Introduction to Computational Linguistics

Section

Olga Zamaraeva
University of Washington

May 22, 2020

The greediness of CKY

Dynamic
programming

> “Greedy” algorithms pick the highest score at every step

> e.g. highest probability edge

> Not all greedy algorithms always return the correct
result

> Why?

» Does CKY always return a correct result? Why?

CKY monotonicity

Dynamic
programming

6rMIW:
Py B = PLY)—>AH
P 8) » P(A)| v itpsné”

p(&)< P (H)

Example

Dynamic

programming
Grammar Lexicon
S — NPVP Det — that | this| the| a
S — Aux NP VP Noun — book | flight | meal | money
S — VP Verb — book | include | prefer
NP — Pronoun Pronoun — 1| she | me
NP — Proper-Noun Proper-Noun — Houston | NWA
NP — Det Nominal Aux — does
Nominal — Noun Preposition — from | to | on| near | through

Nominal — Nominal Noun
Nominal — Nominal PP
VP — Verb

VP — Verb NP

VP — Verb NP PP

VP — Verb PP

VP — VP PP

PP — Preposition NP

IR BB The £ miniature English grammar and lexicon.

Bottom-up parsing

Book the flight through Houston

Bottom-up parsing

N D N P PN
o

Book the flight through Houston

Bottom-up parsing

Nom D Nom P PN
b | |
N the N through Houston
| |
Book

flight

Bottom-up parsing

Nom NP PP
N S
N D Nom P PN
b | |
Book the N through Houston
|
flight

No more possibilities! Backtrack...

Bottom-up parsing

Nom D Nom

PP
| /\
N the N ; N
| | | |
Book flight through

Houston

Bottom-up parsing

Nom D -
o
N the Nom .
- | P PN
| | |
flight through

Houston

Bottom-up parsing

Nom NP
A
IL D Nom
/\
Bo|ok th|e Nom PP
5
flig|;ht thro|ugh Hou|ston
No more possibilities! Backtrack... Up to where?

Bottom-up parsing

Backtrack to the very beginning, actually!

Book the flight through Houston

Bottom-up parsing

V. D N P PN
o

Book the flight through Houston

Bottom-up parsing

\Y

o |
Book the

|
N through Houston
|

flight

Bottom-up parsing

\Y NP PP
RN N
Book D Nom P PN
I | |
the N through Houston
|

flight

Bottom-up parsing

VP PP
N N
Vv NP P PN
N | |
Book D Nom through Houston
I
the N

flight

Bottom-up parsing

VP
/\
VP PP
RN N
\Y NP P PN
N | |
Book D Nom through Houston
I
the N
|

flight

Bottom-up parsing

S
|
VP
/\
VP PP
N N
Vv NP P PN
N | |
Book D Nom through Houston
I
the N
|

flight

Bottom-up parsing

Or, we could have instead done:
Vv

D Nom PP
I . N
Book the N P PN
| | |
flight through

Houston

Bottom-up parsing

v D

|

Book the Nom

PP
| /\
N b -
| | |
flight through

Houston

Bottom-up parsing

\Y "
| /\
Book D -
| /\
e PP
| /\
N P -
| | |
flight through

Houston

Bottom-up parsing

VP
/\
\Y "
| /\
Book D ~
| /\
e PP
| /\
N b -
| | |
flight through

Houston

Bottom-up parsing

S
|
VP
/\
\Y o
| /\
Book D -
| /\
e PP
| /\
N P .
| | |
flight through

Houston

[m]

How do we make sure we get both trees?

> Go through all possibilities for productions

Top-Down Parsing

Top-Down Parsing

NP VP

Top-Down Parsing

S
AN
NP VP

Pronoun

Top-Down Parsing

NP VP

Top-Down Parsing

NP VP

PN

Top-Down Parsing

NP VP

Top-Down Parsing

Top-Down Parsing

NP VP

Top-Down Parsing

Top-Down Parsing

S

T~

Aux NP VP

Top-Down Parsing

Top-Down Parsing

VP

Top-Down Parsing

Top-Down Parsing

Book
Yes, but we have more input still...

Top-Down Parsing

VP

Top-Down Parsing

VP

V NP

BOOK

Top-Down Parsing

S
|
VP
/\
V NP
|

Book Pronoun

Top-Down Parsing

VP

V NP

BOOK

Top-Down Parsing

S
|
VP
PN
vV NP
|
BOok

PN

Top-Down Parsing

VP

V NP

BOOK

Top-Down Parsing

S
|
VP
/\
v o
2N
BOOk

D Nom

Top-Down Parsing

S
|
VP
/\
v -
2N

Book D Nom

the

Top-Down Parsing

S
|
VP
/\
v -
2N

Book D Nom

|
the N

Top-Down Parsing

S
|
VP
/\
\Y NP
N
Book D Nom
I
the N

flight
Yes, but we have more input still...

Top-Down Parsing

S
|
VP
/\
\Y P
A
sk D Nom
| N
the

Top-Down Parsing

S
|
VP
/\
V NP
Sy
Book D e
| N
the Nom N

N

Top-Down Parsing

S
|
VP
/\
Vv NP
| /\
Book D Nom
| N
the Nom N
|
N

flight
Nope... Backtrack again...

