Grammar Engineering for Crosslinguistic Hypothesis Testing

Emily M. Bender Department of Linguistics University of Washington October 13, 2006

Acknolwedgments

Dan Flickinger, Stephan Oepen Scott Drellishak, Laurie Poulson Students in Grammar Engineering classes (past 3 years)

Overview

Big issue: Hypothesis testing in syntax Specific work: Grammar Matrix customization system

Road map

Syntactic hypothesis testing Two classic observations Grammar engineering in general terms Some specifics about the Grammar Matrix project **Conclusion and implications**

Definitions

- Syntax: The means by which natural languages relate strings of words to their meanings, over an infinite set of possible strings of words
 - Secondarily: A system which models syntactic wellformedness
- Syntactic hypothesis: A hypothesis about the structures assigned to a class of sentences or more broadly about constraints on possible grammars

Syntactic hypotheses: Constraints on grammars

P&P style UG Compositionality Movement vs. lack thereof Empty categories vs. lack thereof 'Generative' approach v. exemplar-based+analogy General rules and idiosyncrasies stored in the same system

Syntactic hypotheses: Types of structures

Most constituents have heads
 Agreement is fundamentally both syntactic and semantic
 Case on nouns is determined by selecting heads
 Long-distance dependencies are mediated by local dependencies ('looping' rather than 'swooping' movement)

Syntactic hypotheses: Predictions about languages

- No languages mark coordination with a single conjunction at the beginning of a list of coordinands
- All languages have some way to express statements, commands, and questions
- No language allows the extraction of a coordinand (CSC: element constraint, Ross 1967)

Testing hypotheses

Can't just go look: these properties aren't typically apparent in surface strings, nor are they accessible to introspection

- Instead: Build a model, and test its predictions about grammaticality against judgments of acceptability
 - Predictions about languages
 - Predictions within languages

Models

- Sketched: Argue that a model with(out) property X can't work Elaborated: Process test examples with the model and calculate predictions of grammaticality
 - Can include examples testing interaction with many parts of the grammar
 - Can include open corpus data, to catch examples of the phenomenon in question unanticipated by the linguist

Observation one

Meillet (1903) [or possibly de Saussure or von der Gabelentz]:
"que chaque langage forme un système où tout se tient"

For the structuralists: It's all about the contrasts

For grammar engineers: It's all about the interactions

Observation two

[Chomsky (1965)

"To the extent that a linguistic theory succeeds in selecting a descriptively adequate grammar on the basis of primary linguistic data, we can say that it meets the condition of explanatory adequacy."

Explanatory adequacy presupposes descriptive adequacy.

Upshot

- It is not possible to test a syntactic hypothesis in one subdomain without simultaneously building a model of many intersecting subdomains.
- It is not possible to test a syntactic hypothesis without considering a wide variety of sentences, to illustrate the interaction of subdomains.

Observation two-prime

Chomsky & Lasnik (1995)

"Suppose we have a collection of phenomena in a particular language. [...] there are many potential rule systems, and it is often possible to devise one that will more or less work [...] But this achievement, however difficult, does not count as a real result if we adopt the P&P approach as a goal."

How can we tell when we have a rule system that works?

Grammar Engineering

- **Building models on a computer**
 - Allows the computer to keep track of the interactions
 - Allows testing over thousands instead of tens of examples, including:
 - hand-constructed test suites
 - naturally occurring corpus data

Why corpus data?

- No linguist can anticipate all relevant example types to test. English Resource Grammar (Flickinger 2000) encoded the expectation that adjectives can't be pied-piped in free relatives.
- Baldwin et al (2005) found this example by processing a sample of the BNC with the ERG:
- <u>However pissed off</u> we might get from time to time, though, we're going to have to accept that Wilko is at Elland Rd. to stay.

Multiple frameworks

HPSG: LKB (Copestake 2002), TRALE (Meurers et al 2002)
LFG: XLE (Maxwell and Kaplan 1996)
CCG: OpenCCG (Baldridge and Kruijff 2003)
MP: Minimalist Grammar (Stabler 2000; cf Churng 2006)

Requirements

Stable formalism

- Distinguish formalism from theory
- Parsing, generation, and grammar development tools
- **Test suite management tools**

Incremental development

- Have to start somewhere
- Selection of where to go next can be
 - theory driven (test suites mostly hand constructed)
 - application driven (test suites combine constructed and naturally occurring data)
- Inertia: Once a decision is made, exploring other options requires a big commitment

Enter the Matrix

Bender, Flickinger & Oepen 2002 Flickinger & Bender 2003 Bender & Flickinger 2005 Drellishak & Bender 2005

Enter the Matrix

Original motivation was application oriented:

- We (DELPH-IN) have big grammars for English, Japanese, German
 - Each grammar combines information which looks languagespecific with information that looks more general
 - Can we reuse the general parts of existing grammars to reduce the cost of starting a new one?

