ASTR 597: Asteroids Homework

Problem \#1: An asteroid's absolute magnitude, commonly denoted as H, is the visual magnitude an observer would record if the asteroid were placed 1 Astronomical Unit (au) away, and 1 au from the Sun and at a zero phase angle (α; see the included figure).

Sketch out the Observer-Sun-Asteroid configuration satisfying the above requirement (assuming the observer is on the Observer). What is the value of d (the Observer-Sun distance) in such configuration?

Problem \#2: The relationship of an asteroids's magnitude to flux, at phase angle $\alpha=0$ (also known as "being in the opposition"), follows the familiar definition:

$$
m=H-2.5 \log \left(f / f_{0}\right)
$$

Starting with the above, derive the expression for $m(r, \Delta)$, the magnitude as a function of the Sun-Asteroid distance r, and the Observer-Asteroid distance Δ, at phase angle $\alpha=0$. When deriving this expression, keep in mind that the asteroid shines in reflected light.

Problem \#3: Taking:

$$
r=\Delta+1 \mathrm{au}
$$

(i.e., the asteroid is at opposition) show the asymptotic behavior of $m(\Delta)$ as $\Delta \rightarrow \infty$.

How does it compare to the behavior of flux as a function of distance for stars (which falls off as $1 /$ distance ${ }^{2}$)? Why the difference?

