
Lessons from incremental development: 20 years
of the Grammar Matrix

Emily M. Bender

University of Washington

HPSG 2023

UMass Amherst

July 7, 2023

Key points

• Grammar engineering allows us to handle much more complexity than pen-
and-paper syntax

• Complexity in the size of datasets, range of phenomena considered, range
of languages

• Empirical & theoretical work (descriptive and documentary linguistics,
typology, syntax) are necessary inputs

• The Grammar Matrix represents 20 years (and counting!) of cumulative
development

This talk draws on

• Zamaraeva, Olga, Chris Curtis, Guy Emerson, Antske Fokkens, Michael Wayne
Goodman, Kristen Howell, T.J. Trimble, and Emily M. Bender. 2022. 20 years of
the Grammar Matrix: cross-linguistic hypothesis testing of increasingly complex
interactions. Journal of Language Modeling 10(1):49-137.

• Bender, Emily M., Scott Drellishak, Antske Fokkens, Laurie Poulson, and
Safiyyah Saleem. 2010. Grammar Customization. Research on Language and
Computation 8(1):23-72.

• Bender, Emily M., Dan Flickinger and Stephan Oepen. 2002. The Grammar
Matrix: An Open-Source Starter-Kit for the Rapid Development of Cross-
Linguistically Consistent Broad-Coverage Precision Grammars. Carroll, John,
Nelleke Oostdijk, and Richard Sutcliffe, eds. Proceedings of the Workshop on
Grammar Engineering and Evaluation at the 19th International Conference on
Computational Linguistics. Taipei, Taiwan. pp. 8-14.

Funding acknowledgment

• Grammar Matrix development has been supported by the US National
Science Foundation under grants No BCS-0644097, BCS- 1160274, and
BCS-561833.

Overview

• Grammar Engineering

• Grammar Matrix: Early history

• Growth through student projects

• Pros (and cons) of operationalizing analyses

• Reflections on hypothesis testing

Grammar Engineering

• The development of grammars-in-software: morphology, syntax, semantics

• “Precision grammars”

• Encode linguistic analyses

• Human- and machine-readable

• Model grammaticality

• Map strings to underlying representations

• Can be used for both parsing and generation

Grammar Engineering

• A discipline and a methodology concerned with a particular empirical
approach (Bierwisch 1963; Zwicky et al. 1965; Müller 1999; Butt et al. 1999;
Bender 2008; Müller 2015)

• Modeling: Building implemented sets of grammar entities that can be used to
accept or reject strings and assign structures to the accepted ones

• Testing: Deploying the implemented grammar over sets of examples to
measure its domain of applicability

Grammar Engineering: Frameworks

• Precision grammars have been built by/in/with

• HPSG in ALE/Controll (Götz & Meurers 1997; CoreGram: Müller 2015)

• LFG (ParGram: Butt et al 2002)

• F/XTAG (Doran et al 1994)

• SFG (Bateman 1997)

• GF (Ranta 2007)

• OpenCCG (Baldridge et al 2007)

• Proprietary formalisms and Microsoft and Boeing and IBM

• On implementation of MP, see e.g. Stabler 2001, Fong 2015, Herring 2016,
Torr et al 2019

DELPH-IN: Deep Linguistic Processing in HPSG
Initiative (www.delph-in.net)

• Informal, international consortium established in 2002

• Shared repository of open-source, interoperable resources

• Framework/formalisms:

• Head-Driven Phrase Structure Grammar (HPSG; Pollard & Sag 1994)

• Minimal Recursion Semantics (MRS; Copestake et al 2005)

• DELPH-IN joint reference formalism (Copestake 2002a)

http://www.delph-in.net

DELPH-IN: Deep Linguistic Processing in HPSG
Initiative (www.delph-in.net)

• Grammars: ERG (Flickinger 2000, 2011); GG (Müller & Kasper 2000,
Crysmann 2003); Jacy (Siegel, Bender & Bond 2016); SRG (Marimon 2010);
gCLIMB (Fokkens 2014); Indra (Moejadi 2018); ...

