MRS in the LinGO Grammar Matrix:
A Practical User’s Guide

Dan Flickinger, Emily M. Bender, and Stephan Oepen
December 31, 2003

Contents
1 Introduction 3
2 Background and Motivation 3
3 Basic Semantic Objects 4
B T 1 T)
3.2 relation L e e e 5
3.3 Qeq - . . . o e 8
3.4 hook e e e 9
3.5 semarg, tam, and png L e e e 10
3.6 semsort . . o. ..o e e e e e 12
3.7 keys ... e 13
3.8 lexkeys e 13
3.9 Summary e e 15
4 Relations and Argument Features 15
4.1 Ordinary Predicates L 16
4.2 Special Relations Lo L 19
5 Features of Indices: Agreement and TAM 23
6 Syntax-Semantics Interface 24
6.1 Semantic Principleso Lo 24
6.2 HOOK Features and Semantic Heads 26
6.3 Semantic Contributions of Constructions 27
6.4 Linking e 29
6.5 Indices Bound by Quantifierso 31
6.6 Imposing Handle Constraints 31
6.7 Syntax-Semantics Mismatches oL, 33
7 Verifying mrss 37

8 Sem-I: The Semantic Interface

8.1 The meta-level Sem-1 Lo L
8.2 The object-level Sem-1 oL
8.3 Thematic role mapping Lo L
8.4 Word classes e

8.5 Example sentences
9 Conclusion

10 Acknowledgments

38
38
39
39
39
40

41

41

1 Introduction

This paper is intended to serve as documentation for the semantic aspects of the LinGO
Grammar Matrix. We assume familiarity with the specification of Minimal Recursion Se-
mantics (MRS) given in Copestake et al. 2003 (see also Copestake et al. 2001), and focus
instead on the practical aspects of writing grammars that produce well-formed mrss and of
developing semantic representations of particular linguistic phenomena within MRS.

Section 2 gives some background on the LinGO Grammar Matrix and MRS. Sections
3-6 describe the implementation of MRS in the Matrix and how to extend it in building
a grammar of a specific language. Along the way, we provide touchstone linguistic exam-
ples and advice on best practice. Section 7 describes tools and methods for verifying the
well-formedness of mrss. Finally, Section 8 describes the Sem-I (‘Semantic Interface’), a
component of the grammar that specifies how mrss are to be interpreted.

2 Background and Motivation

The Matrix grammar starter-kit (Bender et al. 2002) is a language-independent core gram-
mar designed to facilitate the rapid initial development of grammars for natural languages,
with foundations solid enough to support steady expansion to broad coverage of the linguistic
phenomena in these languages. Such grammars are particularly valuable because they can
assign semantic representations to linguistic input, providing the foundation for applications
which require natural language understanding. As such, a central component of the Matrix
is the collection of resources it contains for simplifying the implementation of semantic com-
position within each language and supporting the development of a standardized description
language for meaning representations, which can provide an effective interface for practical
applications. The resources in the Matrix further enable the meaning representations to keep
pace as the syntactic analyses of a grammar grow in complexity.

The goal of the Matrix grammar starter-kit is to provide the necessary definitions of
core linguistic types for words and phrases at a level of generality which enables quick spe-
cialization to encode the additional basic grammatical constraints for a particular language.
With this language-specific tuning, it should be possible to construct a grammar within an
afternoon which can be used to parse non-trivial sentences of a given language, then use
that same implementation as the basis for the development over time of a semantically pre-
cise, broad-coverage grammar. The existing Matrix release also includes software links and
parameter settings for one particular grammar development system, the LKB (Copestake
2002), which includes an efficient parser and generator, but grammars built on the Matrix
can be read and used by a number of other parsers (cf. Oepen et al. 2002).

The Matrix is constructed within the formal system of typed feature structures defined in
(Carpenter 1992), using the single operation of unification to build phrases from the words
and phrases they contain. Minimal Recursion Semantics was designed to enable semantic
composition using only this same unification of typed feature structures, producing for each
phrase or sentence a description of the meaning representation sufficient to support logical
inference. The type definitions for signs in the Matrix include a semantic component which
is an implementation of MRS, and more specifically of the elaboration of a semantic algebra

for MRS presented in Copestake et al. 2001. In addition, MRS was designed to answer
the competing demands of expressive adequacy and computational tractability, as well as
to allow underspecification where it facilitates computational applications, such as machine
translation. Thus Matrix-derived grammars are not only interesting as a means of testing
linguistic hypotheses, but also have the potential to be integrated in applications which
require natural language understanding, including machine translation, automated email
response and speech prostheses.

Minimal Recursion Semantics is not a theory of semantics but rather a system of semantic
representations. As such, in order to develop a grammar of a particular language, there
are any number of design decisions that must be made about the content of the semantic
representations. In this paper, we present some design decisions that have emerged in work
on two broad-coverage grammars the English Resource Grammar (ERG: Flickinger 2000)
and the JaCY Japanese grammar (JaCY: Siegel and Bender 2002). While the influences
on these design decisions are myriad, perhaps the most important guiding principle is the
following: The semantic representations produced should include all grammatically relevant
distinctions, while remaining as concise as possible. Thus, for example, in the Matrix as
in the ERG, past tense is represented simply as the attribute-value pair [TENSE past| (on
an event variable) rather than a more elaborate Reichenbachian representation relating the
event time to the time of utterance, because this more elaborate representation can be
unambiguously derived from the more parsimonious one given. (For more discussion, see
§5 below and §6 of Copestake et al. 2003.) We hope that the descriptions in the following
sections of the design decisions taken so far will provide guidance for grammar engineers
confronting new linguistic phenomena.

3 Basic Semantic Objects
This section provides an overview of the semantic objects defined in the Matrix, used in the

specification of the values of CONT in signs, both words and phrases. Figure 1 gives a portion
of the type hierarchies under avm and sort, including all of the basic semantic objects.

*tOp *

avm

. T

mrs lexkeys keys relation geq hook semarg tam png

SN A T

psoa nom-obj individual handle

A

Figure 1: Type Hierarchy of Basic Semantic Objects

3.1 mrs

The flat semantic representations assigned to each word or phrase in MRS comprise three
components:

1. RELS - a bag of atomic predications, each with a ‘handle’ (used to express scope rela-
tions) and one or more roles;

2. HCONS - a set of handle constraints which reflect syntactic limitations on possible scope
relations among the atomic predications;

3. HOOK - a group of distinguished externally visible attributes of the atomic predications
in RELS, used in combining the semantics of this sign with the semantics of other signs.

Thus objects of type mrs (i.e., the value of the features CONT(ENT) and C(ONSTRUCTIONAL)-
CONT of signs in the Matrix) are constrained as in (1).

(1) HOOK hook
RELS diff-list
HOONS diff-list

MSG basic_message

The value of RELS is a difference list! of relations (§3.2) and the value of HCONS is a difference
list of gegs (§3.3). The value of HOOK is a feature structure of type hook (§3.4). Finally, the
value of MSG is a feature structure of type basic_message, used to constrain the propositional
type of a sign (§6.6.1.

The type mrs also has two subtypes nom-obj and psoa, following Pollard and Sag 1994,
corresponding to semantic representations of nominal signs (with a distinguished ref-ind) and
predicative signs (with a distinguished event). The types ref-ind and event are described in
§3.5 below. This distinction is encoded in the following two constraints:2

(2) psoa: [HOOK [INDEX event]]
(3) nom-obj: [HOOK [INDEX indea:ﬂ

3.2 relation

The heart of an mrs is a bag of elementary predications, implemented here as a difference
list of objects of type relation — i.e., the value of the feature RELS.? All relations bear values
for the three features introduced on the type relation, as shown in (4):

! These lists are implemented as difference list to allow for appending without relational constraints.

20n hook, see §3.4 below.

3Note that the Matrix doesn’t include typed difference lists, so that the value of RELS is in fact only
constrained to be a difference list without further restriction — it could just as well be a difference list of
synsems. By convention, and in order to produce well-formed semantic representations, however, it is always
a difference list of relations.

(4) LBL handle
relation: |PRED string
WLINK list

3.2.1 LBL

The value of LBL is a handle, which is used to express scope relations. The LBL value of one
relation may be identified with (i) the LBL value of one or more other relations, (ii) a role
within some other relation, (iii) a value within a handle constraint (geq — see §3.3 below),
and/or the value of LTOP in a hook (see §3.4 below). Relations sharing a LBL value are
interpreted as conjoined. For example, in The big dog slept., the relations introduced by big
and dog will share a LBL value. (Qeq constraints and direct identification of LBL values with
argument roles in other relations are used to express scopal interactions among relations.
For the most part, this is achieved with geq constraints, which identify semantic argument
positions where quantifiers can intervene scopally when underspecified mrss are resolved to
fully scoped representations. For those handle argument positions where quantifiers cannot
intercede, direct reentrancy between a LBL value and a role is employed. For an example,
see §6.6.1 below. Note that we will often refer to the LBL value of a relation as its handle.

3.2.2 PRED

The value of PRED is a string, which serves to distinguish particular relations. Earlier versions
of the ERG included a separate type for each distinct relation, leading to a very flat (and
very large) type hierarchy. We have since found it preferable to distinguish relations via the
string-valued PRED feature, and to reserve the subtypes of relation (see §4) for those types
that introduce features. This change also opens the door to more interesting re-entrancies
of PRED values, explored in the ERG for the semantics of degree specifiers, and perhaps also
useful for some treatments of coordination or gapping.

For compatibility with RMRS ((Copestake 2003)) and software designed to integrate
deep and shallow processing, PRED values should conform to the following templates:

(5) _orth pos_sense rel (lexically introduced predicates)
sense rel (abstract predicates introduced by constructions)

The orth component is a string corresponding to the (stem) orthography of the lexical
entry, at least for all open-class words, and typically also for closed-class words. By using the
stem orthography, we enusre that predicate names used in mrss produced by deep grammars
will be interoperable with predicate names used in mrss produced by robust shallow pro-
cessors, which name the predicates based on (lemmatized) forms in the input. The leading
underscore is used to distinguish predicate names introduced by specific lexical entries from
those introduced by constructions or by lexical types supplying a common predicate for a
class of lexical entries.

The pos component is one of a closed set of single lowercase letters interpreted as follows:

—
D
=

noun

verb

adjective

adverb

preposition

determiner (quantifier)
message

all other closed-class predicates

“og Qe B a B

We use this POS-based information (such as might be accessible from a POS-tagger) for
coarse-grained sense distinctions. Finer-grained distinctions can be made (in a precision
grammar) via the sense component. The sense component can consist of any sequence of
characters (letters, numbers, etc.), excluding the underscore which is used to separate the
components of the name. In the ERG, verb particle constructions are handled semantically
by having the verb contribute a relation particular to that combination. We distinguish these
relations by placing the particle’s orthography in the sense field. Unlike the other compo-
nents, the sense component is optional, and if omitted, its separating underscore is also
omitted. By convention, a predicate name with no sense component is interpreted as under-
specified for sense, so if more than one sense is present in the lexicon for a given orthography
and part of speech, each of these predicate names should have a sense component.

