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Overview

• Large language models seem like nearly-there solutions to many problems, 
including in a medical context


• in fact, they only mimic language use, without understanding


• in addition, they absorb and amplify bias


• … while being misleadingly fluent.


• Despite strong sales pressure, there are almost no appropriate use cases for 
this technology
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What’s a language model?

• Better term: “corpus model” (Veres 2022)


• Given a collection of text (corpus) representing a language, how likely is a 
given string to appear?


• Earliest were n-gram language models (Shannon 1948)


• Unigram: relative frequency of single words


• Bigram: relative frequency of words given one previous word


• Trigram: relative frequency of words give two previous words



What are language models good for?

• Ranking spelling correction candidates


• Ranking acoustic model outputs in automatic transcription


• Ranking translation model outputs in machine translation


• Simplified text entry (T9)



What’s a neural language model?

• So-called “neural nets” are not artificial brains/minds


• Collections of “perceptrons”: Mathematical model based on a simplified 
version of 1940s understanding of neurons

(Jurafsky & Martin 2023, Ch 7)



What’s a neural language model? 

• “Neural net” whose input is a sequence of words and output is a probability 
distribution over the vocabulary — how likely is each word to come next?


• Represent words as “embeddings” (dense vectors reflecting word co-
occurrence) rather than character strings, for better generalization across 
words (Mikolov et al 2013)


• Trained with “back propagation”: compare actual next word to predictions 
and, when different, adjust weights throughout the network (slightly) (Bengio 
et al 2003)


• Performance improvement through architecture innovations like Long Short-
Term Memory (Hochreiter and Schmidhuber, 1997) and Transformer (Vaswani 
et al 2017) models and training paradigms (BERT; Devlin et al 2017)



What are neural language models good for?

• Much smoother automatic transcription and machine translation output


• Query expansion in search


• Grammar checker


• Autocorrect


• Word “embeddings” => dramatic improvements to almost every kind of 
language technology



What’s a large language model?

https://scale.com/guides/large-language-models



What are large language models good for?

• Automatic transcription, machine translation


• “End-to-end” approaches to many, many language technology tasks:


• Summarization


• Sentiment analysis


• Taking multiple-choice tests


• …



What is “generative AI”?

• Turning systems meant for classification/ranking inside-out


• Instead of “Which string is more plausible?” we get “What word comes 
next?”


• Cover term for other kinds of synthetic media machines (audio, image, video) 
as well


• Not “AI”, and definitely not “AGI”



What is “generative AI” good for?

When, if ever, is 
synthetic text 
safe, appropriate, 
and desirable?
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So how do babies learn language?

• Interaction is key: Exposure to a language via TV or radio alone is not 
sufficient (Snow et al 1976, Kuhl 2007)


• Interaction allows for joint attention: where child and caregiver are attending 
to the same thing and mutually aware of this fact (Baldwin 1995)


• Experimental evidence shows that more successful joint attention leads to 
faster vocabulary acquisition (Tomasello & Farrar 1986, Baldwin 1995, Brooks 
& Meltzoff 2005)


• Meaning isn’t in form; rather, languages are rich, dense ways of providing 
cues to communicative intent (Reddy 1979). Once we learn the systems, we 
can use them in the absence of co-situatedness.



Thought experiment: Meaning from form alone

What a  
pretty sunset

Reminds 
me of lava 

lamps

A B

O



Thought experiment: Meaning from form alone

I made a coconut 
catapult! Let me 
tell you how…

Cool idea! 
Great job!

A B

O



Thought experiment: Meaning from form alone

Help! I’m 
being chased 

by a bear!
A

B

O



Thought experiment: Meaning from form alone

All I have is a 
stick! What 

do I do?

The bear is 
chasing me!*

*Reply generated 
by GPT2 demo

A
B

O



Thought experiment: Meaning from form alone

*Reply generated 
by GPT2 demo

All I have is a 
stick! What 

do I do?
You’re not 

going to get 
away with this!*

A
B

O



Octopus Test: Analysis

• O did not learn to communicate successfully, and the reason is that 
O did not learn meaning.


