ASTR 597: Asteroids Homework

Problem #1: An asteroid's absolute magnitude, commonly denoted as *H*, is the visual magnitude an observer would record if the asteroid were placed 1 Astronomical Unit (au) away, and 1 au from the Sun and at a zero phase angle (α ; see the included figure).

Sketch out the Observer-Sun-Asteroid configuration satisfying the above requirement (assuming the observer is on the Observer). What is the value of *d* (the Observer-Sun distance) in such configuration?

Problem #2: The relationship of an asteroids's magnitude to flux, at phase angle α =0 (also known as "being in the opposition"), follows the familiar definition:

 $m = H - 2.5 \log(f/f_0)$

Starting with the above, derive the expression for $m(r, \Delta)$, the magnitude as a function of the Sun-Asteroid distance r, and the Observer-Asteroid distance Δ , at phase angle α =0. When deriving this expression, keep in mind that the asteroid shines in *reflected* light.

Problem #3: Taking:

 $r = \Delta + 1au$

(i.e., the asteroid is at opposition) show the asymptotic behavior of $m(\Delta)$ as $\Delta \rightarrow \infty$.

How does it compare to the behavior of <u>flux</u> as a function of distance for stars (which falls off as $1/distance^2$)? Why the difference?