• Parsing & Generation: LKB (Copestake 2002b); PET (Callmeier 2002); ACE
(http://sweaglesw.org/linguistics/ace); Agree (Slayden 2012)

• Regression testing: [incr tsdb()] (Oepen 2001)

• Treebanking: Redwoods (Oepen et al 2004), FFTB (Packard 2015)

• Applications: e.g., MT (Oepen et al 2007), QA from structured knowledge
sources (Frank et al 2007), Textual entailment (Bergmair 2008), ontology
construction (Nichols et al 2006) and grammar checking (Suppes et al 2012),
robot control language (Packard 2014), sentiment analysis (Kramer & Gordon
2014), ...

http://www.delph-in.net
http://sweaglesw.org/linguistics/ace

English Resource Grammar (Flickinger 2000, 2011)
demo: https://delph-in.github.io/delphin-viz/demo/

• Under continuous development since 1993

• Broad-coverage: 85-95% on varied domains: newspaper text, Wikipedia, bio-
medial research literature (Flickinger et al 2010, 2012; Adolphs et al 2008)

• Robust processing techniques enable 100% coverage

• Output: derivation trees paired with meaning representations in the Minimal
Recursion Semantics framework---English Resource Semantics (ERS)

• Emerging documentation at https://delph-in.github.io/docs/erg/
ErgSemantics/

English Resource Grammar
erg.delph-in.net

• Feb 2023 trunk: 295 syntactic rules, 101 lexical rules, 1268 leaf lexical types

• Generalizations captured in a type hierarchy

• Both ‘core’ (high frequency) and ‘peripheral’ constructions

head_subj_phrase := basic_head_subj_phrase &
 [HD-DTR.SYNSEM.LOCAL.CAT.VAL.SUBJ < #synsem >,
 NH-DTR.SYNSEM #synsem].

English Resource Grammar
erg.delph-in.net
modgap_rel_cl := basic_non_wh_rel_cl &
 [SYNSEM.LOCAL.CAT.HEAD.MOD < [LOCAL.CAT.HEAD noun,
 --MIN modable_rel,
 --SIND #mind] >,
 ARGS < [SYNSEM
 [LOCAL.CONT.HOOK.INDEX.SF prop,
 NONLOC.SLASH 1-dlist &
 [LIST < mod-local &
 [CAT.HEAD mobile & [MOD < synsem >],
 CONT.HOOK [LTOP #sltop,
 INDEX #slind & [SORT location],
 XARG #xarg]] >]]] >,
 ORTH [FROM #from, TO #to],
 C-CONT.RELS <! prep_relation &
 [LBL #sltop,
 PRED loc_nonsp_rel,
 ARG0 #slind & [E [TENSE no_tense,
 ASPECT no_aspect]],
 ARG1 #xarg & event_or_index,
 ARG2 #mind & [SORT basic-entity-or-event],
 CFROM #from, CTO #to] !>].

English Resource Grammar
erg.delph-in.net
basic_head_subj_phrase := head_nexus_rel_phrase & head_final_infl & phrasal &
 [SYNSEM [LOCAL [CAT.VAL [COMPS < >,
 SPR < >,
 SUBJ *olist* & < anti_synsem_min >,
 SPEC #spec,
 SPCMPS < >],
 CONJ cnil],
 MODIFD.RPERIPH #rperiph,
 PUNCT.PNCTPR #ppair],
 HD-DTR.SYNSEM [LOCAL.CAT [VAL [COMPS < >,
 SPR *olist*,
 SPEC #spec],
 MC na],
 MODIFD.RPERIPH #rperiph,
 PUNCT [LPUNCT pair_or_no_punct,
 PNCTPR #ppair]],
 NH-DTR.SYNSEM canonical_synsem &
 [LOCAL [CAT [HEAD subst,
 VAL [SUBJ *olist_or_prolist*,
 COMPS < >,
 SPR *olist*]]],
 NONLOC [SLASH 0-dlist,
 REL 0-dlist],
 PUNCT [LPUNCT pair_or_no_punct,
 RPUNCT comma_or_rbc_or_pair_or_no_punct,
 PNCTPR ppair]]].