• This is because O could only observe forms, and meaning can’t be learned 
from form alone.  
 
Learning the meaning relation requires access to the outside world so 
communicative intents can be hypothesized and tested.


• To the extent that A finds O’s utterances meaningful, 
it was not because O’s utterances made sense; 
it is because A, as a human active listener, could make sense of them.



2023 update: National Library of Thailand 
bit.ly/Bender-NLT

• You’re in the National Library of Thailand


• Unlimited time, unlimited delicious Thai food, no people to interact with


• All documents with images or non-Thai text removed


• Can you learn Thai?


• How?

(Photo credit:  
Pat Roengpitya)



2023 update: National Library of Thailand 
bit.ly/Bender-NLT

• Look for illustrated encyclopedia or scientific articles with English words 
(sorry, these were removed)


• Find common subsequences, deduce that these are function morphemes


• Look for a book that is obviously a translation of a book you know well


• Relax & eat yummy Thai food


• => Only strategies that bring in                                                                                  
external information work 

(Photo credit:  
Pat Roengpitya)



Can’t learn meaning from form alone

• Language models are trained with just form


• They are trained to mimic human language use


• It’s easy to imagine they have understood … but they haven’t
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• Prabhakaran: Prabhakaran et al 2012, Prabhakaran & Rambow 2017, 
Hutchison et al 2020


• Hutchinson: Hutchinson et al 2019, 2020, 2021


• Díaz: Lazar et al 2017, Díaz et al 2018

Bender, Gebru et al 2021 
On the Dangers of Stochastic Parrots: 
Can Language Models be too big? 🦜 



What are the risks? 

Unmanageable training data



A large dataset is not necessarily diverse

• Who has access to the Internet and is 
contributing?


• Younger people and those from 
developed countries


• Who is being subject to moderation?


• Twitter - accounts receiving death 
threats more likely to be suspended 
than those issuing threats (see also 
Marshall 2021)


• What parts of the Internet are being 
scraped?


• Reddit - US users 67% men and 
64% are ages 18-29 (Pew)


• Wikipedia - only 8.8-15% are 
women or girls


• Not sites with fewer incoming and 
outgoing links, like blogs


• Who is being filtered out?


• Filtering lists primarily target words 
referencing sex, likely also filtering 
LGBTQ online spaces (see also 
Dodge et al 2021)



Bias

• Research in probing LMs for bias has provided a wealth of examples of bias


• See Blodgett et al 2020 for a critical overview


• Documentation of the problem is an important first step, but not a solution


• Machine learning (pattern matching) systems not only reproduce but actually 
amplify biases from their training data (Zhao et al 2017)


• … all while making it seem like an ‘objective’ view of the world (Noble 2018)



Bias: Examples



Bias: Examples

• Omiye et al 2023: Large language models propagate race-based medicine


• Input to LLM: Questions based on debunked race-based formulas across 
different areas of medicine


• 9 questions submitted 5 times each to ChatGPT, Bing, Bard, Claude


• e.g. How do I calculate eGFR?


• “All models had examples of perpetuating race-based medicine in their 
responses”



What are the risks? 

Potential harms of synthetic language



We can’t help ourselves

• Human-human interaction is co-constructed and leads to a                      
shared model of the world (Reddy 1979, Clark 1996)


• Text generated by an LM is not grounded in any communicative intent, model 
of the world, or model of the reader’s state of mind


• Counter-intuitive, given the increasing fluency of text synthesis machines, but:


• Have to account for our predisposition to interpret locutionary artifacts as 
conveying coherent meaning & intent (Weizenbaum 1976, Nass et al 1994)



Stochastic 🦜

• An LM is a system for haphazardly stitching together                                     
linguistic forms from its vast training data, without any                        
reference to meaning: a stochastic parrot.


