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Claims

1. Human language is a general purpose communication tool

2. Work on NLP (neural and otherwise) isn’t yet. Instead, two types:

A. Task-focused and task-specific

B. Linguistic-structure focused

3. General purpose NLU will require learning or building a system that can map
between strings and linguistic meanings

--- I.e. something like a grammar



Sentence meaning, speaker meaning

 Learning correlations between domain-typical surface forms and task-specific
representations conflates:

- timeless/conventional/standing/sentence meaning

- utterer/occasion/speaker meaning

 Drawbacks:

» resolving the same problems around grammatical structure for each task

- unlikely to scale to general-purpose NLU



Meaning derived from form is different from
meaning derived from context of use

- Meaning level 1: Semantics derived from form: What is constant about the
meaning of a sentence across different occasions of use

A: Is it raining?
B: Yes.



Meaning derived from form is different from
meaning derived from context of use

- Meaning level 2: What a speaker publicly commits to by virtue of using a
particular form in a particular context

A: Is it raining?

B: Yes.

A: It’s perfectly dry outside. You're lying.
B: #1 didn’t say it’s raining.



Meaning derived from form is different from
meaning derived from context of use

- Meaning level 3: Inferences about a speaker’s private cognitive states, but
which the speaker hasn’t publicly committed to

A: Is it raining?

B: Yes.

A: Oh, so you do think I should take my umbrella.
B: I didn’t say that.

(Lascarides & Asher 2009, Asher & Lascarides 2013)



Leveraging sentence meaning

- Outside of artificial annotated data sets, machines don’t have access to any
direct representation of speaker meaning, only to natural language utterances

- And the artificial, annotated data sets include only specific subsets of
meaning

« Sentence meaning doesn’t determine situated speaker meaning, but is an
important cue to it (Quine 1960, Grice 1968, Reddy 1979, Clark 1996)

- A task-independent, comprehensive representation of sentence meaning

capturing exactly the information in the linguistic signal itself should benefit
NLU systems

« ... and is critical for general-purpose NLU



My goals

- Make NLP researchers aware of the sentence meaning/speaker meaning
distinction and importance of sentence meaning

 Find ways to effectively bring linguistic knowledge to both NLP systems and
NLP research



NAACL 2018 snapshot

- 50 NAACL 2018 long papers (#1001-1050)

- Surveyed for:

« Task

* NN input & output

* Representation of natural language syntax

* Notion of meaning

- Language studied



All neural nets”?

- 45/50 papers were primarily neural-based methods

« Two not at all: Amorim et al 2018, Cocos et al 2018

- Three minimally (included pretrained embeddings only): Gupta et al 2018, Ziai
& Meurers 2018, Kriz et al 2018



Languages: Language pairs

* Ainu > English « Korean > English
» English > French * Mboshi > French
- English > German « Spanish > English

* English > Viethamese

- German > English

* Hungarian > English



Languages

- 12 tasks: English « 1 task: Finnish, French, Greek,

Hausa, Latvian, Mexicanero,

. 5 tasks: German Nahuatl, Romanian, Spanish, Tamil,
Urdu, Wixarika, Yorem NokKi

« 3 tasks: Italian e n/a: 1 task

- 2 tasks: Japanese, Chinese,
Portuguese, Russian, Turkish,
Czech

* massively multilingual: 1 task

42 tasks: Unnamed mystery language



Tasks: Concerned with form

- GGenerative model of vowel typology (Cotterell & Eisner 2018)
- Morphological segmentation (Kann et al 2018)

- Grammatical error detection (Rei & Sggaard 2018)



Tasks: Text transformation

- MT (Passban et al 2018, Anastasopoulos & Chiang 2018, Nguyen & Chiang
2018, Gu et al 2018, Edunov et al 2018)

- Paraphrase detection/identification (Kiela et al 2018, Issa et al 2018,
Pagliardini et al 2018)

- Text simplification (Ma et al 2018, Kriz et al 2018, Vuli¢ et al 2018)
- Summarization (Ma et al 2018, Edunov et al 2018)
- Style transfer (Rao & Tetreault 2018)

« Rephrasing based on marked portions (Grangier & Auli 2018)



Tasks: Generation

- Coherent text generation (Bosselut et al 2018)

* Lyric generation fit to melody (Watanabe et al 2018)

- NLG from dialogue act representation (Juraska et al 2018)

 Question generation (Elsahar et al 2018)



Tasks: Analyze linguistic structure
(not task specific)

- Focus/background labeling (Ziai & Meurers 2018)

 Parsing conversational speech (Tran et al 2018)

 Discourse relation labeling (explicit & implicit) (Dai & Huang 2018)

« Possession relation detection & classification (Chinnappa & Blanco 2018)
- Dialogue state tracking (Vuli¢ et al 2018)

- Hedge detection (Rei & Sggaard 2018)

- Medical NER (Wang et al 2018b)

 Fine-grained entity type classification (Xu & Barbosa 2018)



Tasks: Word-sense similarity

- Synonym detection (Jana & Goyal 2018)

» Word relatedness (Jana & Goyal 2018)

« Word similarity (Petroni et al 2018, Jana & Goyal 2018, Vuli¢ et al 2018)

- Analogy completion (Jana & Goyal 2018)

« Detecting word sense change (Rosenfeld & Erk 2018)



Tasks: Text classification

- Citation suggestion (Bhagavatula et al 2018)

» Microblog recommendation (Zeng et al 2018)

- Automated essay scoring (Amorin et al 2018)

- Automated essay scoring with adversarial input (Farag et al 2018)

- Text classification (KM et al 2019, Petroni et al 2018)

 Topic modeling (Benton & Dredze 2018)