Every relation and predicate name ends in _rel, for the convenience of the grammar
writer, particularly to avoid possible namespace collisions. This suffix (and the leading
underscore) can of course be suppressed by MRS display methods if desired.

So for example, the following predicate names are correct for the corresponding words:

(7) aardvark _aardvark n_rel

bank _bank_n_2 rel
bank _bank_v_turn_rel
look _look_v_up_rel

Finally, one further detail of formatting should be mentioned: Words with single lexical
entries whose orthography is conventionally spelled with a space, such as the English use of
ad hoc, appear with the whole orthography in the orth component, but with the space(s)
replaced by the plus sign. So the following example is also correct:

(8) ad hoc _ad+hoc_j_rel

3.2.3 WLINK

The feature WLINK serves to link the relation to an element in the input string, so that
applications can reconstruct the input string source of a given relation in the corresponding
semantics. Since this feature does not interact with the rest of the semantic composition
machinery in the Matrix, we will omit it from our AVM descriptions in the rest of this

7

paper. It is included as part of the Matrix because it provides a useful experimental link
later on, when developing applications that use a Matrix-derived grammar. The grammar
engineer can safely ignore this feature during grammar development. If an application seesm
to require it, contact the authors for details on how to put it to use.

3.3 qeq

As mentioned above, scopal relations in MRS are represented via handles, which appear as
the value of the feature LBL and also as the value of certain roles within scopal relations
(e.g., the RSTR value of quantifiers — see §4.2.1). However, for many applications, including
machine translation, fully specified scope relations are not required. Furthermore, any surface
string with multiple noun phrases (and therefore multiple quantifiers, overt or implicit) is
going to be ambiguous with respect to scopal relations. Rather than build separate parses
for each scoping, and potentially have to choose between them in a given application, it is
preferable to leave scopal relations underspecified, to the extent that the grammar doesn’t
in fact constrain them.* In Matrix-derived grammars, following MRS specifications, this is
achieved as follows:

1. The BODY (i.e., scope) of all quantifiers is left unconstrained.

2. Most other handle-taking argument positions are not directly linked to the handle of
some relation.

3. Rather, the two are related via a geq (‘equality modulo quantifiers’) constraint.

Thus the BODY value of quantifier relations can be resolved in such a way that the quantifiers
‘float in’ wherever there’s a ‘space’ left by a ¢eq constraint.

In the implementation, these handle constraints (restrictions on scopal interactions) are
represented via the feature HCONS. The value of HCONS is a difference list (again, represent-
ing a bag) of gegs.> Qegs, in turn, are constrained as follows:

9) HARG handle
geq:
LARG handle

The HARG is identified with the handle-taking argument position and the LARG is identified
with the LBL (handle) of the outscoped relation. Examples of parts of the grammar that
impose such constraints are given in §6.6 below.

While the MRS specification in Copestake et al. 2003 leaves open the possibility of
different kinds of handle constraints, only ¢eq constraints have proven necessary so far for
wide-coverage grammars of English (ERG) and Japanese (JaCY), and so only geq constraints
are currently implemented in the Matrix.®

4For discussion of underspecification of scope, see Copestake et al. 2003 and references given there.

50nce again, the difference list is not typed. See note 3.

6However, a large grammar implementation for German (described in Wahlster and Karger 2000) makes
crucial use of leq (less than or equal) scopal constraints, and recent work on extending MRS representations
to robust processing (((Copestake 2003)) also employs leg constraints.

3.4 hook

Where the values of RELS and QEQ give a rich representation of the semantics of any given
sign (word or phrase), more information is needed in order to be able to combine the semantic
representations of signs in order to compositionally build semantic representations of larger
phrases. For example, consider the partial feature structures for the mrss produced by the
ERG for the signs the dog and barks in (10):7

(10) a. [[LBL handle
PRED _the qrel| |LBL
RELS (! |[ARGO , |PRED _dog_n_rel|!)
RSTR ARGO
|BODY handle

qeq
HCONS (! |HARG [
LARG
b. LBL handle

PRED _bark_v_rel
RELS (! !
ARGO event

ARGl semarg

HCONS (I'!)

In composing the mrs for the larger phrase the dog barks, we would like to identify the
ARGO of the _dog_n_rel with the ARG1 of the _bark_v_rel. But how can the relevant parts
of the grammar (in this case, the lexical entry for bark) gain access to the right value of the
right relation? While the value of RELS is implemented as a difference list, it is notionally
to be treated as a bag, so it would be unprincipled to make reference to the position of a
relation in the list. In fact, it would also be impractical for a grammar of any interesting size:
the list position of the relation contributed by the head noun in a noun phrase is affected by
what else there is in the NP. For example, in the big dog, the _big_j rel would intervene (in
this implementation) between the _the_q_rel and the _dog-n_rel. The solution is to use
the value of the attribute HOOK to ‘publish’ or make visible externally just those elements
of the mrs that the grammar will need access to for semantic composition.

Thus the value of HOOK represents a hypothesis about which information may be accessed
externally. The Matrix provides for three compositionally relevant properties of a sign’s
semantics, encoded as features for objects of type hook:

(11) LTOP handle
hook: |INDEX individual
XARG individual

"Following LKB conventions, difference lists are represented with the brackets (! !), consistent with the
abbreviatory conventions employed in the TDL ((Krieger and Schaefer 1994)) syntax adopted in the LKB.

The value of LTOP is the local top handle, the handle of the relation(s) with the widest scope
within the constituent, modulo quantifiers. This attribute is accessed by semantic heads
in phrasal constructions in order to impose further scopal constraints involving that handle
when composing the semantics of the phrase.

The value of INDEX is the distinguished non-handle variable supplied by the sign, iden-
tified with the INDEX of the semantic head daughter, and usually the ARGO of the main
relation introduced by the syntactic head of the constituent. If the mrs is a nom-obj, this
will be a ref-ind (referential index). If the mrsis a psoa, this will be an event. (See §3.1 above
on psoa and nom-obj and §3.5 below on ref-ind and event.) This information is accessed by
semantic heads in order to identify indices (including event indices) with (non-scopal) ar-
gument positions in predications: e.g., the ARG1 (barker) of the _bark_v_rel or the ARG1
(modified event) of the relation for an intersective adverb like happily.

Finally, the value of XARG (mnemonic for ‘external argument’) is the index of the single
argument in a phrase (in accusative languages, typically the subject) which can be controlled.
This information will be accessed by semantic heads in raising and control constructions,
open adjuncts, and constructions like English tag questions. See §6.7 for further exemplifi-
cation.

3.5 semarg, tam, and png

The values of LBL, HARG, LARG, and all role features (e.g., ARGO etc., see §4) are objects of
(subtypes of) type semarg. This type introduces the non-linguistic feature INSTLOC, which
is used for skolemization of variables in generation and whose value should never be further
constrained by the grammar. The hierarchy below semarg is shown in Figure 2.

semarg
handle individual

index event-or-ref-index
expl-ind ref-ind conj-inder event

conj-ref-ind conj-event

Figure 2: Type hierarchy rooted in semarg

There are two subtypes of semarg. The first, handle, is the type of the value of all handle-
taking features (LBL, HARG, LARG, MARG, RSTR, BODY), and can be the value type for a
semantic role filling one of the features ARG1, ARG2, There are no subtypes of handle,
nor is it anticipated that grammar engineers will need to add any in the course of grammar
development. Furthermore, there are no features introduced on the type handle (although
it inherits INSTLOC from semarg).

10

The other immediate subtype of semarg is individual, which includes expletive indices
(ezpl-ind), event indices (or event variables) event and ordinary referential indices (ref-ind).
In addition, the Matrix provides for coordinate indices (conj-ind with subtypes conj-event
and cong-ref-ind) which are introduced by coordination constructions (see §4.2.3). Note that
conj-event and conj-ref-ind inherit from event and ref-ind, respectively. This ensures that
they are compatible with any environment that requires an event or ref-ind, and, conversely,
that it is not possible to specifically select a non-coordinated event or referential index.®

The contrast between expl-ind and event-or-ref-index is used to constrain the distribution
of expletive NPs (e.g., English it and there, German es, or French i).° Such expletive
pronouns are given an INDEX value of type ezpl-ind (which is exceptionally not linked to any
argument position in their main relation, since they don’t introduce any relation). Ordinary
selecting heads can then require dependents with contenful INDEX values (i.e., event-or-
ref-indexs, or some subtype thereof). In languages like English (and perhaps Dutch) with
multiple expletive pronouns, subtypes of ezxpl-ind can be added to distinguish the different
pronouns. In the ERG, we have found this technique useful not only for implementing the
selection of particular expletive pronouns by particular heads (e.g., rains vs. existential be),
but also for pronoun matching in tag questions (see Bender and Flickinger 1999).

The type individual introduces the feature SORT, which can be used to identify the
grammatically relevant semantic sort (if any) of the sign, for use in semantic selection of
this sign as a dependent in a larger phrase. The value of this attribute is of type semsort,
discussed in §3.7.

The types event and ref-ind each introduce one feature, as shown in (12):

(12) a. event: [TAM tam]
b. ref-ind: [PNG png]

The features TAM and PNG encode tense-aspect-mood information (properties of events) and
agreement information (person, number, and gender — properties of referential indices; cf.
Pollard and Sag 1994), respectively. In the current version of the Matrix (v 0.6), the type
tam (unsurprisingly) introduces the features TENSE, ASPECT, and MOOD. This may be too
strong a constraint, since languages may well conflate two or more of these properties; see
the discussion of the png type immediately following. We will have more to say about the
analyses of agreement in §5 below.

(13) TENSE tense
tam: |ASPECT aspect
MOOD mood

8The hierarchy could of course be extended to allow such selection, but we expect that it will not be
required.

9Although in general we intend the types given in the Matrix proper (as opposed to separate modules
that will eventually come with it) to be largely language-independent, expl-ind is probably not useful in
languages which allow pro-drop to the extent that Japanese does, and which therefore have no use for
expletive elements.

11

The type png, on the other hand, introduces no features, though it is intended to provide the
locus for constraints on (semantic) person, number, and gender. These three dimensions are
not necessarily distinct for a given language, as seen in English where person and number are
usually conflated morphologically, motivating a basic distinction between third-singular and
non-third-singular inflectional types, with further subtypes for non-third-singular.!® Thus
in English the most natural feature structure for the png type is to have a merged person-
number PN attribute along with a gender GEN attribute. Clearly, in other languages separate
attributes for person and number are well motivated, leading us to leave the elaboration of
the png type as language-specific for now.