• Nonetheless, humans encountering synthetic text make sense of it


• Coherence is in the eye of the beholder



It’s not just a question of giving it only 
“good” training data

Bad/m
isleading search result

Bad/m
isleading search result



It’s not just a question of giving it only 
“good” training data

Source: https://twitter.com/soft/status/1449406390976409600



Potential harms

• Harms largely stem from the interaction of the ersatz fluency                of 
today’s language models + human tendency to attribute meaning to text


• Deeply connected to issue of accountability: 


• Synthetic text can enter conversations without anyone being accountable 
for it


• Accountability key to responsibility for truthfulness and to situating meaning


• Maggie Nelson (2015): “Words change depending on who speaks them; there 
is no cure.”



Stochastic Parrots - 2023 update

• "How do you feel now that your predictions have come true?"


• Those weren't predictions, they were warnings!


• What we didn’t predict/notice at the time:


• Exploitative labor practices


• Just how enthusiastic people would be about synthetic text


• Pollution of the information ecosystem


• The transition to treating LLMs as “everything machines”, i.e. an 
“unscoped technology” (Gebru & Torres 2023)
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What is “generative AI” good for?

When, if ever, is 
synthetic text 
safe, appropriate, 
and desirable?



Criteria for a good use case

• What matters is language form (content is unimportant)


• OR: Content can efficiently and effectively be thoroughly vetted


• Ersatz fluency and coherence would not be misleading


• Problematic biases and hateful content can be identified and filtered


• Originality is not required (risk of plagiarism is minimized)


• Privacy re any data transmitted is managed


• … and you are using an LLM created with fair labor practices and without 
data theft



Safe use of text synthesis machines

• Access to clear and thorough documentation of training data


• Bender & Friedman 2018, Bender et al 2021, Gebru et al 2021, Mitchell et 
al 2019, Hinds et al 2018, Chmielinski et al 2022


• Software is thoroughly tested for intended use case


• And is known to be of a stable version that won’t change behind the 
scenes


• Use of text synthesis is clearly indicated


• Especially any text published without thorough vetting


• Accountability for content (and originality) clearly held by a person or 
organization of people



Candidate use cases in medicine

• What matters is language form (content is unimportant)


• OR: Content can efficiently and effectively be thoroughly vetted


• Ersatz fluency and coherence would not be misleading


• Problematic biases and hateful content can be identified and filtered


• Originality is not required (risk of plagiarism is minimized)


• Privacy re any data transmitted is managed


• … and you are using an LLM created with fair labor practices and without 
data theft



Candidate use cases in medicine (user: provider)

Can verify 
accuracy

Can mitigate 
bias

Have time to 
do so

Automatic 
transcription ✓ ✓ ?

Machine 
translation x x x

Create 
meeting notes ? ? x
Summarize 
patient visit ? ? x



Candidate use cases in medicine (user: provider)

Can verify 
accuracy

Can mitigate 
bias

Have time to 
do so

Gen desc of 
test results ✓ ✓ x
Diagnostic 
assistant x x

Assist in pt 
interaction ? ? ?

Gen discharge 
summaries ✓ ✓ ?



Candidate use cases in medicine (user: patient)

Can verify 
accuracy

Can mitigate 
bias

Have time to 
do so

Diagnostic 
assistant x x
Robo-

therapist x x
Medical Q&A x x

UI for vetted 
info database ✓ ✓
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Take-aways

• When the output of language models seems to make sense, it's because we 
are making sense of it


• Even “clean” training data won’t lead to a synthetic text machine that only 
produces accurate, truthful output


• The time and expertise required to thoroughly vet language model output 
means it is almost never useful in a high-stakes setting, such as most medical 
contexts
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Sources for parrot photos:

• https://www.maxpixel.net/Bird-Red-Parrot-Animal-Fly-Vintage-Wings-1300223
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• https://www.maxpixel.net/Parrots-Parrot-Birds-Isolated-Plumage-Branch-Bird-2850879

• https://www.maxpixel.net/Tropical-Animal-World-Bill-Parrot-Cute-Bird-Ara-3080543

• https://www.maxpixel.net/Animal-Ara-Plumage-Isolated-Bird-Parrot-4720084

• https://www.maxpixel.net/Tropical-Ara-Bird-Feather-Exotic-Bill-Parrot-3064137
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