
Ling/CSE 472:
Introduction to Computational Linguistics

5/7: Dependency parsing

Overview

• Grammatical dependencies

• Dependency grammar

• Dependency treebanks

• Dependency parsing

• Reading questions (with headers)

• Questions about milestone 2

Grammatical Dependencies

• Relate words in the sentence to each other

• A labeled with the type of dependency

• Are typically represented as graphs (sometimes trees)

• Where each node is a word in the sentence

• Where word in the sentence is (usually) a node

Dependency Grammar

• Theoretical foundations: Tesnière 1959, Mel’čuk 1988, Hudson 1984, Sgall et
al 1986

• Focus not on grammaticality (“What’s a possible sentence?”) but on
grammatical structure, given a string

Dependency Treebanks: Universal Dependencies

• https://universaldependencies.org/

• Builds on:

• Stanford dependencies (LFG-inspired transformation of CFG
representations for English from the Stanford parser)

• Theoretical work on dependency grammar

• “Universal” POS tagset developed initially for cross-linguistic error analysis
(McDonald and Nivre 2007)

https://universaldependencies.org/

What is needed for UD to be successful?
(from universaldependencies.org/introduction.html)

• The secret to understanding the design and current success of UD is to realize that the design is
a very subtle compromise between approximately 6 things:

• UD needs to be satisfactory on linguistic analysis grounds for individual languages.

• UD needs to be good for linguistic typology, i.e., providing a suitable basis for bringing out
cross-linguistic parallelism across languages and language families.

• UD must be suitable for rapid, consistent annotation by a human annotator.

• UD must be suitable for computer parsing with high accuracy.

• UD must be easily comprehended and used by a non-linguist, whether a language learner or
an engineer with prosaic needs for language processing. We refer to this as seeking a
habitable design, and it leads us to favor traditional grammar notions and terminology.

• UD must support well downstream language understanding tasks (relation extraction,
reading comprehension, machine translation, …).

• It’s easy to come up with a proposal that improves UD on one of these dimensions. The
interesting and difficult part is to improve UD while remaining sensitive to all these dimensions.

http://universaldependencies.org/introduction.html

Dependency Treebanks outside UD

• Richer grammatical formalisms such as HPSG can be ‘boiled down’ to
dependency representations

• Syntactic OR semantic dependencies (Ivanova et al 2012)

DM v. UD

Dependency Parsing

• Transition-based v. graph-based

• Feature templates v. neural

• Source of training data

Dependency Parsing

Dependency Parsing

Reading questions: Why?

• This is a very broad question, but what exactly is the goal with these
dependency structures? We went over an algorithm in class, and these
chapters went over more relations. After these are made, and possibly hand
corrected, what does the computer do with these? Is having this structure
just an important thing in general to have when processing language?

Reading questions: Root

• Is the “root” always the main verb? Or are there times when the root is
something else?

Reading questions:
Constituency v. dependency parsing

• In the translation process from constituency structure to dependency
structure, what are head-finding rules?

• What are the benefits of constituency parsing over dependency parsing? Is it
just that dependency parsing isn't always necessary?

• Are there any advantages to choosing constituent based parsing over
dependency parsing for a language with relatively free word order? It seems
like it would be very hard to get a constituent based parser right with such a
language, as there would be many productions for every type of phrase.

Reading questions:
Constituency v. dependency parsing

• For languages that aren't as morphologically rich, would using this
dependency parsing have no obvious net change in performance and
convenience? (Compared to the other forms of parsing we've studied)
Because the main idea, I'm getting is that it's most beneficial to languages
that are morphologically rich.

• The chapter notes that without a tool like dependency grammar it can be very
difficult to deal with free word order and morphological richness. Free word
order seems pretty happily managed by the basic premise of dependency
parsing (at least in theory), but it’s not clear to me what degree of
morphological complexity demands strategies like making the vertices
represent stems and affixes instead of words - like, would that be necessary
in English, or is it okay to just have different tags for, e.g., said and says? Is
that the kind of decision you might make based on the type of annotation you
have in the first place?

