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APPLICATION OF DIRECT-STIFFNESS METHOD          
TO 1-D SPRING SYSTEMS 

The analysis of linear, one-dimensional spring systems provides a convenient means of 
introducing the direct stiffness method, the analysis method most commonly used in 
modern structural analysis.  Linear springs have simple force-deformation characteristics.  
One-dimensional spring systems have simple geometry.   

In this class, we will later apply the same concepts to the analysis of 2D trusses, beams 
and frames.  The same concepts can be generalized to three-dimensional analysis and to 
finite-element analysis, which are discussed in senior and graduate courses, such as 
Advanced Structural Analysis (CEE 457) and Finite-Element Analysis (CEE 504). 

TWO-SPRING EXAMPLE  (1 Free Degree of Freedom) 

We will start with a simple example.  Consider a steel rod of length 2L, with cross-
sectional area, A, and elastic modulus, E.  The rod connects two walls, and it is subjected 
to a horizontal load, Qo at its midpoint.  We would like to compute the displacement at 
the middle of the rod, and the rod axial forces.  Taking into account symmetry, you can 
probably guess the answers before we even do any calculations. 

1. Idealize Structural System 

 

Idealizations: 

- rod properties, A, E and L, and load, Q0, are known exactly. 
- rod has uniform cross-section and material properties 
- steel stress-strain relationship is linear (small strains) 
- load is applied at rod centroid, and rod is perfectly straight (no bending) 
- rod does not buckle (can't be too slender) 

Q0   
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L 
  

Rod Area = A       Rod Elastic Modulus = E   
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Left Wall 
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Right Wall 
  

 k0= AE/L 
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- wall supports are rigid (must be very stiff) 

2. Identify Unknown and Known Displacement and Loads 

For convenience, number nodes (joints) with unknown displacements first. 

Unknown Displacements (Du): D1  Known Displacements (Dk): D2 = 0., D3 = 0. 

(unconstrained or free DOF)     (specified disp., usually supports) 
 

Known Loads (Qk):          Q1 = Q0  Unknown Loads (Qu):  Q2 , Q3  

 (applied loads)     (reactions) 

3. Develop Force-Deformation Relationships for Each Spring 

 

The forces at the ends of the spring (qN ,qF) are related to the displacements at the ends of 
the springs  (dN ,dF) as follows: 

qN1 = k0 ( dN1  - dF1)   qN2 = k0 ( dN2  - dF2) 

qF1 = k0 (-dN1 + dF1)   qF2 = k0 (-dN2 + dF2) 

This relationship is the same for spring #1 and spring #2, because the spring stiffness is 
the same.   
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4.  Express Nodal Equilibrium in Terms of Kinematic Degrees of Freedom (D1, D2, D3) 

 

Nodal Equilibrium: 

Node 1:  qF1   + qN2  = Q1    (= Q0 ) 

Node 2:  qN1     = Q2 

Node 3:    qF2    = Q3 

Substitute in Force-Deformation Relationships: 

 Node 1: (-k0 dN1  + k0 dF1)  + (k0 dN2  - k0 dF2)      =  Q1= Q0 

Node 2: ( k0 dN1  - k0 dF1)          =  Q2 

Node 3:            (-k0 dN2  + k0 dF2)    =  Q3 

Enforce Compatibility: 

Element Connectivity:     dN1  = D2  ;     dF1  = D1  ;     dN2  = D1  ;     dF2  = D3  ; 

Node 1: (-k0 D2  + k0 D1)  +  (k0 D1  - k0 D3)   =  Q1= Q0 

Node 2: ( k0 D2  - k0 D1)       =  Q2 

Node 3:           (-k0 D1  + k0 D3)   =  Q3 

Boundary Conditions:     D2  = 0.;     D3  = 0.   

Node 1: (              k0 D1)  +   (k0 D1       )   =  Q1= Q0 

Node 2: (             -k0 D1)       =  Q2 

Node 3:    (-k0 D1      )   =  Q3 

5. Solve for Unknown Nodal Displacements (D1) 

Node 1: D1  =   Q0 / 2k0         (Displaces to the right) 

6. Can Also Determine Reactions (Q2 , Q3) 

Node 2: Q2 =  -Q0 / 2         

Node 3: Q3 =  - Q0 / 2 

1 2 
Q1 = Q0 

qF1 qN2 

Q3 

qF2 

Q2 

qN1 
2 3 1 

qF2 qF1 qN2 qN1 
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7. Determine Spring Forces (qN1, qF1, qN2, qF2,) 

From Step 3: 

Spring #1 qN1 = - Q0 / 2 

qF1 =    Q0 / 2 

Spring #2 qN2 =   Q0 / 2 

qF2 =  - Q0 / 2 

Spring #1 is in tension, and Spring #2 is in compression, as expected.  The absolute 
magnitude of the axial force in each spring is the same, as we should expect from 
symmetry.  We can also see that Node #1 is in equilibrium. 
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TWO-SPRING EXAMPLE WITH MATRIX NOTATION 

Solve same problem again, but using matrix notation and with two spring stiffnesses, k1 
and k2. 

1. Idealize Structural System 

Same as before 

2. Identify Unknown and Known Displacement and Loads 

Same as before. 

