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This talk in a nutshell

• A whole pile of end-to-end systems does not general-purpose NLU make


• Systems, no matter how complex, trained only on form, won’t learn meaning


• That’s not how babies do it either


• General-purpose NLU requires attention to linguistic structure and use


• Compositionality is key!
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Child language development requires more than 
just exposure to language (with or without vision)

• Learning from text only is not “just like babies do it”


• Early language acquisition is predicated on joint attention (Bruner 1985, 
Tomasello & Farrar 1986, inter alia)


• Even phonetic learning requires social engagement, exposure via TV or radio 
alone is insufficient (Kuhl 2007)
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Form v. meaning v. use v. world

• Form: text, speech, sign (+ paralinguistic information like gesture or tone)


• Conventional/standing meaning: logical form (or equivalent) that the linguistic 
system pairs with that form


• Communicative intent of the speaker: what they are publicly committed to by 
uttering that form (+ additional plausibly deniable inferences)


• Relationship between communicative intent & the world, e.g.:


• True assertion, mistaken assertion, lie, accidentally true assertion, social 
act related to construction of social world, question about the 
interlocutor’s beliefs, …
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Thought Experiment 1: Java

• Model: Any model type at all

• For current purposes: BERT (Devlin et al 2019), GPT-2 (Radford et al 2019), 
or similar

• Training data: All well-formed Java code on Github, but only the text of the 
code

• Test input: A single Java program, possibly even from the training data

• Expected output: Result of executing that program
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Thought Experiment 2: English

• Model: Any model type at all

• For current purposes: BERT, GPT-2, or similar

• Training data: As much well-formed English text as you like, but no further 
info

• Not arranged into question/answer pairs and marked as such, etc.

• Test input: A photograph plus a sentence like How many dogs are jumping? 
or Kim said “What a cute puppy!” What is cute?

• Expected output: Three or the region of the photo with the cute puppy.
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• What’s missing: Meaning!

You can’t learn meaning 
from form alone



So what do they learn?

• If the big transformers aren’t learning meaning, what makes them so 
effective?


• The ability to learn patterns:


• Lexical similarity


• Structural regularities


• Artifacts in the data (Niven & Kao 2019)


• Useful, but not meaning and therefore not a path to general-purpose NLU



Adding Meaning to Training Data

• Stars on starred reviews (e.g. Yelp Inc, 2013)


• SQL queries paired with English queries (e.g. Zelle & Mooney, 1996)


• Paragraphs paired with hypotheses and entailment annotations (NLI datasets, 
e.g. Bowman et al, 2015)


• Photographs annotated with question/answer (VQA; Antol et al 2015)


• Word problems paired with algebraic equations (e.g. Kushman et al 2014)


• Voice assistant commands paired with expected actions
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How much of this is required 
before a system can learn 
what insufficiently spicy 

means?
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Complementary source of knowledge: 
Linguistics

• How language works


• Structures at varying levels


• How people learn language


• How people use language


• How language varies and changes over time



Linguistics in NLP

• Design of rule-based systems


• Design of annotation schemas to support machine learning


• Feature engineering in (older) machine learning


• Error analysis
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Linguistic Fundamentals for Natural Language Processing 
II: 100 Essentials from Semantics and Pragmatics

• with Alex Lascarides; forthcoming 2019



#30 Words can have surprising nonce uses 
through meaning transfer

• Nunberg (2004) argues that it’s the predicates in (58a-e), not the arguments 
that bear transferred meanings 

• (58f) involves a transferred predicate that is part of a noun phrase.



#46 It’s challenging to represent the relationship between 
the meaning of an idiom and the meaning of its parts

• Nunberg et al (1994): Many idioms aren’t completely fixed phrases, but 
interact with internal modification (96a), information structure (96b), 
pronominal reference (96c), ellipsis (96d), and coordination (96e):


• Riehemann (2001): Distribute meaning of idiom across the words, but 
idiomatic words are only licensed by semantic constructions which also 
require the rest of the idiom to be present.



#79: Some linguistic expressions pass embedded 
presuppositions up, some don’t, and with others it depends

• Holes, plugs, and filters (Karttunen 1973)
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Why know these things?

• Better understanding of what is being fed into large machine learning models


• Better error analysis of what goes wrong


• Better understanding of the challenges between modern technology and full-
scale, task-independent NLU
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A meaning representation system is compositional 
if (working definition; Bender et al 2015):

• it is grounded in a finite (possibly large) number of atomic symbol-meaning 
pairings


• it is possible to create larger symbol-meaning pairings by combining the 
atomic pairings through a finite set of rules; 


• the meaning of any non-atomic symbol-meaning pairing is a function of its 
parts and the way they are combined; 


• this function is possibly complex, containing special cases for special types 
of syntactic combination, but only draws on the immediate constituents and 
any semantic contribution of the rule combining them; and 


• further processing will not need to destructively change a meaning 
representation created in this way to create another of the same type. 