3.6 semsort

The type semsort is the root of a hierarchy of sorts which serves to represent grammaticized
semantic distinctions which are used in the selection of dependents (subjects, complements,
specifiers, and modifiers). We expect it to include a small hierarchy of grammatically salient
semantic types such as animate or time, as well as more specific types to support selection
of closed-class items, such as preposition selection by verbs or auxiliary matching in English
tag questions (Bender and Flickinger 1999). Note that semsort is made a subtype of sort
to make explicit the claim that these types used for semantic selection do not themselves
introduce attributes of their own.

The ERG illustrates several uses of semantic selection, which motivate some particular
subtypes of semsort. These sorts in the ERG include at least the human/nonhuman dis-
tinction reflected in the choice of relative pronoun (the person *which/whom I met), and
the various semantic subtypes introduced by prepositions (temporal, locative, directional,
stative, etc.). Verb-preposition dependencies in English, for example, can be encoded by
having the verb constrain the KEY value of its PP complement. In some cases, the selecting
verb might not be looking for a particular preposition’s KEY value, but rather impose a more
abstract constraint on a complement’s key, such as the PP complement for the English verb
put, whose KEY value might be constrained to those introduced by a subclass of locative
prepositions, to preclude analyzing e.g. *Kim put the chair for Sandy. Thus both the leaves
and the intermediate types in the semsort hierarchy can be useful.

The subhierarchy under semsort will be language-specific, reflecting grammaticized se-
mantic properties motivated by constructions in that language. The analysis of Japanese
numeral classifiers, for example, can be implemented using these semantic sorts, as can the
quite idiosyncratic constraints for English on preposition selection with temporal nouns.
Here, for example, noun phrases like Tuesday or the fifteenth (denoting days of the week
or days of the month) introduce the semantic sort day which is selected by (the relevant
lexical entry for) the preposition on but not in, to admit Kim arrived on Tuesday but not
*Kim arrived in Tueaday. Such idiosyncratic collocational constraints often reflect natural
semantic distinctions, but are not predictable cross-linguistically.

Note that, as strings, PRED values are not organized into a hierarchy. Furthermore expect
to only need to identify particular relations (via semsorts which correspond to specific PRED
values) in a reasonably small number of closed classes of lexical items. We therefore see now

10Cf. Flickinger 2000 for discussion of this part of the type hierarchy.

12

value in providing an external pointer to the PRED value of the main predication contributed
by the lexical head (syntactic or semantic) of a phrase.

The final attribute of objects of type mrsis MsG. This attribute has as its value a subtype
of the type message or the type no-msg, depending on whether the phrase is clausal or non-
clausal. Messages are our representation of the semantic types of clauses and are described
in more detail in §4.2.2 below. For clausal phrases, the value of MESSAGE will be a pointer
to the relevant message relation in the RELS list of that phrase.

3.7 keys

The next type of object to consider is keys, not exactly a semantic object, but one useful
for the interface between syntax and semantics. This type is introduced to serve as the
value of the (syntactic) HEAD feature KEYS. The purpose of KEYS is to provide constraints
for semantic selection of dependents (complements, specifiers, subjects, and modifiers). The
attributes in keys include two called KEY and ALTKEY, which can be used by selecting heads
or by constructions to constrain a dependent phrase semantically. Since the KEYS attribute
is a HEAD feature, the grammar ensures that these semantic properties of a phrase propagate
up the syntactic head path.
The type keys is constrained as shown in (14):

(14) |kEY predsort
ALTKEY predsort

The feature KEY provides a constraint on the predsort of a phrase, which can be but is
not necessarily identified with the PRED value of one of the relations in the RELS list of that
phrase. Since generalizations about semantic selection may make reference to more than
one such semantic property of a sign, the Matrix provides a second KEYS attribute called
ALTKEY. The idea here is that a modifier, for example, may constrain the phrase it modifies
along one dimension of semantic selection, while a verb taking that same modified phrase as
a complement may need to constrain it along a second dimension.

Note that as a head feature, the value of KEYS on the mother node of a headed-phrase
will be identified with the KEYS value of the head daughter. For non-headed phrases such
as coordinate constructions, each such construction type will have to stipulate the values for
the attributes in KEYS on the mother node. These values may come from one or the other
of the daughters, or may be supplied directly by the construction itself.

3.8 lexkeys

The last type of object to consider here is the type lezkeys, which is defined in the Matrix to
provide attributes which are not linguisticslly significant, but which provide some convenient
shorthand notation for the grammar writer when defining the lexical type hierarchy. In
particular, this type introduces two attributes that simplify the expression of constraints on
relations introduced by a lexical type, and two attributes that point to the KEY attribute of
complements of the lexical type.. The grammar writer can decide whether or not to make
use of these shorthand attributes (the latter two bearing a leading double dash as a reminder

13

that they are only abbreviations for longer path names). The type lexkeys is the value of the
LOCAL feature LKEYS, and nothing in the Matrix propagates the value of this feature up to
phrases. Thus, the features on lexkeys are only used (if at all) in simplifying the definitions
of lexical entries.

The type lerkeys is constrained as follows:

(15) KEYREL relation
lexk ALTKEYREL relation
exzkeys:

y --COMPKEY semsort

--OCOMPKEY semsort

The two features KEYREL and ALTKEYREL are available to provide pointers to each of
two relations introduced by a lexical entry, for easier definitions of constraints on values of
those relations within the lexical type hierarchy. Typically, the value of KEYREL will be a
pointer to the relation in the RELS list of a lexical entry which introduces its INDEX value as
the ARGO of that relation. The value of ALTKEYREL will be unbound for most lexical entries,
since most introduce a single relation in the RELS list, but for an entry which introduces more
than one relation, this attribute provides a convenient pointer to a second relation on the
RELS list.

The features --COMPKEY and --OCOMPKEY provide pointers to the KEY values of two
complements of a lexical entry. The relationship between --COMPKEY/--OCOMPKEY and
KEYS.KEY of the relevant complements will be established in lexical types.!! This allows
specific lexical entries to do semantic selection of complements by simply constraining their
own --COMPKEY and/or --OCOMPKEY values, as in the following (partial) lexical entries
adapted from the ERG for the verb abstain and the empty preposition from as in Kim
abstained from the vote:

(16) -v_empty_prep_intmns_le
STEM (“abstain”)
abstain_vl:) -
KEYREL _abstain_v_from_rel
SYNSEM LOCAL |LKEYS
--COMPKEY _from_p_sel rel
(17) _p_prtcl_le]
STEM (“from”)
from_prtcl:

SYNSEM [LOCAL lLKEYS KEYREL [PRED _from_p_sel_rel]ﬂ]

The lexical type for the verb abstain includes as part of its definition the following reen-
trancy which enables the use of this —-COMPKEY shortcut:

UTn the case of the entry for abstain given here, the relevant constraint in the ERG is on the type
unsat_two_arg_subst, which is a supertype of the SYNSEM value of v_empty_prep_intrans_le.

14

(18) [v_empty_prep_intrans_le

LOC |CAT (VAL |COMPS | FIRST |LOC [CAT |HEAD [KEYS [KEY H
SYNSEM

LKEYS [--COMPKEY]

The lexical type for semantically empty prepositions includes the following reentrancy
which shows how the constraints in the two lexical entries above will interact correctly,
without making any reference to the attribute LKEYS during processing, as desired.

(19) [p_prtcl_le

KEYS [KBY]H

SYNSEM

LOC lCAT lHEAD

LKEYS [KEYREL [PRED]

3.9 Summary

This concludes our tour of the basic semantic objects defined in the Matrix. In this section
we have briefly touched on some aspects of the linguistic analyses that motivate each type
of object. The following sections flesh out these linguistic analyses in more detail.

4 Relations and Argument Features

This section describes the various subtypes of relation posited in the Matrix and provides
guidelines for introducing new subtypes of relation. The top of the type hierarchy below
relation is shown in Figure 3.

relation
arg0-relation basic_message subord-or-conj-reln
noun-relation event-relation arg1-relation adv-relation quant-relation

named-relation

Figure 3: Partial type hierarchy below relation

In the following subsections we will describe ordinary predicates (i.e., the subtypes of
arg0-relation introduced by nouns, verbs, prepositions, adjectives and adverbs — §4.1), and

15

the special relation types defined for quantifiers (§4.2.1), messages (§4.2.2), and subordina-
tion and coordination (§4.2.3).

While we expect that grammar development for particular languages will require the ad-
dition of some abstract relation types to the set proposed here, we recommend not positing
a type for each lexical relation, but rather using the feature PRED (see §3.2 above) to distin-
guish different lexical relations of the same type. New relation types are merited only in two
circumstances: (i) when a feature needs to be introduced that is relevant for some relations
but not others; or (ii) when the values of one or more attributes of an existing relation are
consistently constrained in the same way across multiple contexts in the grammar.

4.1 Ordinary Predicates
4.1.1 arg0-relation subtypes

The vast majority of lexical entries introduce only a single relation, and furthermore one that
is an instance of arg0-relation or one of its subtypes, including noun-relation, event-relation,
and adv-relation. The type arg0-relation is constrained as follows:

(20) arg0-relation: [ARGO individual]

Thus all open-class lexical items introduce a relation with the ARGO role. The value of
this role is an individual. For nouns, verbs, and adjectives, the ARGO of the main relation
(i.e., the KEYREL value) should be identified with the HOOK.INDEX, and this identification
should be done on a general supertype.

For ordinary nouns, the value of ARGO will be a (referential) index which serves as a
pointer to the entity referred to by the NP. This same index is also the value of the ARG1
feature in any relations introduced by intersective modifiers of the head noun, and also the
value of a role feature in the relation of any lexical predicate selecting the NP as a semantic
argument. The type noun-relation is constrained appropriately:

(21) noun-relation: [ARGO ref—ind]

As discussed in §3.5 above, objects of type ref-ind bear the feature PNG. This means that the
agreement information associated with a noun will also be found in LKEYS.KEYREL.ARGO,
but this information doesn’t propagate up to the phrase, and so agreement information
should always be accessed through the CONT.HOOK.INDEX.

For verbs, which introduce relations of type event-relation, the value of ARGO is the event
variable identified as the INDEX value. Again, this event will also show up as the value of
a role feature in modifier relations such as those expressed by (intersective) adverbs and by
PPs modifying verbal phrases. Other elements that might appear to notionally take events
as arguments (e.g., clause-embedding verbs or scopal adverbs like probably) actually take the
handle of the phrase as their argument. The type event-relation is therefore constrained as
follows:

(22) event-relation: [ARGO event

16

As discussed in §3.5 above, objects of type event bear the feature TAM. This means that
tense, aspect and mood information associated with an event are encoded in the ARGO of
the relation describing that event. Again, as there is no pointer to the whole relation that
gets passed up to the phrasal level, this information and the event index itself should be
accessed via the path HOOK.INDEX for semantic selection or composition.

