LING/CSE472

Section

Plan for today

- Some basic probability
- XOR
- Ngram toolkit on patas
- Start counting things (Assignment 5)

Probability
 Why do probabilities sum to 1 ?

- Only some probabilities sum to 1 :)
- 1 (or 100%) is the probability of a guaranteed outcome
- If you toss a coin, you MUST get either Heads or Tails...
- ...in a valid unverse
- Therefore, $P(H)+P(T)=1$
- ...otherwise there is some nonzero probability your coin never landed!

Probability distributions over vocabularies

- Consider a dataset:
- \{I have a cat; I have a dog; I have a cat and a dog\}
- 15 word tokens, 6 word types
- $V=\left\{\mathrm{I}: 3 ;\right.$ have: $3 ; a_{2}: 4 ;$ cat: $2 ;$ dog: $2 ;$ and: 1$\}$

- What's P("cat")?
- Probability of encountering the word "cat" in this sort of data
- Why is it important that $P\left(w_{3}\right)$ sum up to 1 ?
- (Or is it?)

$$
\sum_{i=0}^{N} P\left(w_{i}\right)=1
$$

- Want to leave some probability to UNKnown words, too!

$$
\begin{aligned}
& 0 \text { F False } \\
& 1=\text { True } \\
& \text { (convention) } \\
& \text { ht: } 1 \cdot 1+1 \cdot 1+0=2 \\
& \text { ht: } 1 \cdot 1+1 \cdot 1-1=1 \\
& y_{2}: 2 \cdot 1+1(-2)=0 \\
& \text { XOR solution after Goodfellow et al. (2016). There are three ReL units, in } \\
& \text { two layers; weave called them } h_{1}, h_{2} \text { (} h \text { for "hidden layer") and } y_{1} \text {. As before, the numbers } \\
& \text { on the arrows represent the weights } w \text { for each unit, and we represent the bias } b \text { as a weight } \\
& \text { on a unit clamped to }+1 \text {, with the bias weights/units in gray. }
\end{aligned}
$$

XOR

- $x 1=0, x_{2}=0$
h1:0.1+0.1+0 = 0
$h_{2}: 0.1+0.1-1=-1 \rightarrow 0$
$y_{1}: 0 \cdot 1+0 .-2+0=0$

XOR solution after Goodfellow et al. (2016). There are three ReLU units, in two layers; we've called them h_{1}, h_{2} (h for "hidden layer") and y_{1}. As before, the numbers on the arrows represent the weights w for each unit, and we represent the bias b as a weight
on a unit clamped to +1 , with the bias weights/units in gray. on a unit clamped to +1 , with the bias weights/units in gray.

XOR

$$
\begin{aligned}
& \text { - } x 1=1, \times 2=0 \\
& h_{1}: 1 \cdot 1+0 \cdot 1+0=1 \\
& \text { ht: } 1.1+0.1-1=0 \\
& y_{1}: 1 \cdot 1+0 \cdot(-2)+0 \\
& \text { - } \begin{array}{l}
\text { two layers; weave called them } h_{1}, h_{2}\left(h \text { for "hidden layer") and } y_{1}\right. \text {. As before, the numbers } \\
\text { on the arrows represent the weights } w \text { for each unit, and we represent the bias } b \text { as a weight } \\
\text { on a unit clamped to +1, with the bias weights/units in gray. }
\end{array}
\end{aligned}
$$

N -gram toolkit on patas
 Assignment 4

- Adding something to your Path on paths
- Path is an environmental variable
- If you type a program name in your terminal, the program will run so long as its true location is on your Path
- Adding something to Path is a way to avoid always having to navigate to each program
- .bashrc is a hidden file (but that should not matter much on patas)
- . (dot) is part of its name
- It must be in your ~ (home directory), so, ~/.bashrc