Tasks: Sentiment analysis

- Multi-domain sentiment analysis (Liu et al 2018)

- Sentiment (varied) (Kiela et al 2018, Pagliardini et al 2018)

- Token-level sentiment (Rei & Sggaard 2018)



Tasks: Identifying task-specific speaker meaning

» Parsing to scene graphs (Wang et al 2018a)

- Knowledge graph completion (Ishihara et al 2018)

- Variable typing (Stathopoulos et al 2018)

* Predicting which comments will change someone’s mind (Jo et al 2018)
- Complex cross-session task extraction (Sen et al 2018)

- Ad hominem attack recognition (Habernal et al 2018)

* Predicting applause in political speeches (Gillick et al 2018)



Tasks: QA/IE/IR

 Better datasets for Visual QA (Chao et al 2018)

- Quantifier selection given scene (Pezzelle et al 2018)

» QA w/heterogenous memory (Fu & Feng 2018)

 Question type classification (Pagliardini et al 2018)

 Relation extraction (Gupta et al 2018)

« Taxonomy construction (Cocos et al 2018)

- Unsupervised hypernym detection (Chang et al 2018)



Tasks: Inference/entailment

- STS, SNLI, SICK (KM et al 2018, Kiela et al 2018, Pagliardini et al 2018)

- Multi sentence reading comprehension (Khashabi et al 2018)

 Logical reasoning (not actually language though) (Ishihara et al 2018)



Representations of NL syntax

- Templates (1)

- Unknown (2) or n/a (4)

+ POS tag embeddings (1)

- constituent structure (2)

- dependencies (5)

- constituent structure and dependencies (1)

* none (48)



Representation of NL semantics

- Embeddings: word, n-gram, sentence, affix, stem, character, doc, entity,
clique

- Enhancements to embeddings: grounding, memory network, time-inclusive,
cross-linguistic

- Other: non-neural vector-space representations, AMR, RST labels, WordNet,
PPDB, slot-value pairs



Notions of meaning

Images

Paraphrase relations

Translational equivalence

Sentiment

Word-sense similarity

Information structure

Knowledge graphs

Scene graphs

+ Search intent

« Argumentation strategy

* Rhetorical tension & closure

- Truth of an answer given an image
* Inference

 Type of variables in equations

» Perlocutionary acts: Changes in
view



Sentence meaning, speaker meaning

 Learning correlations between domain-typical surface forms and task-specific
representations conflates:

- timeless/conventional/standing/sentence meaning

- utterer/occasion/speaker meaning

 Drawbacks:

» resolving the same problems around grammatical structure for each task

- unlikely to scale to general-purpose NLU



Why bother with sentence meaning”

- Claim: Sentence meaning, but not speaker meaning, is compositional

- Claim: Systems attempting to understand speaker meaning would benefit
from reusable, automatically derivable, task-independent representations of
sentence meaning

* Furthermore: A compositional approach to creating sentence meaning
representations provides

« Comprehensiveness
- Consistency

- Scalability

(Bender et al 2015)



A meaning representation system is compositional
if (working definition):

- it is grounded in a finite (possibly large) number of atomic symbol-meaning
pairings

* it is possible to create larger symbol-meaning pairings by combining the
atomic pairings through a finite set of rules;

- the meaning of any non-atomic symbol-meaning pairing is a function of its
parts and the way they are combined,;

» this function is possibly complex, containing special cases for special types
of syntactic combination, but only draws on the immediate constituents and
any semantic contribution of the rule combining them; and

- further processing will not need to destructively change a meaning
representation created in this way to create another of the same type.

(Bender et al 2015)



Semantic annotation survey:

Compositional layer

* Predicate-argument structure
« Partial constraints on:

- Scope of negation and other
operators

 Restriction of quantifiers
- Modality
 Tense/aspect/mood

* Information structure

« Discourse status of referents of
NPs

 Politeness

» Possibly compositional, but not

according to sentence grammatr:

 Coherence relations/rhetorical
structure

(Bender et al 2015)



Importance of syntax in recovering sentence
meaning
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Claims

1. Human language is a general purpose communication tool

2. Work on NLP (neural and otherwise) isn’t yet. Instead, two types:

A. Task-focused and task-specific

B. Linguistic-structure focused

3. General purpose NLU will require learning or building a system that can map
between strings and linguistic meanings

--- I.e. something like a grammar



My goals

- Make NLP researchers aware of the sentence meaning/speaker meaning
distinction and importance of sentence meaning

 Find ways to effectively bring linguistic knowledge to both NLP systems and
NLP research



3ringing linguistics to NLP research

« Accessible textbooks (Linguistic Fundamentals for Natural Language
Processing, Bender 2013, Bender & Lascarides forthcoming)

- Reviewing practices (COLING 2018)

 Error analysis best practices

- Build It Break It shared tasks

 Large-scale encodings of rich linguistic knowledge

- Case to highlight: English Resource Grammar (Flickinger 2000) and its
associated treebanks/sembanks (Oepen et al 2004, Flickinger et al 2017)

http://moin.delph-in.net/ErsTutorial



s there even any structure in natural language?

- An actual question asked of me by a DL researcher working on an
conversation agent

- Was attacking seg2seq problems and reasoning from neural architectures to
hypotheses about what babies do

« Apparently convincing example: Kim danced and Sandy sang in the park.



Making ends meet

* A pile of end-to-end tasks does not a general purpose system make

« Does true machine NLU require a hand-built grammar?

* Not necessarily

- But my bet is some kind of grammar (built or learned) will be required

* And the way we’re currently setting up the NLU-related machine learning
tasks isn’t generally leading to grammar learning

« NLP needs linguists, to better understand the shape of the problem and to
better evaluate progress
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