Reading questions:
Constituency v. dependency parsing

• Coming from the CCG topic, which was one of the topic for this week's blog
posts, the idea of dependency graph seemed similar to the functions in CCG
in the way that the constraint that allows only one incoming arc to be
presented in each vertex except for the root vertex as functions in CCG are
required to be a single-argument function and so on. Are all of these
formalisms differ from each other such that they are fundamentally not
equivalent to each other, or they are different views encoding the same
information?

Reading questions:
Morphologically complex languages

• I curious about how dependency phrasing deals with language that heavily
uses affixes for grammar (agglutination). For example, "from your house" in
Turkish is "ev-ler-iniz-den", where CASE and NMOD are in one word.

Reading questions: Annotation

• Section 15.3 mentioned that dependency treebanks have been manually
annotated for morphologically rich languages (and possibly languages with
non-nominative-accusative morphosyntactic alignment like ergative-absolute
and tripartite languages). Would manually annotating these treebanks not be
an ambiguous task between different annotators? What developments have
been made to reduce ambiguity and bias between annotating these
treebanks?

• Is it possible for there to be multiple different possible dependency relations
between two words? If so, how is the "correct" one determined?

Reading questions: Annotation

• In JM Ch 15.3, it mentions that the dependency treebanks are limited by the
information in the original constituent trees, and this makes such treebanks to
be directly developed by human annotators. Would it possible to train
supervised ML models that address each of the issues mentioned in the text
separately and use such models to create these dependency treebanks?

• Also, how is ambiguity dealt with in the generation of the dependency trees
from the constituency trees? Because some sentences will have multiple
constituency trees - will all of the options be translated to dependency trees?
Will some have higher priority/weight?

Reading questions: Projectivity

• They say that this dependency tree (picture) is projective, but then I'm not
sure what they mean by a "path from the head to every word that lies
between the head and the dependent", because cancelled isn't connected
with the or morning and flights isn't connected with to. Even though those
words may modify another head, they're still words in between? (15.2)

Reading questions: Projectivity

• They say that this dependency tree (picture) is projective, but then I'm not
sure what they mean by a "path from the head to every word that lies
between the head and the dependent", because cancelled isn't connected
with the or morning and flights isn't connected with to. Even though those
words may modify another head, they're still words in between? (15.2)

Reading questions: Projectivity

• Because treebanks are generated from context-free grammars and thus are
all projective, is there a lack of non-projective data? If so, how can that data
bank be enlarged so as to provide better parsing of morphologically rich
languages and languages with free word order?

• Are there efforts to expand treebanks to include non-projective trees, such as
for treebanks that were built from existing constituent structure treebanks, or
is non-projectivity a relatively infrequent issue? Mostly considering English
here.

Reading questions: Projectivitys

• Is it more important that we are just aware of the idea of projectivity, so that
when we use a certain parsing algorithm and we know that it can only handle
projective sentences, we can deal with that accordingly? Or is there another
particular advantage to using projective vs. non-projective sentences when
testing/training models?

• How relative is projectivity to clauses versus adjuncts - can non-projective
sentences contain crossing due to either?

• How exactly is projectivity related to "the context-free nature of human
languages"?

Reading questions: Other

• Would transition based dependency parsing support a language (I don’t know
if any exist) that have dependencies between words found far apart in the
sentence?

• Are human annotations always the ground truth for determining the accuracy
of dependency parsing models?

Milestone 2, due 5/15:
Complete project plan, 1st draft (2-3 pages)

• Submit a clear and detailed description of the package that you chose. (What
is the tool for? How is it implemented (high level)? How is it evaluated? Why
did you choose it?)

• Submit a clear and detailed description of the dataset that comes with the
package, or, in exceptional circumstances, that you propose that you use for
the project. How big is it? What is the format? Will you need to do any
preprocessing? Etc

• Include URL for the package download site

• Include URL for the dataset download site

Milestone 2, due 5/15:
Complete project plan, 1st draft (2-3 pages)

• Copy the main results table from the paper and explain what sort of
evaluation they use (what metrics etc.). Explain how the reader should
interpret the table. What do these number mean with respect to what the tool
is doing?

• What error analysis have the authors already done, if any?

• Include a clear plan of how you will perform your error analysis, with several
examples:

• For instance, if you are doing error analysis for a parser: find several
sentences which the parser does not parse, and explain how you would go
about categorizing these errors and what kind of discussion you might
develop about them.