Top-Down Parsing

S
|
VP
/\
v -
2N

Book D Nom

the

Top-Down Parsing

S
|
VP
/\
\Y P
Sy
Book D o
| PN
the

Top-Down Parsing

S
|
VP
/\
Vv e
NNy
Book D o
| PN
the Nom PP

N

Top-Down Parsing

S
|
VP
/\
\Y P
A
ook D Nom
| PN
the Nom op
|
N

Top-Down Parsing

S
|
VP
/\
\Y o
NSy
Book D o
| P
the Nom PP
| /\
N P NP

flight

Top-Down Parsing

Py

S
|
VP
/\
Vv -
|
Book D -
| /\
e om PP
| A~
N 2 N
|

flight through

[m]

&

Top-Down Parsing

S
|
VP
/\
\% o
| /\
Book D -
| /\
e PP
| /\
N b -
]

flight through

Pronoun
F

[m]

Top-Down Parsing

Py

S
|
VP
/\
Vv -
|
Book D -
| /\
e om PP
| A~
N 2 N
|

flight through

[m]

&

Top-Down Parsing

S
|
VP
/\
v -
o
T Nom
o
e e PP
| P
N S
|

o
fight through PN

[m]

&

Top-Down Parsing

S
|
VP
/\
\Y Np
L~
Book D -
L~
e e PP
| s
N b -
| | |
flight through

PN

Houston
o = i

Top-Down Parsing

> Could we have gotten the second tree by top-down
parsing?

Top-Down Parsing

> Could we have gotten the second tree by top-down
parsing?

> Yes; it is a matter of which rule happened to be on the
top of the stack

> We grabbed VP — V NP

> But the option VP — VP PP is also on the stack
somewhere

> Thus the returned parse is subject to an arbitrary listing
of rules in the grammar

u]
o)
|
ul
it

Bottom Up vs. Top Down parsing

> Top-down parsers do not waste time exploring
hypotheses not leading to S
> ...but do waste time exploring hypotheses not matching
the input
> Bottom-up parsers do not waste time exploring
hypotheses not matching input
> _..but do waste time exploring hypotheses not leading to
S
> Both can take exponential time
> (in the worst case, easier shown on abstract CFG)
> Some recursive parsers are O(n*)
> An answer to poor time complexity: dynamic
programming
> O(n®)

Example: The Fibonacci numbers

Recursive definition: f(0) = 0; f(1) = 1 f(n) = f(n-1) + f(n-2)
01123581321 345589 144 233 377 610 987 1597
2584 4181 6765 10946 17711 28657...

f(100) = 218922995834555169026

The Fibonacci numbers: naive implementation

> Since we have a recursive definition, let’s implement the
def fibonacci(n):

Fibonacci numbers printer recursively!

if n in [0,1]:

return n

return fibonacci(n-1) + fibonacci(n-2)
What'’s the problem with this?

The Fibonacci numbers: better implementation

def fibonacci(n):
return fibonacci_helper(n, {})

def fibonacci_helper(n,memo) :
if n in [0,1]:
return n
if not n in memo:
memo[n] = fibonacci_helper(n-1,memo)
+ fibonacci_helper (n-2,memo)
return memo[n]

u]
o)
|
ul
it

Dynamic programming

> Fill in a table with solutions to subproblems

» Then can just look up momentarily the precomputed
solution

> No need to perform the same computation many times

u]
o)
|
ul
it
<

Fibonacci numbers

> 10)
> (1)

" () f(0)

> what's f(1)?
> what's f(0)?

Fibonacci numbers

> £(3) = f(2) + f(1)

Fibonacci numbers

Fibonacci numbers

vyVYVYYVYYy

> etc... (deep recursion; slow; do the same computation
again and again)

u]
o)
|
ul
it
<
¢

Fibonacci numbers

Fibonacci numbers

#(0) = ?

Not in the table, so compute: f(0)=0 (or rather, return the
base case)

fill in the cell

|01 2 3 4 5

Fibonacci numbers

f(1) =2

Not in the table, so compute: f(1)=1 (or rather, return the
base case)

fill in the cell

|01 2 3 4 5
|0

Fibonacci numbers

f(2) =7
Not in the table, so compute: f(2)=f(2-1) + f(2-2) = f(1) + f(0)

But both f(1) and f(0) are already in the table! No need to
compute! Just look up!

fill in the cell

|0 1 2 3 4 5
|0 1

u]
o)
|
ul
it
<
¢

Fibonacci numbers

f(8)="7?
Not in the table, so compute: f(3)=f(3-1) + f(3-2) = f(2) + f(1)

But both f(2) and f(1) are already in the table! No need to
compute! Just look up!

fill in the cell

u]
o)
|
ul
it
<
¢

Fibonacci numbers

f(4)="7
Not in the table, so compute: f(4)=f(4-1) + f(4-2) = {(3) + f(2)

But both f(3) and f(2) are already in the table! No need to
compute! Just look up!

fill in the cell

|0 1 2 3 4 5
0 1 1 2

u]
o)
|
ul
it
<
¢

Dynamic programming for parsing

Once the constituent has been discovered, store the
information

> Example: The CKY algorithm (Cocke-Kazami-Younger)

	Dynamic programming

