
Ling/CSE 472:

Introduction to Computational Linguistics

5/2: PCFGs

Overview

• Syntax & parsing

• Context free grammar

• CKY

• PCFG & probabilistic CKY

• Evaluating parsing

• Reading questions

Parsing = making explicit structure that is inherent
(implicit) in natural language strings

• What is that structure?

• Why would we need it?

Implicit structure

• What do these sentences have in common?

• Kim gave the book to Sandy.

• Kim gave Sandy the book.

• The book was given to Sandy by Kim.

• This is the book that Kim gave to Sandy.

• Which book did Kim give to Sandy?

• Kim will be expected to continue to try to give the book to Sandy.

• This book everyone agrees Pat thinks Kim gave to Sandy.

• This book is difficult for Kim to give to Sandy.

Implicit structure: Constituent structure &
Dependency structure

• Kim gave the book to Sandy.

• (S (NP Kim) (VP (V gave) (NP (D the) (N book)) (PP (P to) (NP Sandy))))

• subj(gave, Kim)

• dobj(gave, book)

• iobj(gave, to)

• dobj(to, Sandy)

• spec(book, the)

Why do we need it?

• When is constituent structure useful?

• When is dependency structure (or semantic structure) useful?

Why do we need it?

• When is constituent structure useful?

• Structured language models (ASR, MT)

• Translation models (MT)

• Generation

• TTS: assigning intonation information

• When is dependency structure (or semantic structure) useful?

• Information extraction (... QA, machine reading)

• Dialogue systems

• Sentiment analysis

• Transfer-based MT

CFG

• Context-Free Grammars generate Context-Free Languages

• CF languages fit into the Chomsky hierarchy between regular languages
and context-sensitive languages

• All regular languages are also context free languages

• All sets of strings describable by FSAs can be described by a CFG

• But not vice versa

• Case in point: anbn S � a S b
S � �

CFGs

• Represent constituent structure

• Equivalence classes: Wherever it can appear, so can the lazy brown
dog that the quick red fox jumped over

• Structural ambiguity: I saw the astronomer with the telescope

• Encode a sharp notion of grammaticality

CFGs, formally

• A CFG is a 4-tuple: < C, Σ, P, S >:

• C is the set of categories (aka non-terminals, e.g., { S, NP, VP, V, ...})

• Σ is the vocabulary (aka terminals, e.g., { Kim, snow, adores, ... })

• P is the set of rewrite rules, of the form: α -> β1, β2, ..., βn

• S (in C) is the start-symbol

• For each rule α -> β1, β2, ..., βn in P, α is drawn from C and each β is
drawn from C or Σ

Parsing

• Given a CFG and a sentence, whether the CFG accepts it, with what and
how many structures, is a mathematical fact

• Given a CFG and a sentence, determining whether the CFG accepts it,
with what and how many structures, is a search problem

• Parsing algorithms can be:

• Top-down or bottom-up

• Breadth-first or depth-first

• “Best”-first or exhaustive

CKY

CKY

CKY Parsing

• In which cell of the chart does one find the spanning edge(s)?

• Is the CKY algorithm top-down or bottom-up?

• Best-first or exhaustive?

• How does it handle ambiguity?

• How does it avoid inefficient re-parsing of subtrees?

• How would this algorithm return the trees?

If time: LKB demo

Why statistical parsing?

• Parsing = making explicit structure that is inherent (implicit) in natural
language strings

• Useful for: language modeling + any app that needs access to the
meaning of sentences

• Most application scenarios that use parser output want just one parse

• Have to choose among all the possible analyses

• Most application scenarios need robust parsers

• Need some output for every input, even if its not grammatical

CFGs, formally

• A CFG is a 4-tuple: < C, Σ, P, S >:

• C is the set of categories (aka non-terminals, e.g., { S, NP, VP, V, ...})

• Σ is the vocabulary (aka terminals, e.g., { Kim, snow, adores, ... })

• P is the set of rewrite rules, of the form: α -> β1, β2, ..., βn each with a
probability p of β1, β2, ..., βn given α

• S (in C) is the start-symbol

• For each rule α -> β1, β2, ..., βn in P, α is drawn from C and each β is
drawn from C or Σ

PCFGs

• How does this differ from CFG?

• How do we use it to calculate the probability of a parse?

• The probability of a sentence?

• What assumptions does that require?

PCFGs

• How does this differ from CFG? -- added probability to each rule

• How do we use it to calculate the probability of a parse? -- multiply
probability of each rule used (= P(T|S) = P(T))

• The probability of a sentence? -- sum of probability of all trees

• What assumptions does that require? -- expansion of a node does not
depend on the context

PCFGs: Why

• When would you want to know the probability of a parse?

• When would you want to know the probability of a sentence?