The Matrix provides one particularly useful subtype of noun-relation called named-
relation:
(23)) lPRED namedxef|
named-relation:)

CARG string

This type is used for proper names (including names of months, days of the week and days of
the month), and it introduces a feature CARG (‘constant argument’) which takes as its value
a string representing the name of the named entity. It further constraints the PRED value to
be named_rel. Thus all proper nouns contribute relations of the same type and with the
same pred value. Their contribution to the semantics is distinguished solely by their CARG
(and of course their ARGOs, which will be distinct for each proper name in a single sentence).

Note that as named-relation is a subtype of noun-relation, it will introduce a referential
index (ref-ind) which must be bound by some quantifier in order to form a well-formed mrs.
In the ERG, this is achieved by means of a non-branching rule which adds the quantifier to a
proper noun, which usually but not always lacks an explicit determiner. Given noun phrases
in English like the younger Smith and some Roberts, the ERG defines lexical entries for proper
names as syntactically nouns, not NPs, and employs a specialized unary syntactic rule to
construct a noun phrase from an N-bar headed by a proper noun (and usually consisting only
of that noun). The Matrix will support this analysis of proper names, but will of course also
enable the construction of grammars for languages where proper names are simply lexical
NPs, in which case each lexical entry’s semantics will consist of two relations: a named-
relation and a quant-relation to bind its referential index.

4.1.2 argl-relation, argl2-relation, ...

As discussed in §4.1.1, the value of ARGO is the distinguished ref-ind or event of a relation.
Many relations, of course, take further arguments. These are represented with the features
ARG1, ARG2, ARG3 and ARG4. It is important to note that there is no independent in-
terpretation of thematic roles attached to these feature names. That is, ARG1 cannot be
taken as equivalent to something like AGENT wherever it is used. Rather, we understand the
precise interpretation of the role names to be dependent on the relation they appear in. This
interpretation is to be specified in a separate component of the grammar called the Sem-I
(‘semantic interface’), which provides such information as is needed to map from mrss to
application-specific representations. The Sem-I is further described in §8 below.

Figure 4 shows the type hierarchy below arg0-relation, filling in the information below
event-relation, noun-relation, and argl-relation, which was abbreviated in Figure 3 above.
The features ARG1 through ARG4 are introduced by the types argl-relation through arg1234-
relation, as shown in (24). The values of the argument features on these types are only

17

arg0-rin

) N T

adv-rin argl-rin event-rin noun-rin quant-rin
verb-ellipsis-rin arg12-rin argl-ev-rin noun-argl-rin named-rin

unspec-compound-rin argl123-rin argl2-ev-rin

]

prep-mod-rin arg1234-rin argl23-ev-rin

arg1234-ev-rin
Figure 4: Hierarchy below arg0-relation

contrained to be semargs, as for any given predicate they may be individuals (ref-inds or
events), or handles in the case of scopal predicates.

(24) a. arg1-relation: [ARGl semarg]
b. arg12-relation: [ARGZ semarg]
C. argl23-relation: [ARGB semarg]
d. arg1234-relation: [ARG4 semarg]

Note that, in keeping with the strategy for interpretation outlined above, it is not possible
to have an ARG3 without an ARG1 and an ARG2. That is, if a relation takes two arguments
beyond its distinguished event/index (ARGO), they will always be labelled ARG1 and ARG2.
Furthermore, the ARG1 should always correspond to the first (least oblique) syntactic argu-
ment, the ARG2 to the second (next least oblique) syntactic argument, and so on (see §6.4
and Flickinger and Bender forthcoming).

The type argl-relation does not inherit from event-relation, to allow for the possibility of
relational nouns and other relations that take more than one argument but do not express
events. The types argl-ev-relation through arg123/-ev-relation provide event relations with
one to four arguments. Thus (semantically) intransitive verbs introduce argl-ev-relations,
(semantically) transitive verbs introduce argl2-ev-relations, etc. Ordinary nouns introduce
noun-relations, which only have an arg0. Relational nouns (such as picture) introduce a
relation noun-argl-relation which inherits from both noun-relation and argi-relation (not
argl-ev-relation). A noun with two semantic arguments would require a relation that inherits
from noun-relation and arg12-relation, and similarly for a noun with three arguments, if such
exist (apart from deverbal nouns, which are treated for English via lexical rule in the ERG).
These types all inherit from arg0-relation and through it relation, so they will all also bear
the features ARGO, LBL, PRED, and WLINK.

18

Note that verbs are not the only lexical entries which introduce subtypes of event-relation
in their semantics. Adjectives can in some languages serve directly as predicates, be subject
to tense and aspect constraints, and take one or more arguments, all analogous to verbs.
Likewise, prepositions can also appear as the heads of predicative phrases, so they will also
introduce subtypes of event-relation in their semantics. It is worth noting that the choice
of the name event-relation is intended to include states as well as processes, as required
by verbs as well as adjectives and prepositions. At present the Matrix does not introduce
events into the relations for nouns, though it might be argued that examples in English like
the current president motivate treating at least some nouns as event-bearing. Since we do
not know of grammar-internal constraints that require making reference to events on nouns,
we will expect such temporally constrained noun phrases to be interpreted outside of the
grammar.

Like verbs, adjectives and prepositions identify their HOOK.INDEX value with the ARGO
value in their main relation, enabling them to appear as heads of predicative phrases, sup-
plying an event which can be constrained for tense and aspect. In the ERG, for example,
the copula be does not supply its own relation, but only constrains tense and aspect since
it often combines with a verb participle that already supplies the event relation, as in Kim
was leaving. Since that grammar uses the same copula be for Kim was angry, the adjec-
tive angry must supply an event relation whose ARGO event will be constrained in this
example to past tense. Now since adjectives and prepositions can head phrases that mod-
ify nouns, they must also expose the argument position they will identify with the index
of the phrase they modify. This “external argument” of a PP or AP is its HOOK.XARG
value, identified in the lexical head’s feature structure with the value of the rather long path
HEAD.MOD.FIRST.LOCAL.CONT.HOOK.INDEX. This value will be unified by the grammar
rules for modification with the semantic index of the noun being modified. These two HOOK
attributes INDEX and XARG enable the semantic composition desired for intersective modifi-
cation of nouns by adjectives or PPs, and of verbs by PPs, as well as the use of adjectives and
prepositions in predicative constructions. The machinery should extend to more interesting
examples like The dog currently in the park is barking, where currently temporally constrains
the event introduced by the PP in the park (its HOOK.INDEX) while the PP’s HOOK.XARG
is identified with the HOOK.INDEX of the noun dog.

Adverbs, unlike adjectives and prepositions, do not appear predicatively, and hence do
not need to introduce an independent event. So they simply identify the value of their main
relation’s ARGO with the index of the phrase they modify, and further identify this value
with their own HOOK.INDEX.

4.2 Special Relations

The Matrix also provides a small number of additional semantic relations which introduce
additional attributes for easier readability for both grammar writers and application devel-
opers. These special relations could of course be defined just using the above inventory of
relation attributes (PRED and ARG1 ... ARGN), since the Sem-I would provide an unam-
bigous interpretation of these features within a given relation type. But it has proven to be
convenient in practice to supply the following relations with their own particular attributes.

19

message_m_rel

/\

command_m_rel prop-or-ques_m_rel

/\

abstr-ques_m_rel proposition_m_rel

N

question_m_rel ne_m_rel

Figure 5: Subhierarchy under message

4.2.1 Quantifiers

The lexical types for quantifiers like some and every introduce a quant-relation which is also a
subtype of arg0-relation, but thie type introduces two additional features, RSTR (restrictor)
and BODY. As scopal features, they both take values of type handle. The RSTR will be
related to the top handle of the quantifier’s restriction (i.e., the N’ that takes the quantifier
as a specifier) via a geq constraint (see §6.6.2 below for details on how this constraint is
introduced). The BODY is left unbound: this is what allows quantifiers to have varied
scoping possibilities (see Copestake et al. 2003). The value of ARGO is the referential index
that the quantifier binds (see §6.5).
The type quant-relation is thus constrained as follows:

(25) ARGO ref-ind
quant-relation: |RSTR handle
BODY handle

Since all quantifiers should need only these features, particular quantifiers should be dis-
tinguished by their PRED values (e.g., _every_q rel, some_q rel, the g rel in the ERG).
The Matrix does not yet adopt any hypothesis about whether the inventory of quantifier
relations might be made language-independent, though it would clearly be desirable if such
an inventory could be defined.

4.2.2 Messages

We provide the message type in the Matrix as an MRS encoding of the distinctions among
types of semantics of clauses developed in Ginzburg and Sag 2000. Clauses can express
commands, questions, or propositions, either as simple sentences or in embedded contexts
as sentential complements, relative clauses, etc. The type message is a subtype of relation
which introduces the attribute MARG (message argument), whose value will be the highest
scoping handle of the clause. The PRED value of the message relation is used to distinguish
the three clause types, drawing from the pred sorts given in the hierarchy in Figure 5, all of
which carry the suffix _m_rel for quick identification.

This type hierarchy has a bit more structure than might otherwise be expected as we
anticipate that the messsage type of a clause (through coNT.MsG) will used in semantic

20

selection by clause-taking verbs. As some verbs (like know) accept sentential complements
which are either propositions or questions but not commands, the Matrix provides the inter-
mediate type prop-or-ques_m_rel which the verb know can use to constrain its complement’s
MSG.PRED value. Among questions, all of which will be assigned the MSG.PRED value abstr-
ques_m_rel by the grammar, we distinguish between ordinary questions with MSG.PRED value
question_m_rel) and the type of confirmation-seeking question expressed by a tag question
in English, the particle ne in Japanese, the particle ne in German, or the equivalent in other
languages, for which the Matrix supplies the pred sort ne_m_rel.*?

The ERG has adopted the further assumption that all questions contain an immediately
embedded proposition, motivated both by (reasonable but perhaps controversial) hypotheses
about inference in discourse, and by concerns for simplicity in the hierarchy of constructions
for English. This choice of implementation for the semantics of questions is supported by
the Matrix, but not required by it.

4.2.3 Subordination and Coordination

The Matrix provides two relation types for subordination and coordination, both subtypes of
subord-or-cong-relation, which introduces two new attributes for their semantic arguments.
The first subtype subord-relation can be used for subordinating conjunctions like English
since, and the second subtype conjunction-relation is used by ordinary conjunctions like
English and. Both coordination and subordination relations take two handles as arguments;
in the case of subordination, these correspond to the LTOP values of the main and subordinate
clauses, while for coordination they correspond to the LTOP values of the two conjuncts.
These are the values of the features L-HNDL and R-HNDL, with the names chosen to encode
explicitly the order of left and right conjuncts, since this order can be semantically (or
pragmatically) relevant at least for coordination.