Original Matrix

Early versions of the Matrix focussed on 'universals' Most elaboration on the syntax-semantics interface And it helped! Broad-coverage grammars for Norwegian (Hellan and Haugereid 2003) and Modern Greek (Kordoni and Neu 2005), started from the Matrix, are still growing

But wait, there's more

- Many non-universal aspects of language nonetheless recur in many languages
- It's a shame not to be able to share some code, just because not all languages need it
 - Can we apply the same analysis to, e.g., SOV word order everywhere we see it?
- [... crosslinguistic hypothesis testing

Using the Matrix

Division of labor

- Declarative grammar (competence): Description of linguistic knowledge
- Parser, generator (performance): Algorithms which use a grammar to analyze or realize strings
- Grammar development tools: GUI tools for visualizing and debugging grammar (LKB: Copestake 2002)
- Test suite management software: Batch process test suite items and analyze results ([incr tsdb()]: Oepen 2001)

Division of labor

... at a rate of 1000s of sentences per minute!

Matrix as starter-kit

Matrix as starter kit

Matrix as starter kit

Matrix as starter kit

Assumptions

Have to make some assumptions to get off the ground

- Since the model as a whole is being tested, can only really test hypotheses relative to assumptions
 - This is true of syntax in general, to the extent that we test models by testing their predictions of grammaticality

Assumptions: HPSG

- Monostratal (WYSIWYG) theory; SLASH-passing for long-distance dependencies
- No empty elements
- Rich collection of constructions, with types expressing generalizations across the constructions
- **Compositionality: Each constituent gets a semantic representation**
- Typed feature-structure formalism

Assumptions HPSG

- X-bar theory: Most phrases are headed, heads select for complements, subjects, and specifiers
 - Modifiers select for heads
- **Specifiers reciprocally select heads**
- Category' of mother is determined by HEAD value of head daughter and remaining valence requirements

Assumptions: tdl (LKB)

No relational constraints: The value of a feature cannot be some function of the value of another (other than equality) Any given phrase structure rule has fixed arity. Monotonic compositionality: No semantic information lost Tectogrammatic/phenogrammatic equivalence: The yield of the tree gives the surface string in order

Assumptions: Matrix

- Binary branching
- All nouns have associated quantifiers (overt or covert)
 All languages distinguish subjects from other verbal arguments
 All languages have some form of 'intonation questions'

Barking up the wrong tree?

- We almost certainly are, at least in some respects
 - It would surprising to be right about so many things
- **So why put in all the effort?**
 - Test suites are reusable resources
 - Learn things about languages, even if the model eventually fails
 - When it fails, learn about why

Crosslinguistic hypotheses

- The Matrix core contains constraints expected to be useful across all languages
 - Semantic compositionality
- Valence patterns
- Superset of part of speech types

Typological 'libraries'

- The libraries contain sets of alternate realizations of specific phenomena
 - Word order
 - Negation
 - Yes-no questions
 - Coordination

Word order

Major constituent order
If determiners are present, Det-Noun order
If adpositions are present, P-NP order
If auxiliaries are present, aux-V order
If question particles are present, Q-S order

Yes-no questions

Matrix-clause only (for now)

- Subject verb inversion
- Question particles
- Intonation only

Sentential negation

- Negative adverbs (independent or selected)
- Negative affix (main or auxiliary verbs)
- If both: always both, complementary distribution, always adverb, always inflection, optionally either

Coordination

- Number of marks
- Position of marks
- **Type of marks**
- **Categories that can be coordinated with that strategy**

Crosslinguistic hypotheses

Aim to handle all known variants on each phenomenon
 Aim for cross-compatibility of the libraries
 Explore where cross-compatibility fails
 Harmonize semantic representations

Isn't that a lot of grammars?

- Hundreds of thousands, just with the libraries implemented so far, as against 6,000 languages currently spoken today
- Note that there are more than 6,000 possible human languages
- E Still, most of our grammars have to be highly unlikely
- We hope this approach will provide an interesting arena in which to explore typological tendencies and universals

Do libraries = parameters?

- At a high enough level of abstraction, yes.
 But:
 - Our libraries handle one phenomenon at a time
 - Necessitated by commitment to handling idiosyncrasies and broad generalizations in one coherent grammar

The other modularity question

- Our libraries correspond to phenomena it makes sense to ask a linguist about
- Adding a library generally involves modifying existing libraries

Example: Word order

- **SOV order: comp-head rule**
 - SOV order plus prepositions: comp-head rule, PP rule
 - SOV order plus prepositions plus sentence-initial question particles: comp-head rule, PP | CP rule
 - SOV order, prepositions, sentence-initial question particles, preverbal auxiliaries: comp-head rule, PP | CP | AuxV rule

Example: Negation

- Adding the negation library turned up a bug in the question library
 - *The cat did didn't chase the dog
- "didn't" in the string above is the output of two lexical rules, one for the -n't suffix and one which adds question semantics
 "did" is seleting for "not" as its first complement
 the question rule lost the information that "didn't" isn't "not"

The other modularity question

- Our libraries correspond to phenomena it makes sense to ask a linguist about
- Adding a library generally involves modifying existing libraries
 Why?
 - un système où tout se tient
 - HPSG architecture
 - Perhaps we'll be able to refactor when we're done

Evaluation

How can you tell if it works?

- Build lots of grammars, test against real data, see where the Matrix-provided constraints are revised or ignored (Ling 567)
- But first: Create a resource of abstract strings annotated with grammaticality predictions per language type to test interaction of existing libraries. (Poulson 2006)

Conclusion

Grammar engineering draws on theoretical results in syntax

- Initial motivation of frameworks to try
- Data of interest
- Proposals of analyses
- Theoretical syntax can turn to grammar engineering for largescale validation of ideas