ERG: Examples

ERG: Examples

ERG: Examples

LinGO Grammar Matrix:
Motivations and early history

• Speed up grammar development

• Initial context: Project DeepThought

• Leverage resources from resource-rich language to enhance NLP for
resource-poor languages

• Claim: Some of what was learned in ERG development is not English-
specific

• Interoperability: a family of grammars compatible with the same downstream
processing tools

Grammar Matrix:
Motivations and early history

• With reference to Jacy (Siegel et al 2016), strip everything from ERG
(Flickinger 2000, 2011) which looks English-specific

• Resulting “core grammar” doesn’t parse or generate anything, but supports
quick start-up for scaleable resources (Bender et al 2002)

• Used in the development of grammars for Norwegian (Hellan & Haugereid
2003), Modern Greek (Kordoni & Neu 2005), Spanish (Marimon 2010) and
Italian

• Used as the basis of multilingual grammar engineering course at UW (Ling
567): 133 languages since 2004

Grammar customization: Motivations

• The Grammar Matrix core grammar is not itself a functioning
grammar fragment

• can’t be directly tested

• Human languages vary along many dimensions, but not infinitely

• Can be seen as solving many of the same problems in different ways

• Many phenomena are “widespread, but not universal” (Drellishak, 2009)

• we can do more than refining the core

• Also, grammar engineering lab instructions started getting mechanistic

LinGO Grammar Matrix Customization System
(Bender & Flickinger 2005, Drellishak 2009, Bender et al 2010, Zamareva et al 2022)

Questionnaire

(accepts user

input)

Questionnaire

definition

Choices file

Validation

Customization

Customized

grammar

Core

grammar

HTML

generation

Stored

analyses

Elicitation of typological
information

Grammar
creation

http://www.delph-in.net/matrix/customize/matrix.cgi

http://www.delph-in.net/matrix/customize/matrix.cgi

Current libraries (1/2)

• Word order (Bender & Flickinger 2005, Fokkens 2010)

• Coordination (Drellishak & Bender 2005)

• Agreement in coordination (Dermer ms)

• Matrix yes-no questions* (Bender & Flickinger 2005)

• Morphotactics (O’Hara 2008, Goodman 2013)

• Case (+ direct-inverse marking) (Drellishak 2009)

• Agreement (person, number, gender) (Drellishak 2009)

• Argument optionality (pro-drop) (Saleem & Bender 2010)

• Tense and aspect (Poulson 2011)

• Sentential negation (Bender & Flickinger 2005, Crowgey 2012)

Current libraries (2/2)

• Information structure (Song 2014)

• Adjectives (attributive, predicative, incorporated) (Trimble 2014)

• Evidentials (Haeger7)

• Valence alternations (Curtis 2018)

• Adnominal possessives (Nielsen 2018)

• Nominalization (Howell et al 2018)

• Adverbial clauses (Howell & Zamaraeva 2018)

• Clausal complements (Zamaraeva et al 2019)

• Wh- questions (Zamaraeva 2021)

Grammar Matrix demo

• matrix.ling.washington.edu/customize/matrix.cgi

http://matrix.ling.washington.edu/customize/matrix.cgi

Creating a library for the customization system

• Choose phenomenon

• Review typological literature on
phenomenon

• Refine definition of phenomenon

• Conceptualize range of variation
within phenomenon

• Review HPSG (& broader syntactic)
literature on phenomenon

• Pin down target MRSs

• Develop HPSG analyses for each
variant

• Implement analyses in tdl

• Develop test suites

• Develop questionnaire & extend
python backend

• Run regression tests

• Test with pseudo-languages

• Test with illustrative languages

• Test with held-out languages

• Add tests to regression tests

• Add to MatrixDoc pages

Languages in the Grammar Matrix regression
testing system (Zamaraeva et al 2022:81)

(Zamaraeva et al 2022:64)

Typology and the Grammar Matrix

• Typological surveys provide critical knowledge about the range of variation for
specific linguistic phenomena

• Implementation in the Grammar Matrix puts analyses of all of those variants
into a system où tout se tient with all of the other implemented phenomena

• Implementation in the Grammar Matrix allows for evaluation on held out
languages

The value of commitment

• Grammar engineering means building something

• Building something means choices

• Choices mean specific commitments

• … But this is a feature, and not a bug!