(26)

L-HNDL handle
R-HNDL handle

subord-or-conj-relation: [

The main relation introduced by specific subordinating conjunctions (e.g., if, because,
while) will be simply the general relation subord-relation, with each lexical entry providing
distinguishing values for the PRED attribute. There is, however, more to be said about co-
ordination. Coordination of clauses, predicates or noun phrases requires the construction
of a single individual (event or ref-ind) that can be the value of a role feature in any out-
side predicate that takes the conjoined entity as an argument. This is achieved by giving
conjunction-relation the three additional features shown in (27):

(27) |c-ArG conj-index
L-INDEX indez
R-INDEX indezx

The value of C-ARG is the conjoined index (conj-indezr) which serves as a pointer to the
separate conjoined entity.

120n ne_rel, see Bender and Flickinger 1999.

21

Of course, it is possible to conjoin more than two noun phrases, predicates or clauses. In
order to keep a determinate number of features for any given relation, we represent multi-
coordination via a series of chained binary conjunction-relations, where the R-INDEX of all
but the lowest conjunction-relation is the C-ARG of the next conjunction-relation.

Note that in the coordination of noun phrases, the L-HNDL and R-HNDL values of the
congunction-relation will be identified with the LTOP values of each of the two noun phrases,
but these handle values will not be identified with the LBL values of any relations in the
phrase, given our treatment of quantifiers as underspecified with respect to scope. In all
other cases of coordination (clauses, VPs, predicative phrases, etc.), the values of L-HNDL
and R-HNDL will be identified with the LBL values of relations in the phrase.

4.2.4 Miscellaneous Special Relations

In order to illustrate some ways in which this hierarchy of semantic relations might be
extended, the Matrix provides three additional relations which grammar writers may find
useful. Perhaps the most interesting of these is the unspec-compound-relation, intended
for use in the construction of noun-noun compounds. These are treated in the ERG as a
syntactic constituent with two noun daughters that are combined by a rule which introduces
this unspec-compound-relation, a subtype of arg12-relation. This relation does not introduce
any new attributes, but rather constrains the two arguments to both be of type ref-ind. Such
a constraint might have value, but if not, the grammar writer could simply use the relation
type argl2-relation, and assign the appropriate unique PRED value.

Similarly, the Matrix supplies the wverb-ellipsis-relation as a subtype of argl-relation,
intended for analyses of elided verb phrases as in the English example We tried to but we
couldn’t. Here neither new attributes nor specific constraints on existing attributes are added,
though we anticipate that the semantics of elliptical constructions in languages might require
such additional machinery. Again, the grammar writer may well choose to ignore this type.

The third such type is the prep-mod-relation, a subtype of arg12-ev-relation, and intended
for use with prepositions that head modifier phrases. Here again, no new constraints enrich
this type, though for a given language it may be useful to impose additional type constraints
on the values of ARG1 and ARG2 that would hold for all lexical entries and constructions
introducing this relation type.

4.2.5 User-Defined Special Relations

The Matrix design anticipates that grammar writers may choose to extend the inventory of
relation types to accommodate language-specific phenomena. For example, an analysis of
degree specifiers and measure phrases like the English examples the building was very tall
or the building was fifty meters tall may lead the grammar writer to a new relation type for
these degree phrases. Similarly, comparative constructions, like in the English examples Kim
is taller than Sandy was or dogs have more legs than ostriches, may require the introduction
of relations with additional attributes to encode all of the relevant constraints.

When adding a new relation, be sure to place it correctly in the relation hierarchy so
that it inherits exactly the attributes and constraints that it needs from existing types. And
before choosing to make the addition, consider whether an existing relation type might in

22

fact serve, given the existence of the Sem-I component (described in §8 below) to provide a
unique interpretation of the attributes ARG1 ... ARG4 for each relation.

5 Features of Indices: Agreement and TAM

The Matrix currently provides only minimal support for more fine-grained constraints on
semantic indices, in part due to the high degree of variation needed across grammars to
encode constraints on attributes like person, number, and gender for referential indices, or
tense, aspect, and mood for events. Even a seemingly uncontroversial step like introducing
separate attributes for each of these properties on indices has proven to be unproductive,
since a given language may conflate two such attributes morphologically and syntactically.

For example, the ERG captures the distribution of person and number in English by
introducing types which conflate these two properties, enabling a direct expression of the
relevant syntactic contrasts without requiring a disjunctive representation of the constraints
on subject-verb agreement. The ERG introduces an attribute of the type png called PN
(person-number), whose values are of the type pernum defined as in Figure 6. Given these
types, the constraint on the AGR value for non-third-singular verbs is simply

(28) [non3sg-verb

AGR [PN non3sg]

since the type nondsg will unify with any of its subtypes, including the AGR values 1sg, 2sg,
1pl, 2pl, and 3pl.

pernum

N

lor8sg mnondsg
3sqg 1sg nonlsg
2per 1pl 3pl

/N

2sq 2pl

Figure 6: Hierarchy of PN values in the ERG

This generalization would be difficult to express without disjunctions if person and num-
ber were distinct attributes, and we expect similar conflations in particular languages for
other agreement attributes, so we have left the internal structure of the values for the at-
tributes PNG and TAM unspecified in the Matrix. In future work, we hope to include possible

23

tense/aspect systems as modules in the Matrix, i.e., as components that we expect to be
useful in many but not all languages.

The treatment of tense, aspect, and mood is equally underspecified in the current version
of the Matrix, though it is expected that a more elaborated candidate set of types will
emerge in the near future, at least for some aspectual distinctions, growing out of work on
the NorSource grammar of Norwegian.

6 Syntax-Semantics Interface

Section 3 discussed the basic semantic objects defined in the Matrix. Section 4 discussed
types of relations and the representation of arguments of relations. The preceding sec-
tion sketched our approach to representing agreement and TAM. This should give a fairly
complete picture of the kinds of semantic representations Matrix-derived grammars should
build. This section addresses how to go about building those representations composition-
ally as words are combined into successively larger phrases in the syntax. This section is
organized as follows: §6.1 describes the implementation of general semantic principles. §6.2
describes the identification of semantic heads. §6.3 discusses constructions and lexical rules
that make semantic contributions beyond simply combining the semantics of their daughters.
§6.4 describes the linking of syntactic and semantic arguments within the lexicon, and the
role of syntactic rules in associating the indices of syntactic arguments with the appropriate
semantic requirements of a predicate. §6.5 describes how to ensure that all nominal in-
dices are bound by an appropriate quantifier. §6.6 provides examples of handle constraints,
including constraints on the RSTR values of quantifiers, how messages interact with han-
dle constraints, and handle constraints concerning scopal modifiers like probably. Finally,
§6.7 describes mismatches between syntax and semantics, including control constructions,
expletives, and raising of KEY and INDEX values (e.g., by the English auxiliary do).

6.1 Semantic Principles

With every word or phrase providing a semantics which consists of HOOK, RELS, and HCONS,
the principles of semantic composition in phrase structure rules can be stated (and imple-
mented) quite elegantly, following the definitions in Copestake et al. 2001:

1. The value for RELS on the mother of a phrase is the result of appending the RELS
values of all of its daughters.

2. The value for HCONS on the mother of a phrase is the result of appending the HCONS
values of all of its daughters.

3. The value for HOOK on the mother of phrase is identified with the HOOK value of
its semantic head daughter, where each phrase type uniquely determines which of the
daughters is the semantic head.

In the Matrix, principles 1 and 2 are implemented as constraints on a few high-level types
(lez-rule, basic-unary-phrase and basic-binary-phrase) within the sign subhierarchy (sketched

24

in Figure 7), such that they are inherited by all phrases and lexical rules. In addition, the
type phrase-or-lexrule identifies the mother’s HOOK with the HOOK of the semantics provided
by the rule itself (the value of a feature called Cc-CONT; see §6.3 below). More specialized
phrase types identify the HOOK of the C-CONT with the HOOK of the head or non-head
daughter, as appropriate.

stgn
word-or-lexrule phrase-or-lexrule

word lex-rule phrase

basﬂs’% .

unary- binary-
phrase phrase

Figure 7: Subhierarchy under sign

Principles 1 and 2 require the monotonic accumulation of RELS and HCONS values from
daughter to mother in a phrase. The values of these features are implemented as difference
lists (typed feature structures which bear values for two attributes LIST and LAST), which
allows us to state the accumulation of values using the same single operation of unification
of typed feature structures. (29) shows the constraints on the type basic-unary-phrase,
including the ‘diff-list appends’ that implement principles 1 and 2.

(29) -LIST

RELS
LAST
SYNSEM.LOCAL.CONT L :
LIST
HCONS
LAST
LIST
RELS
LAST
basic-unary-phrase: | < CONT . 1
yp ' LIST [d
HCONS
LAST
LIST
RELS
LAST
ARGS ...|CONT L :
LIST
HCONS
LAST [6]

25

6.2 HOOK Features and Semantic Heads

The type head-compositional (a subtype of headed-phrase) provides the constraint that iden-
tifies the HOOK of the c-CONT (and therefore also of the mother) with the HOOK of the
head-daughter:

(30) C-CONT.HOOK

head-compositional:
HEAD-DTR [SYNSEM.LOCAL.CONT.HOOK]

The types basic-head-comp-phrase, basic-extracted-comp-phrase, and basic-head-opt-comp-
phrase (and therefore its two subtypes) all inherit this constraint from head-compositional.
That is, these types of phrases are all cases where the syntactic head and the semantic
head are the same. Note that basic-extracted-comp-phrase and basic-head-opt-comp-phrase
are unary phrases, but it is still necessary to determine whether or not they are head-
compositional, as there are also unary phrases which contribute constructional semantics
and therefore do not identify the HOOK of the C-CONT with the HOOK of the daughter (see
§6.3 below).

The type head-mod-phrase does not inherit from head-compositional, but one of its sub-
types isect-mod-phrase does, to account for the semantic properties of phrases with intersec-
tive modifiers. In contrast, one of its other subtypes scopal-mod-phrase imposes the opposite
constraint, identifying the HOOK values of the Cc-CONT and the non-head daughter, as re-
quired for the semantics of phrases containing scopal modifiers like probably. Thus we treat
the modifier in scopal head-modifier constructions as the semantic head, even though it is not
the syntactic head. Similarly, in basic-head-spec-phrase the HOOK of the C-CONT is identified
with the HOOK of the specifier daughter, as we take specifiers to be semantic heads.

The third possibility is illustrated in the type head-subj-phrase, which supplies a message
relation that takes widest scope, and hence the C-CONT.HOOK of the phrase is not identified
with that of either daughter. Instead, the C-CONT.HOOK.LTOP value is identified with the
handle (label) of the newly supplied message relation, and the C-CONT.HOOK.INDEX value
is identified with that of the head daughter. See the next section for a discussion of how
constructions can contribute semantics.