How to estimate the rule probabilities

• Get a Treebank

• Gather all instances of each non-terminal

• For each expansion of the non-terminal (= rule), count how many times it
occurs

P (� � ⇥ | �) = Count(� � ⇥)

Count(�)

Using the probabilities for best-first parsing

• Probabilistic CKY: in each cell, store just the most probable edge for each
non-terminal

• Probabilities based on rule probability and daughter edge probabilities

Probabilistic-CKY

Evaluating parsing

• How would you do extrinsic evaluation of a parsing system?

• How would you do intrinsic evaluation?

• Gold standard data?

• Metrics?

Gold-standard data

• There’s no ground truth in trees

• Semantic dependencies might be easier to get cross-framework
agreement on, but even there it’s non-trivial

• The Penn Treebank (Marcus et al 1993) was originally conceived of as a
target for cross-framework parser evaluation

• For project-internal/regression testing, grammar-based treebanking is
effective for creating (g)old-standard data

Parseval measures

• Labeled precision:

• Labeled recall:

• Constituents defined by starting point, ending point, and non-terminal
symbol of spanning node

• Cross brackets: average number of constituents where the phrase
boundaries of the gold standard and the candidate parse overlap

• Example overlap: ((A B) C) v. (A (B C))

of correct constituents in candidate parse

total # of constituents in gold standard parse

of correct constituents in candidate parse

total # of constituents in candidate parse

Reading questions

• What is the difference between a recognizer and a parser?

• What is the time complexity of cky parsing, and how does it compare to other
algorithms is it the best one to use?

Reading questions

• Can you have as many layers in CKY rules as you want? The textbook shows
rules going two layers deep (A -> X1 Y, X1 -> BC), but, for example, could you
add an X2 into the X1, and then an X3 into the X2, and ect.?

• I was so happy that people decided on a normal form of the syntax tree as it
is easier to process by computer and easier to understand by human readers.
I was almost screaming in my heart when I read it. Is there any more
standardization of the input and the output format? I know the named entity
recognition has that as I am working on that for final project, but is there
more?

Reading questions

• Can these parsers and tree generators be expanded to include higher
syntactic theories like X-bar theory or movement? Would that even be useful?
I'm often frustrated in my syntax classes by things like X-bar theory which
seem very flawed in their modelling of natural language, so would it be
necessary or advantageous at all for computational linguists to include X-bar
theory in their models?

• Do parsing trees implement theories in generative grammar such as X’ theory
and transformations such as movement, for example? Or is it only concerned
with basic levels of constituency? Is the two-branch method the main part of
Chomskian syntactic theory that is implemented in CFG?

Reading questions

• If 'parameters' in syntactic theory are a framework for comparing different
languages' grammars, are parameters considered when building parsing trees
to handle different languages?

• When used with languages that have more complex or flexible word
orderings, are we still able to generate a comprehensive CNF to use with this
method? How well do CFGs perform in this context compared to other
parsing techniques?

Reading questions

• Can PCFG's be trained to disambiguate sentences based on the context?
Going back to the guy in the pajamas vs. the elephant in the pajamas
example, could a parser be trained to have the elephant in the pajamas
sentence be more probable than the guy in the pajamas sentence, maybe in
the context of a piece of media or something where animals wear clothes?

• To what extent does a PCFG's inability to incorporate semantic information
impact its usefulness? Is this mostly only relevant to the systems ability to
parse sentences with ambiguous meanings?

Reading questions

• Is it possible to improve the reliability of PCFGs and mitigate their issues as
probability estimators?

• Would modifying a word's embeddings possibly be able to help with PCFG's
problems with lexical dependency?

Reading questions

• Are treebanks always hand-corrected by humans or can computers generate
treebanks themselves entirely based on prior info about a given language? If
always hand-corrected, how much treebank data is really out there for people
to use given that it would take a long time to make?

• Around how much treebank data is out there, and what kinds/genres of text
tend to be used to create treebanks? Does the genre of text of training
treebank data matching the genre of new text significantly affect the quality of
new parses by CKY algorithms?

Reading questions

• How does a well-developed parser deal with transcript of speaking language?
In many languages, inverted order can occur often in coloquial situations
while it is almost impossible to find in formal writtings. How will the parser do
with these?

• Are there a significant drawbacks to modeling a natural language with a
formal language or does it, for the most part, work very well?

NLP/compling in the news

• https://www.cureus.com/articles/154683-chatgpt-in-dentistry-a-
comprehensive-review?score_article=true#!/

• https://www.bloomberg.com/news/articles/2023-05-01/ai-chatbots-have-
been-used-to-create-dozens-of-news-content-farms

https://www.cureus.com/articles/154683-chatgpt-in-dentistry-a-comprehensive-review?score_article=true#!/
https://www.cureus.com/articles/154683-chatgpt-in-dentistry-a-comprehensive-review?score_article=true#!/
https://www.bloomberg.com/news/articles/2023-05-01/ai-chatbots-have-been-used-to-create-dozens-of-news-content-farms
https://www.bloomberg.com/news/articles/2023-05-01/ai-chatbots-have-been-used-to-create-dozens-of-news-content-farms