3. Develop Force-Deformation Relationships for Each Spring 
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4.  Express Nodal Equilibrium in Terms of Kinematic Degrees of Freedom (D1, D2, D3) 

 

Nodal Equilibrium (same as before): 

Node 1:  qF1   + qN2  = Q1    (= Q0 ) 

Node 2:  qN1     = Q2 
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Node 3:    qF2    = Q3 

Substitute in Force-Deformation Relationships and Compatibility: 
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5. Solve for Unknown Nodal Displacements (D1) 

We only need the first equation to solve for the unknown displacement, D1.  Better yet, 
we only to consider the first stiffness term of the first equation (k1+k2), because the other 
terms are multiplied by displacements that we already know to be equal to 0.0.  In 
practice we benefit greatly from noting that it is not necessary to determine all of the 
stiffness coefficients of K.  

From the first equation,   D1 = Q0/(k1+k2)  

6. Can Also Determine Reactions (Q2 , Q3) 

From the second and third equations: Q2 =  -Q0 / 2  and Q3 =  - Q0 / 2         

7. Determine Spring Forces (qN1, qF1, qN2, qF2,) 

From Step 3: 

Spring #1, q1 =   k1’ d1 = 
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GENERAL PROCEDURE FOR 1D-SPRING PROBLEMS 

1. Idealize Structural System  (similar to example) 

2. Identify Unknown and Known Displacement and Loads(similar to example) 

3. Develop Force-Deformation Relationships for Each Spring 

q1 =   k1’ d1 
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 q2 =   k2’ d2 

Repeat for all other springs 

4.  Express Nodal Equilibrium in Terms of Kinematic Degrees of Freedom 

Consider nodal equilibrium at all degrees of freedom.  Take into account connectivity 
compatibility as well as the boundary conditions. 

 KD = Q 

To distinguish among various components of the stiffness matrix, the stiffness equation, 
KD = Q, can be partitioned as follows. 
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where Qk and Dk are the known external loads and displacements, and Qu and Du are the 
known external loads and displacements. 

In our example, the components of the partitioned matrix are: 

[ ]2111 kk +=K   
  

Matrix of stiffness coefficients that corresponds to forces at free 
degrees of freedom resulting from unit displacements at all the 
free degrees of freedoms, while the specified displacements are 
held fixed at 0.0.  The dimensions of this matrix are 1x1 because 
1 kinematic degree of freedom is free (unknown). 

[ ]2112 kk −−=K
  

Matrix of stiffness coefficients that corresponds to forces at free 
degrees of freedom resulting from unit displacements at all the 
specified degrees of freedom, while the free displacements are 
held fixed at 0.0.  The dimensions of this matrix are 1x2 because 
1 kinematic degree of freedom is free (unknown) and 2 are 
specified (known). 

⎥
⎦

⎤
⎢
⎣

⎡
−
−

=
2

1
21 k

k
K    

Matrix of stiffness coefficients that corresponds to forces at 
specified degrees of freedom resulting from unit displacements 
at all the free degrees of freedom, while the specified 
displacements are held fixed at 0.0.  The dimensions of this 
matrix are 2x1 because 1 kinematic degree of freedom is free 
(unknown) and 2 are specified (known).  Note that K21 = K12

T. 
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Matrix of stiffness coefficients that corresponds to forces at 
specified degrees of freedom resulting from unit displacements 
at all of the specified degrees of freedoms, while the free 
displacements are held fixed at 0.0.  The dimensions of this 
matrix are 2x2 because 2 kinematic degrees of freedom are 
specified (known). 

Using this partitioning scheme, one can write: 

Qk = K11 Du + K12Dk        (Eq. 1) 
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Qu = K21 Du + K22 Dk   (Eq. 2) 

5.  Solve for Unknown Nodal Displacements (D1) 

In practice we benefit greatly from noting that it is not necessary to determine all of the 
stiffness coefficients of K. From the first equation, one can solve the unknown 
displacements, 

Du = [K11]
-1 [Qk + K12Dk] 

 Often, Dk = 0.0, as is the case in our problem, so    

Du = [K11]
-1 [Qk] 

Note that in our example,   K11 = k1+k2,    so  [K11]
-1 = 1/(k1+k2) 

6.  Can Also Determine Reactions (Q2 , Q3) 

Use matrix equation #2, if necessary to determine the equations.  If you have not 
assembled the K21 and K22 matrices, you can also get the reactions by considering the 
ends of the members, which is what is usually done in practice.         

7.  Determine Spring Forces (qN1, qF1, qN2, qF2,) 

From Step 3: 

Spring #1, q1 =   k1’ d1  

Spring #2, q2 =   k2’ d2   

 Repeat for all springs 

IMPLEMENTATION NOTES 

It is often cumbersome to assemble the full stiffness matrix, K, particularly in problems 
with many degrees of freedom, and in which the specified displacements are 0.0.  In this 
case, the K12 components multiply 0.0.  In solving your homework problems, only 
assemble the full K matrix if necessary to solve the problem, or required by the problem 
statement.  

The following pages demonstrate the solution of a three-spring problem with two free 
DOF using a spreadsheet program.   

 