So we have (syntactically) headed phrases where the semantic head is the syntactic head,
headed phrases where the semantic head is instead the (syntactic) non-head daughter, and
headed phrases where the C-CONT is the semantic head. The Matrix does not provide any
subtypes of non-headed-phrase, but every phrase must have some semantic head, even if only
the c-CcONT. The constraints on lez-rule, basic-binary-phrase, and basic-unary-phrase ensure
that the HOOK of the mother will always be identified with the HOOK of the C-CONT, but it
is the responsibility of the grammar developer to make sure that the HOOK of the C-CONT
provides sufficient information. This will be ensured if it is identified with the HOOK of a
daughter, or if the C-CONT has a non-empty RELS value and the features inside HOOK are
related to the appropriate parts of some relation on RELS.

The next subsection provides some examples of semantically contentful constructions.

26

6.3 Semantic Contributions of Constructions

Since some phrase types may introduce semantic content which is not drawn from any of the
daughters of the phrase, the MRS framework provides an attribute for phrasal signs called
C-CONT (for construction content), which behaves with respect to the semantics principles
just as though it were another daughter of the phrase (see, for example, (29) above). C-CONT
is implemented in the Matrix as a top-level attribute of phrases and lexical rules, introduced
on the type phrase-or-lexrule. Like CONT, its value is of type mrs.

If a phrase does not introduce any additional semantic content of its own, the values
for the attributes RELS and HCONS in C-CONT will be empty lists, so unary and binary
phrases can safely always append these values to those supplied by the syntactic daughters.
Likewise, the HOOK value of a phrase is always identified with its c-CONT’s value for HOOK,
where for most phrases this HOOK in C-CONT will simply be identified with that of one of
the daughters of the phrase, namely the semantic head daughter.

6.3.1 Syntactic Constructions

One example of a phrase type in the Matrix that does introduce its own semantic content is
the type for (non-relative) clauses (non-rel-clause), which introduces a relation encoding the
illocutionary force of the clause. Such relations (e.g., prpstn_m_rel, mentioned above) are of
type message, following the analysis in (Ginzburg and Sag 2000).

We illustrate construction-introduced semantic content further with the treatment of
noun-noun compounds in the ERG. In the analysis of the sentence the office chair arrived, the
phrase office chair is built using a syntactic rule specifically for noun-noun compounds, and
this rule introduces a generic two-place relation n-n-cmpnd_rel which relates the variables
introduced by the two nouns. The syntactic structure is sketched in (31), where the head-
specifier rule is used to combine the determiner and the compound noun, while the head-
subject rule combines the full NP with the verb phrase arrived. The corresponding MRS
semantics is shown in (32):

(31) S
/\
NP VP
/\ ‘
Det N A%
TN |
the N N arrived

office chair

The office chair arrived

27

(32) [mrs |
LTOP hl
HOOK
INDEX e2
[_the_q_rel |
proposition_m_rel| |LBL h10| |_chair_n_rel| |_office_n_rel
(! |[LBL hi , |ARGO 28 |, |LBL h7 |, |LBL h1f |,
MARG A/ RSTR h1l| |ARGO z8 ARGO z16
BODY hi2
RELS _ }) }
udef_q_rel -)
n-n-cmpnd _rel| |_arrive_v_rel
LBL h17
LBL h7 LBL h21
ARGO =z16|, ,)
ARGl 28 ARGO e2
RSTR hi8
ARG2 z16 ARGl z8
| BODY hl19] -
qeq qgeq _qeq
HCcONS (! |HARG A4 |, |HARG hi11|, |HARG h18|}!)
LARG hn21] |LARG a7 LARG hy

This MRS representation contains two noun relations each associated with a quantifier
relation to bind the variables that are their ARG0O values. The two noun variables are
also identified with the ARG1 and ARG2 attributes of the n-n-cmpnd_rel relation, and the
variable for the head noun chairis also the value of the single argument of the arrive relation.
The n-n-cmpnd relation is introduced by the grammar in the RELS attribute of the C-CONT of
the grammar rule for noun-noun compounds, which also identifies the assignments of the two
nominal instance variables (supplied by its two daughters) to the ARGO and ARG1 attributes
of that n-n-cmpnd relation. The relevant constraint on the grammar rule is sketched in (33):

(33) |HEAD-DTR...HOOK [INDEX]
NON-HEAD-DTR...HOOK [INDEX]
n-n-cmpnd

C-CONT RELS.LIST< ARG1 >
ARG2

As discussed above, general principles of semantic composition that are encoded in the
Matrix types ensure that rule-specific relations are gathered up along with the relations
supplied by the daughters of the rule, and that the appropriate external semantic hooks (the
LTOP and INDEX values) are identified on the phrase itself, ready for further composition.

6.3.2 Lexical Rules

Lexical rules are treated in the Matrix as a particular type of unary rule, in most respects
like syntactic unary rules, though lexical rules are prevented from interleaving with syntactic

28

rules. Thus semantic composition for lexical rules is implemented using the same principles
as outlined above for syntactic phrases. A lexical rule may or may not introduce semantic
content of its own; if it does, that content is found in the C-CONT attribute of the rule and is
combined with the semantic content of the (single) daughter (the ‘input’ to the lexical rule)
by those same principles.

Note that this approach imposes a strong constraint on the directionality of lexical rules in
the Matrix, since the principles of composition guarantee monotonic accumulation of atomic
predications, so no semantic content from a daughter in a phrase or lexical rule is ever lost.
For example, a lexical rule relating the causative/inchoative alternation in English for verbs
like break will have to treat the inchoative lexical entry as the ‘input’ to the lexical rule (that
is, the daughter), and the semantically richer causative lexical entry as the ‘output’ (the
SYNSEM value of the lexical rule).

6.4 Linking

Lexical entries can select syntactic arguments, such as complements, subjects, and specifiers,
constraining the properties of these arguments to capture the relevant subcategorization
requirements. At the same time, these lexical entries can impose constraints which determine
the way that the semantics of their arguments will combine with the semantics of the selecting
entry. These constraints linking the semantic hooks of syntactic arguments to the appropriate
semantic argument positions are introduced in lexical entries and interact with corresponding
constraints in the constructions that combine a word or phrase with one or more of its
syntactic arguments.

For example, a transitive verb like English chase subcategorizes for an NP subject and an
NP object, where in the ERG the verb combines with its object using the head-complement
rule, and with its subject using the head-subject rule. The semantic index of the subject NP
is assigned to the ARG1 role in the _chase_v_rel relation, while the index of the object NP
is assigned to the ARG2 role, where the interpretation of these role names (as the chaser and
the thing chased, respectively) is provided by a separate component of the grammar called
the Sem-I, described in §8.

The linking type for transitive verbs like chase in the ERG includes the following simple
linking constraints:'3

(34) [trans-It
SUBJ ([HOOK.INDEX])

COMPS ([HOOK.INDEX])

ARG1
ARG2

KEYREL l

13These constraints are not stated directly on the type trans-It, but are rather inherited from its supertypes.
We display them on trans-lt for expository convenience. In future versions of the Matrix, we expect to state
such constraints using the feature ARG-S (Argument Structure) rather than valence features like SUBJ or
COMPS.

29

When the verb phrase chased the cat is constructed using the head-complement rule, the
feature structure for the sign the cat is unified with the constraints in the comps attribute
of chase, including both the syntactic requirements for an accusative NP and the semantic
constraints which identify the semantic index of that NP with the ARG2 role in the head’s
relation _chase_v_rel. An analogous identification is made when the subject NP the dog is
combined with the verb phrase chased the cat using the subject-head rule, so that the NP’s
semantic index is unified with the ARG1 role of the _chase_v_rel.

Lexical entries like the English verb insist which take sentential complements differ from
simple transitive verbs in that they impose a linking constraint on the local top LTOP at-
tribute of their complement rather than on the INDEX of that complement. This ensures
that the semantics of the embedded sentence falls within the scope of the semantic relation
introduced by the selecting verb, as discussed in §6.6.1 below.

The lexical type for verbs like insist as in Kim insisted that Sandy was right in the ERG
includes the following linking constraints:'4

(35) [ep-intrans-verd |
SUBJ ([HOOK.INDEX])
COMPS ([HOOK.LTOP])

ARG1
KEYREL
ARG2

Lexical entries for modifiers introduce similar linking constraints on the words or phrases
that they modify, even though modifiers are not the syntactic heads in head-modifier con-
structions. These constraints on both the syntax and semantics of modified phrases are
introduced in the HEAD.MOD attribute of a modifier’s lexical entry (instead of the valence
features including SUBJ or COMPS), and the constructions that combine modifiers and heads
unify the feature structure of the head with the constraints in the HEAD.MOD attribute of
the modifier, analogous to the effects of the valence-combining constructions.

For example, the lexical type for simple intersective adjectives like English tall includes
the following linking constraints:

(36) [adj-synsem
HEAD.MOD ([HOOK.INDEX])

KEYREL [ARGl }

Then the intersective-modifier-head rule which combines tall with chair unifies the HEAD.MOD
constraints of tall with the feature structure for chair, and in addition the rule identifies the
LTOP values of the two daughters, ensuring that the noun and its modifying adjective are
assigned the same scope since they have a common handle.

Scopal modifiers like the English adverb probably impose a linking constraint on the phrase
they modify which is analogous to that introduced by verbs like insist, making reference to
the modified phrase’s LTOP attribute rather than its INDEX:

14Gee note 13.

30

(37) [basic_scopal_adverb_synsem

HEAD.MOD ([HOOK.LTOP])

KEYREL [ARGI]

The construction that combines scopal modifiers with their heads will unify this constraint
from the modifier on the head’s LTOP, resulting in the semantics of the modified phrase falling
within the scope of the relation introduced by the modifier, as desired.

6.5 Indices Bound by Quantifiers

One of the requirements for an mrs to be well-formed is that each of the referential indices
(ref-ind) must be bound by a quantifier. In the Matrix this means that within a sentence
each time a noun phrase is constructed which introduces a referential index (the ARGO value
of the relation supplied by the head noun), that ARGO value must be identified with the
ARGO value of exactly one quant-relation in the mrs for the sentence. In addition, if the
value of an argument role in some relation ARG1 ... ARG4 is constrained to be of type
ref-ind, then that variable will have to be bound by a quantifier. This means that if the
grammar writer defines a lexical entry for a verb with optional arguments, the values of the
ARGN roles in that verb’s relation should be left underspecified when defining the lexical
entry for the verb. For example, the English verb eat might be defined as a transitive verb
whose NP object is optional, allowing both The mouse ate and The mouse ate the cheese.
The value of the ARG2 role in the argl2-ev-relation for this optional direct object can be
constrained to be of type indez, but not ref-ind, in the definition of the lexical entry for eat.
If the direct object is not present, the ARG2 value will then be treated as unbound, and if
the direct object is present, it will supply both the referential index and the quantifier that
binds it.

Note that semantic variables of type event in the Matrix are not bound by quantifiers,
so they do not affect the well-formedness of an mrs, even if they appear as the argument of
some predicate. And indices introduced by expletive pronouns, which will be (subtypes of)
expl-ind, are not expected to appear as arguments of relations in an mrs.