Semantic annotation survey: 
Compositional layer

• Predicate-argument structure


• Partial constraints on: 


• Scope of negation and other 
operators


• Restriction of quantifiers


• Modality


• Tense/aspect/mood


• Information structure


• Discourse status of referents of 
NPs


• Politeness


• Possibly compositional, but not 
according to sentence grammar:


• Coherence relations/rhetorical 
structure



ERG: The English Resource Grammar  
(Flickinger 2000, 2011)

• Under continuous development since 1993

• Framework: Head-driven Phrase Structure Grammar (Pollard & Sag 1994)

• 1214 release: 225 syntactic rules, 70 lexical rules, 975 leaf lexical types

• Open-source and compatible with open-source DELPH-IN processing 

engines (www.delph-in.net)

• Broad-coverage: 85-95% on varied domains: newspaper text, Wikipedia, bio-

medial research literature (Flickinger et al 2010, 2012; Adolphs et al 2008)

• Robust processing strategies enable 100% coverage


• Output: derivation trees paired with meaning representations in the Minimal 
Recursion Semantics framework---English Resource Semantics (ERS)

• Emerging documentation at moin.delph-in.net/ErgSemantics

http://www.delph-in.net
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Redwoods: ERG-based treebanking (sembanking) 
(Oepen et al 2004)

• Minimal discriminants (Carter 1997): Properties of derivation trees partitioning 
parse forest per item 


• Allows annotators to swiftly navigate even very large parse forests to select 
intended analysis or reject all analyses


• 37,200 words of the Brown corpus annotated in 1400 minutes (1.7 
sentences/min)


• All annotation decisions are recorded and can be rerun against updated parse 
forests produced by updated grammar versions


• Current Redwoods release (9th growth) includes 85,000 sentences of 
annotated text across genres including Wikipedia, tourism brochures, ...



Redwoods: ERG-based treebanking (sembanking) 
(Oepen et al 2004)

• Analyses can be viewed as full HPSG analyses, ERS only, or even simpler 
syntactic or semantic dependency representations


• Data source behind 


• ‘DM’ representations at the SDP 2014 and 2015 shared tasks (Oepen et al 
2014, 2015) http://sdp.delph-in.net/


• ‘DM’ and ‘EDS’ representations in the CONLL 2019 shared task http://
mrp.nlpl.eu/


• Unlimited ‘silver’ data can be generated at will using the grammar-based 
parser & treebank trained parse selection model


• Beneficial in e.g. neural sentence realization (Hajdik et al 2019)

http://sdp.delph-in.net/
http://mrp.nlpl.eu/
http://mrp.nlpl.eu/


Why a grammar-based compositional approach?

• Importance of task-independent, sentence-meaning annotations


• Can created be done:


• Non-compositionally, as in Abstract Meaning Representation (AMR; 
Langkilde & Knight 1998, Banarescu et al 2013)


• Compositionally, by hand, as in PropBank (Kingsbury & Palmer 2002) and 
FrameNet (Baker et al 1998)


• Compositionally, with a machine-readable grammar, as in Redwoods 
(Oepen et al 2004), TREPIL (Rosén et al 2005), or the Groningen Meaning 
Bank (Basile et al 2012)



Benefits of compositionality: Comprehensiveness

• Grammar-based compositional approach ⇒ Every word and syntactic 
structure must be accounted for, or specifically deemed semantically void


• Narrower paraphrase sets, compare AMR (1), (2) (Banarescu et al 2014) to 
ERS (3)

(1) a. No one ate.

b. Every person failed to eat.

(2) a. The boy is responsible for the work.

b. The boy is responsible for doing the work.

c. The boy has the responsibility for the work.



Benefits of compositionality: Comprehensiveness

• Grammar-based compositional approach ⇒ Every word and syntactic 
structure must be accounted for, or specifically deemed semantically void


• Narrower paraphrase sets, compare AMR (1), (2) (Banarescu et al 2014) to 
ERS (3)

(3) a. Kim thinks Sandy gave the book to Pat.

b. Kim thinks that Sandy gave the book to Pat.

c. Kim thinks Sandy gave Pat the book.

d. Kim thinks the book was given to Pat by Sandy.

e. The book, Kim thinks Sandy gave to Pat.



Benefits of compositionality: Comprehensiveness

• Task-independent semantic representations can’t abstract away from 
seemingly less relevant nuances of sentence meaning


• Compositional approach facilitates capturing more detail



Benefits of Compositionality: Consistency

• Requiring meaning representations to be grounded in both the lexical items 
and syntactic structure of the strings being annotated significantly reduces 
the space of possible annotations


• Grammar based approach allows encoding of design decisions for machine 
application


• Ex: arguments of when 

• Human input still required, but choosing among representations is far simpler 
than authoring them


• Development of grammar is still a big investment, but with big returns as 
the same grammar is applied over more and more text



Benefits of Compositionality: Scalability

• In amount of text annotated: Initial development of grammar pays off as it is 
applied to as much text as desired


• In genre diversity of the resource: One and the same grammar can be applied 
to texts from multiple different domains


• Robustness techniques can compensate for lack of grammar coverage


• In the complexity of the annotations themselves: Grammar updates can be 
efficiently propagated across the treebank by reparsing corpus and rerunning 
annotation decisions (Oepen et al 2004)


• Improve analyses of particular phenomena, or add layers of grammar-
based annotation (e.g. partial constraints on information structure)



Inter-Annotator Agreement study

• Data source: Sentences sampled from Antoine de Saint Exupéry’s The Little 
Prince 

• Three expert annotators 

• Annotated 50-sentence trial set, then adjudicated, updating annotation 
guidelines as indicated


• Annotated 150-sentence sample set, then measured IAA, then produced 
adjudicated gold standard


• Repeat above steps with ‘bridging’ analyses in 



Agreement Metrics

• NB: Chance-corrected IAA measures as yet unavailable for graph-structured 
annotations


• Exact match: Full ERS identical between annotators


• Elementary Dependency Match (Dridan & Oepen 2011)


• Computed over sets of triples from reduction of ERS to Elementary 
Dependency Structures (EDS)


• EDMa: Argument identification only


• EDMna: Argument identification + predicate name identification



IAA Results

• Compare Banarescu et al (2013) triple-based IAA for AMR over web text of 0.71
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• A whole pile of end-to-end systems does not general-purpose NLU make
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