,
the changes are way too quick!
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AGN - variability (disk)

Standard viscous disk theory has great difficulties
explaining the observations. For instance, different
wavelengths come from different radii, which means
that changes should propagate through disk. But,
the changes are way too quick!
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We are also finding more and more AGN that
have gone change brightness and their
spectrum dramatically (changing look AGN) -
and - this can not be explained by obscuration.
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AGN - variability (Kepler)
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There is a survey already that has exquisite precision and enables us to determine variability properties without

virtually any interpolation and assumption - Kepler!

But very difficult to calibrate!!!
At short time scale (~days) stronger correlation than expected from random walk
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AGN - variability (Kepler)

e There is a survey already that has exquisite precision and enables us to determine variability properties without
virtually any interpolation and assumption - Kepler!
e  But very difficult to calibrate!!!

e At short time scale (~days) stronger correlation than expected from random walk
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AGN - variability (periods)
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A possible close supermassive black-hole binaryina
quasar with optical periodicity
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AGN - variability (periods)

False periodicities in quasar time-domain surveys
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White noise/Red noise simulation, finding most periodic sources
AGN - variability (perjgds)
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