6.6 Imposing Handle Constraints

Since the elementary predications for a phrase or sentence are simply collected up as a bag
or unordered list in the attribute CONT.RELS, any scope relations among these predications
must be expressed by means of constraints on their handles, the value of the attribute LBL
in each elementary predication. In this subsection we discuss the three most typical kinds
of handle constraints used in Matrix grammars.

6.6.1 Embedded Clauses

A clause is taken in the Matrix to be a saturated projection of a verb (or perhaps some
other tense-bearing predicate) which introduces a message relation (a proposition, question,
or command). As discussed above, each message relation introduces just one argument role

31

called MARG, whose value will constrain the handle with the next-highest scope in that
clause (ignoring quantifiers), by means of a geq constraint (cf. §3.3). This next-highest
scoping handle will typically be the value of the LBL attribute of the head verb’s relation.
For simplex sentences with only one clause, the LBL value of the one message relation will be
identified with the LTOP of the semantics for the whole sentence, expressing the fact that this
message has scope over every other relation within the sentence, including all quantifiers.

When one clause is embedded as an argument or modifier phrase within a larger sentence,
the handle of its message relation is instead identified either with an argument role of the
embedding predicate, or with the LTOP of the phrase it is modifying. This expresses the fact
that the semantic content of this embedded clause falls within the scope of some other relation
in the sentence. We can illustrate with an example of each of these types of embedded, first
for sentential complements and then for modifier phrases.

In the English sentence Kim wondered whether Sandy arrived, the clause whether Sandy
arrived is a complement selected by the verb wonder, which introduces an argl2-ev-relation
whose ARG1 value is the referential index supplied by Kim and whose ARG2 value is the LTOP
of the embedded clause. This LTOP for whether Sandy arrived is identified with the LBL of
the message relation (of type question) as a result of the semantic composition of that clause.

Relative clauses are taken to be intersective modifiers of nouns, and as we have already
seen, intersective modification is expressed in the Matrix by identifying the LTOP values of
the modifier and the phrase being modified. Thus in the sentence FEvery dog that the cat
chased barks, the LTOP of the relative clause that the cat chased is identified with the LTOP
of the noun dog, expressing the fact that the semantic content of the relative clause will fall
inside the scope of the quantifier every binding the referential index supplied by dog.

6.6.2 Quantifiers and Scope

As seen above, each referential index introduced in an mrs must be bound by a quantifier,
but in addition, the handle of the noun relation introducing that ref-ind must also be ap-
propriately constrained. Each nominal phrase that is ready to combine with a determiner
will identify its LTOP with the handle of the highest-scoping elementary predication in that
phrase, typically the LBL of the head noun. When this phrase becomes a noun phrase, ei-
ther by combining with a determiner or via some construction which supplies the quantifier,
this LTOP value of the nominal phrase might be expected to be identified with the RSTR
(restrictor) value of its quantifier. But in order to allow for the full range of possible scope
relations within noun phrases, a ¢geq handle constraint is introduced, where the RSTR value
of the quantifier relation is identified with the HARG (the “higher” scope position) of the gegq,
and the LTOP of the N-bar is identified with the LARG (the “lower” scope position). This
seemingly cumbersome introduction of a geq for the semantics within every noun phrase en-
sures that all possible readings of the phrase are correctly represented, allowing just the right

range of variation in quantifier scope. For a fuller discussion of these issues, see Copestake
et al. 2003.

32

6.6.3 Scopal Modifiers

Some modifiers like the English adverb PROBABLY are treated as scopal, which means that
instead of taking as their argument the ref-ind or event of the phrase they modify, they
identify their semantic relation’s argument position with the top handle of the phrase they
modify. This expresses the fact that the semantic content of the modified phrase falls within
the scope of the semantic predicate introduced by the modifier. As with the other examples
of scopal interactions we have seen, here too we want to allow for intervening quantifiers in
the underspecified representation for a sentence like Fvery manager will probably hire some
consultants. So the lexical entry for probably does not identify the LTOP of the verb phrase it
modifies directly with its ARGO, but rather introduces a geq relation whose HARG is identified
with the adverb’s ARGO and whose LARG is identified with the LTOP of its MOD value.

6.7 Syntax-Semantics Mismatches

When defining the linking between syntactic arguments of a lexical entry and the correspond-
ing semantic argument positions in the relation introduced by that entry, a grammar writer
will often encounter mismatches. A single syntactic argument may have its index be linked
to a position in more than one head’s semantics (as in equi constructions), or it may not
appear in the head’s semantic relation at all, as in raising or expletive constructions. In this
section we describe the mechanisms provided in the Matrix for defining these mismatches in
the syntax-semantics interface.

6.7.1 External arguments and control

We have made reference so far to two of the hook attributes, LTOP and INDEX, both of which
play a crucial role in the semantic construction of every phrase. A third attribute, XARG,
is relevant for control phenomena such as equi and raising, since it identifies the semantic
index of a phrase’s external argument (usually the subject of a verb phrase). Identifying
this property of a phrase as part of the hook allows our general principles of semantic
composition to make this attribute visible for control of subject-unsaturated complements
(VPs, predicative PPs, etc.) and also for agreement even at the sentence level, as for example
in tag questions in English (Bender and Flickinger 1999). An example using this XARG
attribute in composition is given in (38), with the lexical type for subject-equi verbs given
in (39).

(38) The dog tried to bark.

33

S

A

[INDEX] SUBJ [INDEX l])]

N N

Det INDEX l A% [XARG I]
ARGO /\
the dog tried C XARG I
ARG1
to bark

(39) Type for subject-equi verbs like try

subj equi-verb

SUBJ ([HOOK.INDEX])
COMPS ([HOOK.XARG])
KEYREL [ARGl]

Here the lexical entry for the verb try identifies its VP complement’s semantic external
argument (XARG value) with its subject’s semantic index (INDEX value), and further identifies
that index with the appropriate role (the ARG1) in the lexical relation introduced by the
verb. The MRS semantics constructed for this example is given in (40).

34

(40) [mrs |
LTOP hl
HOOK
INDEX e2
[def_q_rel
prpstn_m rel LBL h10| |_dog n_rel
(! |[LBL h1|, | ARGO z8 |, |LBL h7|,
MARG h{| |RSTR h11| |ARGO z8
BODY hi12
RELS _))
_try_v_rel
_bark_v_rel
LBL h21| |prpstn_m rel
LBL h24
ARGO e2 |, |LBL h22|,)
ARGO el
ARG1 z8 MARG h23
ARG1 z8
| ARG2 h22]
qeq qeq qeq
HCONS (! |[HARG h4 |, |HARG hll|, |HARG h23|!)
LARG h21| |LARG A7 LARG h24

The construction of this representation is the result of the same general principles of
semantic composition presented above. The head-complement rule unifies the verb tried’s
constraints on its complement with those of the verb phrase to bark, which results in the
identification of the XARG value of that VP with the INDEX of the subject of tried. The
constraints on tried’s subject are propagated up to the verb phrase tried to bark from the
head-daughter tried by the head-complement rule, and the semantics of this verb phrase
preserve the semantic properties of its daughters, including the desired re-entrancies with
the subject index. Hence when the head-subject rule combines the dog with tried to bark,
the syntactic and semantic constraints of the noun phrase are unified with those in the SUBJ
attribute of the verb phrase, resulting in the identification of the ARGO value introduced by
dog with the ARG1 values in both _try_v_rel and _bark_v_rel.

6.7.2 Raising

The same XARG attribute enables a straightforward representation of raising phenomena,
where a syntactic argument’s semantic index is not linked to any semantic argument position
in a given lexical entry’s semantic relation, but is instead assigned to a role in the semantics
of another syntactic argument of the lexical entry. For example, the English verb seem can
have two syntactic arguments, an NP and a VP, as in the dog seems to bark, but the semantics
of seem introduces a one-argument relation _seem_v_rel which takes a proposition.

Compare the following parse tree and lexical type definition to the ones for the subject-
control example with ¢ry above:

(41) The dog seems to bark.

35

S

A

[INDEX }

N

SUBJ [INDEX l])]

RN

Det INDEX l A% [XARG I]
ARGO /\
the dog seems C XARG
ARG1
to bark

(42) Type for subject-raising verbs like seem

[subj-rais-verb

SUBJ

COMPS

KEYREL

The difference between the lexical entries forseem and ¢ry is that the raising verb identifies
the external argument of its VP complement with its own subject’s index, but then takes the
proposition introduced by the VP complement as its only argument, rather than assigning

([HOOK.INDEX])

LTOP
(|HOOK
XARG

[ARGl]

a second semantic role to its own subject’s index.

Object-raising lexical entries like the English believe instantiate a lexical type similar to
the one for subject-raising verbs, but identify the external argument of their VP complement
with the index of their direct object NP rather than that of their subject. The relevant type

is defined as follows:

(43) Type for object-raising verbs like believe

[0bj-rais-verb

SUBJ

COMPS

KEYREL

([HOOK.INDEX])

LTOP
([HOOK.INDEX], HOOK

XARG

ARG1
ARG2

36

1]

0

6.7.3 Expletives

Constructions with expletive arguments are analyzed similarly to raising constructions in
that a lexical entry’s syntactic argument introduces a semantic index which does not appear
as a role in the entry’s semantic predicate; indeed, that index appears in no relation in the
semantics. For example, the English sentence it rained is analyzed in the ERG to have the
semantics _rain_v_rel(e), with the lexical entry for rain requiring its subject NP to be the
expletive it. The lexical type for verbs like rain introduces the following constraints, making
use of an English-specific subtype of the Matrix expl-ind named it-ind which is introduced
by the relevant lexical entry for the NP it.

(44) Tezpl-subj-verd
SUBJ ([HOOK.INDEX it—ind]

KEYREL [ARGO event]

The lexical entry for the English presentational be as in the example there is a dog here
requires its subject NP to have a semantic index of a second type of expletive, called there-
ind, which is introduced by the relevant lexical entry for the NP there. The following example
illustrates the interaction of expletives with object-raising predicates:

(45) The dog believes there to be a cat

7 Verifying mrss

The LKB provides several useful tools for ensuring that the mrs representations that are built
with a Matrix-derived grammar are well formed. These include batch tests for correctness
of lexical entries and for the fully scoped readings of sentences, as well as alternate views of
the mrss for sentences. The basic functionality is documented in (Copestake 2002), so here
we only highlight a few of the most common tests that a grammar writer can use.

First, it is important that the lexical entries for the grammar are all correctly defined,
and one good batch test for this level of well-formedness can be invoked from the “LKB
Top” window, by selecting the “Debug — Check lexicon” menu item. This will cause each
lexical entry in the lexicon to be expanded and checked, with helpful error messages printed
if any flaws are uncovered.