Pen and paper syntax work-flow

Identify
phenomena to

analyze

Develop
analysis

Identify key
examples

Identify cases
of interesting
predictions

Test acceptability of
new key examples

Refine
analysis

Grammar engineering work flow
(Bender et al 2011)

Develop
initial test

suite

Identify
phenomena
to analyze Extend test suite

with examples
documenting

analysis

Implement
analysis

Compile
grammar

Debug
implementation Parse sample

sentences

Parse full
test suite

Treebank

Develop
analysis

Verifying predictions

• Application of test-driven development (Beck 2003) to linguistic research

• Create test suites of positive and negative examples

• Refine implemented grammar until performance on test suite is satisfactory

Wambaya grammar development (Bender 2008)

 0

 20

 40

 60

 80

 100

 40 60 80 100 120 140 160 180 200

C
ov

er
ag

e
(%

)/a
m

bi
gu

ity

Hours of development

coverage (%)
ambiguity (avg)

Verifying predictions

• Application of test-driven development (Beck 2003) to linguistic research

• Create test suites of positive and negative examples

• Refine implemented grammar until performance on test suite is satisfactory

• For Grammar Matrix libraries: Test with held-out languages.

• Freeze system development

• Create test suite & grammar specification

• Measure

CLIMB: Virtual time travel in grammar engineering

• Fokkens (2011, 2014) observes that not only do linguistic phenomena
interact, but analyses of linguistic phenomena interact

• Analytic choices made early in grammar development constrain the range of
possible analyses later

• CLIMB (Fokkens 2011, 2014) extends metagrammar engineering to the full
grammar development process

• Builds directly on Grammar Matrix code base

• Allows grammar writers to keep multiple hypotheses in play

Testing interactions

• Coordination breaks everything, so put coordination into the grammar (or
metagrammar early)

• Run regression tests, so as to verify that new additions don’t break previous
functionality

• No loss of coverage

• No increase in (spurious) ambiguity

• Create specific tests that combine phenomena in a single sentence

Language-specific hypothesis testing

• Paresi-Haliti [pab] (Arawakan): mostly V-final (Brandão 2014) or SVO+OSV
dominant (da Silva 2013)?

• Zamaraeva (2021) presents to Matrix-derived grammars (SOV & free WO),
tested over 67 items

(Zamaraeva et al 2022:90)

Language-specific hypothesis testing

• The ambiguity produced by these grammars revealed a bug in the interaction
between the adnominal possession & wh questions libraries (now fixed) and
an interaction between the nominalization & wh question libraries.

• Results after hand improvement of the grammars:

(Zamaraeva et al 2022:91)

Accumulating evidence for analyses robustness

• Copula introduced in Trimble’s (2014) library for adjectives, without reference
to polar questions + subject-auxiliary inversion rules from Bender & Flickinger
2005 => minimal spurious ambiguity, easy to eliminate

• Basic lexical type hierarchy has served as a good foundation for all libraries,
including most recently the addition of wh question words (Zamaraeva 2021)

• Nielsen’s (2018) adnominal possession library, developed before Zamaraeva’s
(2021) wh question library, provided for Jalkunan possessive pronouns, even
though the wh question library development hadn’t covered them.

Core (abstract) cross-linguistic hypotheses

• Words and phrases combine to make larger phrases.

• The semantics of a phrase is determined by the words in the phrase and how they
are put together.

• Some rules for phrases add semantics (but some don’t).

• Most phrases have an identifiable head daughter.

• Heads determine which arguments they require and how they combine semantically
with those arguments.

• Modifiers determine which kinds of heads they can modify, and how they combine
semantically with those heads.

• No lexical or syntactic rule can remove semantic information

Getting started with the Grammar Matrix

• Getting started page: https://delph-in.github.io/docs/matrix/
MatrixGettingStarted/

• Customization system: https://matrix.ling.washington.edu/customize/
matrix.cgi

• Ling 567 @ UW: https://courses.washington.edu/ling567/	

• Grammar engineering FAQ: https://delph-in.github.io/docs/matrix/
GrammarEngineeringFAQ/

• Matrix Docs: https://delph-in.github.io/docs/matrix/MatrixDocTop

• DELPH-IN Discourse site: https://delphinqa.ling.washington.edu/

Conclusion

• A flexible framework for building up, over time and in a data-driven fashion, a
set of analyses which are demonstrably useful for describing the repertoire of
grammatical variation in the world’s languages

• This follows from three properties of the framework:

• the Grammar Matrix design is informed by typological literature + HPSG
theory

• the development methodology prioritizes cross-linguistic applicability of
the analyses

• the regression testing system affords automatic verification of compatibility
of new + existing analyses

Thank you!