Second, the wellformedness of an mrs for a sentence can be checked by making sure that
the underspecified semantics constructed by the grammar can be used to produce the right
range of fully-scoped representations. This check can be invoked by left-clicking on one of
the small parse trees that appears after successfully parsing a sentence, and selecting the
menu item “Scoped MRS”, which will either bring up a window showing all of the possible
fully-scoped realizations for the chosen sentence, or produce an error message, often with
helpful advice about what is wrong with the mrs.

A third useful view of an mrs can be invoked by again left-clicking on one of the small
parse trees, and selecting the menu item “Dependencies”, which will bring up a window
showing a simplified view of the elementary dependencies that can be computed from the

37

input mrs. If the color of the text is blue, the argument links among predicates are all
well-formed, whereas if the text color in the window is yellow, at least one link is not well-
formed, and the line for the offending predicate is marked with an initial vertical bar to
help in diagnosis. If the feature structure for the input mrs has defined a circular linking
structure (usually because of an error in how the difference lists have been appended), then
the text color in this “Dependencies” window will be red.

8 Sem-I: The Semantic Interface

In order to make use of a semantic representation produced by a Matrix grammar, an
application developer will require a specification of how to interpret the MRS structures,
including documentation of the full range of semantic relations and their arguments that
the grammar introduces. This specification, called the Semantic Interface (Sem-I) should be
supplied as part of each grammar, and will be the locus of some linguistic generalizations
that one might have expected to see encoded directly in the lexical type hierarchy or in
lexical rules.
The Sem-I will consist of:

1. A manually-constructed fully-documented database of all the relations introduced via
constructions and lexical types, and all the values which may appear on semantic
features. This is the meta-level Sem-I, and should be consistent across languages: i.e.,
it forms part of the Matrix.

2. An automatically constructed database for the semantic information pertaining to the
open class words in each language. This is the object-level Sem-I. It is generated from
the lexical database for each grammar’s lexicon.

The Matrix will have associated code for generating the object-level Sem-I, for validating
the well-formedness of mrss constructed by the grammar, and for employing Sem-I mappings
in displaying MRS representations.

8.1 The meta-level Sem-1

This is a manually constructed, fully documented database of all the relations introduced via
constructions and lexical types, and all the values which may appear on semantic features.
Since this inventory is intended to be consistent across languages, it forms part of the Matrix,
with links to language-specific examples that illustrate the use of these relations and values
for a particular grammar.

For example, a two-place relation introduced for noun-noun compounds in an English
grammar derived from the Matrix might appear in the meta-level Sem-I database as follows:

PRED ARGO ARG1 ARG2 documentation test suite
n-n-cmpnd_rel event obl index obl index obl <link to doc> <ex. #>

Here, the specification and instantiation of the types of the ARG0, ARG1, ARG2 values may
be done automatically, as will be the case with the object-level Sem-I. Each semantic role

38

is identified as an obligatory (’obl’) or optional ("opt’) argument of the predicate, with the
expectation that more fine-grained distinctions may be needed later. The documentation
needs to explain the meaning and use of the relation in as much detail as necessary for
application developers to decide how to treat it. For instance, it would be important for a
developer to know whether n-n-cmpnd_rel was used for all noun-noun compounds in this
grammar or only for some of them.

The meta-level Sem-I will also include specifications of semantic classes to provide the
basis for generalizations over thematic roles, and to enable more mnemonic displays of MRS
structures where the role names can be specialized for these semantic classes.

8.2 The object-level Sem-I

Each grammar built using the Matrix should eventually include an automatically constructed
database for the semantic information pertaining to the open class words in the language.
This is the object-level Sem-I, generated from the lexical database for each lexicon, with
possible links to example sentences that can be used for testing.

For example:

lexeme string PRED ARGO ARG1 ARG2 test suite eg doc
chase_vl chase _chasevrel event + index 4 index + Dogs chased cats “Doc”

In most cases there won’t be a test suite example, but it may be that a developer will
add one to elucidate the use or distinction from another sense. Similarly, documentation
may be added, but usually won’t be. The mechanism for adding documentation or test suite
examples must make it possible to autogenerate the links in this database.

8.3 Thematic role mapping

The Matrix uses a naming convention where role names of the form ARGn are used to
identify individual semantic arguments for predicates. While this has proven to be important
in capturing generalizations about linking in the lexical type hierarchy, it requires that other
linguistic generalizations over thematic roles be expressed instead in the Sem-I.

The approach planned for the Matrix is two-fold: a rich inventory of word classes will
be incrementally developed which will allow mapping of ARGn relations into alternative
inventories, and since this is a long term project, it might be augmented with automatically
generated example sentences as a form of cheap documentation to convey the intent of role
assignments for any given predicate.

8.4 'Word classes

Information about word classes should be added incrementally to the lexical databases,
without changing the grammars. Documentation for these classes explains the notion of
ARGn with respect to that class, and mappings to alternative thematic roles can be done
on the basis of class membership. Verb classes will be part of the Matrix Sem-I, since they
are motivated by properties of the syntax-semantics interface. In contrast, thematic role

39

mappings are additions to the Sem-I which may be provided by developers of a particular
grammar. The LKB software will support parameterized I/O routines which will allow
alternative thematic role inventories to be supported if there is an available mapping.

For example, we can distinguish two classes of English psych predicates: one in which
the subject is the experiencer of some emotion and the object the stimulus (e.g., Kim likes
rabbits) and the other in which the converse is true (e.g. Rabbits worry Kim). The lexical
database entries for like and worry can be enhanced to include their class.

A grammar developer wishing to add a semantic class to the Sem-I should provide the
following information:

1. Class name.

2. Class documentation, to include class membership criteria in the form of specific tests
and some specific exemplars.

3. Documentation of the ARGn behaviour of the class in the grammar.
4. A full list of all current lexical entries that are members of the class.

5. A mapping between the ARGn for this class and any supported thematic role sets.

8.5 Example sentences

Automatically created examples might be used to make the behaviour of lexical entries
clearer to outside users. The idea is to augment entries which have subcategorization with
some very coarse-grained selectional restriction information. For instance:

e handle

e event

e non referential
e referential

. animate

. non-animate physical

1
2
3. physical location
4. temporal location
5

. abstract

This would allow us to automatically construct standardized examples, which can be used
to illustrate ARGs etc. For instance:

the person liked the thing
the person liked doing the thing
the person liked to do the thing

40

where person is the standard term for animate entities and thing for non-animate ones.

The point about this approach is to make it reasonably intuitive for application developers
while avoiding making the process of deciding on the semantic categories too time-consuming.
It will also simplify the task of checking lexical entries for over-generation, by allowing
the grammar writer to scan the automatically generated examples for obviously incorrect
sentences.

9 Conclusion

We have provided documentation here for the semantic types and their attributes that are
used in the Matrix, as well as a discussion of how these types are used in semantic composition
to produce well-formed meaning representations. We illustrated the concepts primarily with
examples from English, but expect that the mechanisms introduced here should be useful in
building grammars for a wide variety of human languages.

10 Acknowledgments

This paper is an extension of work first reported in Flickinger and Bender 2003. We are
grateful to the authors of Minimal Recursion Semantics: An Introduction, from which this
documentation draws heavily, and especially to Ann Copestake for illumination on many
issues presented here. We also thank the early adopters of the Matrix, in particular Melanie
Siegel as principal author of the wide-coverage JACY grammar of Japanese, and the develop-
ers of the trail-blazing NorSource grammar of Norwegian: Lars Hellan, Dorothee Beermann,
and Petter Haugereid, as well as their colleague Kaja Borthen. We have received helpful
questions and critique from the other members of the Deep Thought consortium that helped
to fund this work, especially from Berthold Crysmann, currently developing a wide-coverage
grammar of German for the project; and also from colleagues working in the Norwegian
LOGON machine translation project. As always, only the authors of this document can be
held responsible for any errors that survive here in spite of the excellent counsel we received.

References

Bender, Emily, and Dan Flickinger. 1999. Peripheral constructions and core phenomena. In
G. Webelhuth, A. Kathol, and J.-P. Koenig (Eds.), Lexical and Constructional Aspects
of Linguistic Explanation. Stanford: CSLI Publications.

Bender, Emily M., Dan Flickinger, and Stephan Oepen. 2002. The Grammar Matrix: An
open-source starter-kit for the rapid development of cross-linguistically consistent broad-
coverage precision grammars. In Proceedings of the Workshop on Grammar Engineering
and Fvaluation at the 19th Internation Conference on Computational Linguistics, 814,
Taipei, Taiwan.

41

Carpenter, Bob. 1992. The Logic of Typed Feature Structures. Cambridge, UK: Cambridge
University Press.

Copestake, Ann. 2002. Implementing Typed Feature Structure Grammars. Stanford, CA:
CSLI Publications.

Copestake, Ann. 2003. Report on the design of RMRS: Deep Thought project report D1.1.
Unpublished ms.

Copestake, Ann, Daniel P. Flickinger, Ivan A. Sag, and Carl Pollard. 2003. Minimal Recur-
sion Semantics. An introduction. Unpublished ms.

Copestake, Ann, Alex Lascarides, and Dan Flickinger. 2001. An algebra for semantic con-
struction in constraint-based grammars. In Proceedings of the 39th Meeting of the As-
soctation for Computational Linguistics, Toulouse, France.

Flickinger, Dan. 2000. On building a more efficient grammar by explointing types. Natural
Language Engineering 6(1).

Flickinger, Dan, and Emily M. Bender. 2003. Compositional semantics in a multilingual
grammar resource. In Proceedings of the ESSLLI 2003 Workshop “Ideas and Strategies
for Multilingual Grammar Development”, Vienna, Austria.

Flickinger, Dan, and Emily M. Bender. forthcoming. The matrix: Complementation. Un-
published ms.

Ginzburg, Jonathan, and Ivan A. Sag. 2000. Interrogative Investigations: The form, meaning
and use of English interrogatives. Stanford, CA: CSLI Publications.

Krieger, Hans-Ulrich, and Ulrich Schaefer. 1994. TDL - a type description language for
HPSG. Research Report, Deutsches Forschungszentrum fuer Kuenstliche Intelligenz,
Saarbruecken.

Oepen, Stephan, Daniel Flickinger, J. Tsujii, and Hans Uszkoreit (Eds.). 2002. Collaborative
Language Engineering. A Case Study in Efficient Grammar-based Processing. Stanford,
CA: CSLI Publications.

Pollard, Carl, and Ivan A. Sag. 1994. Head-driven Phrase Structure Grammar. Chicago:
Chicago University Press.

Siegel, Melanie, and Emily M. Bender. 2002. Efficient deep processing of japanese. In
Proceedings of the 3rd Workshop on Asian Language Resources and Standardization at
the 19th Internation Conference on Computational Linguistics, Taipei, Taiwan.

Wahlster, Wolfgang, and Reinhard Karger. 2000. Verbmobil: Foundations of Speech-to-
Speech Translation. Berlin, Heidelberg, and New York: Springer Verlag.

42

