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We would like you to consider

• Are ever larger language models (LMs) inevitable or necessary?


• What costs are associated with this research direction and what should we 
consider before pursuing it?


• Do the field of natural language processing or the public that it serves in fact 
need larger LMs?


• If so, how can we pursue this research direction while mitigating its 
associated risks?


• If not, what do we need instead?



Overview

• History of Language Models (LMs)


• Risks


• Environmental and financial costs


• Unmanageable training data


• Research trajectories


• Potential harms of synthetic language


• Risk Mitigation Strategies



Brief history of language models (LMs)

• LM: A system trained to do string 
prediction


• What word comes ___? What 
word [MASK] here? 

• Proposed by Shannon in 1949, but 
implemented for ASR, MT, etc. in 
early 80’s


• N-grams and various neural 
architectures through 
Transformers


• Big takeaways


• Better scores through more data 
and bigger models until scores 
don’t improve, then move to new 
architecture


• Multilingual models up to ~100 
languages


• Model-size reduction strategies


• Growth of models ∝ range of 
application of models



How big is big?

[Special thanks to Denise Mak for graph design]



What are the risks?


Environmental costs & financial inaccessibility



Environmental and financial costs

• Average human across the globe responsible for 5t of CO2 emissions per year*


• Strubell et al. (2019) 


• Transformer model training procedure on GPUs 284t of CO2 emissions


• 0.1 BLUE score increase en-de results in increase of ~$150,000 in compute cost


• Encourage reporting training time and sensitivity to hyperparameters


• Suggest more equitable access to compute clouds through government 
investment


• Which researchers and which languages get to ‘play’ in this space and who is cut 
out?

*Source: Our World In Data

https://ourworldindata.org/co2-emissions


Current mitigation efforts

• Renewable energy sources


• Still incur a cost on the environment & take away from other potential uses of 
green energy


• Prioritize computationally efficient hardware


• SustainNLP workshop


• Green AI and promoting efficiency as evaluation metric (Schwartz et al 2020)


• Document energy and carbon metrics


• Energy Usage Reports (Lottick et al 2019)


• Experiment-impact-tracker (Henderson et al 2020)



Costs and risks to whom?

• Large LMs, particularly those in English and other high-resource languages, 
benefit those who have the most in society


• Marginalized communities around the world impacted most by climate 
change


• Maldives threatened by rising sea levels (Anthoff et al 2010)


• 800,000 residents of Sudan affected by flooding (7/2020-10/2020)*


• But these communities are rarely able to see benefits of language technology 
because LLMs aren’t built for their languages, Dhivehi and Sudanese Arabic

*Source: https://www.aljazeera.com/news/2020/9/25/over-800000-affected-in-sudan-flooding-un



What are the risks?


Unmanageable training data



A large dataset is not necessarily diverse

• Who has access to the Internet and is 
contributing?


• Younger people and those from 
developed countries


• Who is being subject to moderation?


• Twitter - accounts receiving death 
threats more likely to be suspended 
than those issuing threats (see also 
Marshall 2021)


• What parts of the Internet are being 
scraped?


• Reddit - US users 67% men and 
64% are ages 18-29 (Pew)


• Wikipedia - only 8.8-15% are 
women or girls


• Not sites with fewer incoming and 
outgoing links, like blogs


• Who is being filtered out?


• Filtering lists primarily target words 
referencing sex, likely also filtering 
LGBTQ online spaces (see also 
Dodge et al 2021)



Static data/Changing social views

• LMs run the risk of ‘value lock’, reifying older, less-inclusive understandings


• BLM movement lead to increased number of articles on shootings of Black 
people and past events were also documented and updated (Twyman et al 
2017)


• But media also doesn’t cover all events and tend to focus on more 
dramatic content


• LMs encode hegemonic views; retraining/fine-tuning would require thoughtful 
curation (see Solaiman and Dennison 2021 for partial proof of concept)


• See also Birhane et al 2021: ML applied as prediction is inherently 
conservative



Bias

• Research in probing LMs for bias has provided a wealth of examples of bias


• See Blodgett et al 2020 for a critical overview


• Documentation of the problem is an important first step, but not a solution


• Automated processing steps may themselves be unreliable


• Probing requires knowing what social categories the LM may be biased 
against


• Need for local input before deployment



Curation, documentation, accountability

• How big is too big?


• Budget for documentation and only collect as much data as can be 
documented


• Documentation: understand sources of bias & potential mitigating 
strategies


• No documentation: potential for harm without recourse


• Documentation debt: datasets both undocumented and too big to document 
post-hoc



What are the risks?


Research trajectories



Research time is a 

valuable resource

• Focus on LMs and achieving new SOTA on leaderboards, particularly NLU


• But LMs have been shown to excel due to spurious dataset artifacts (Niven & 
Kao 2019, Bras et al 2020)


• LMs trained only on linguistic form don’t have access to meaning (Bender & 
Koller 2020)


• Are we actually learning about machine language understanding?



What are the risks?


Potential harms of synthetic language



Stochastic 🦜

• Human-human interaction is co-constructed and leads to a                      
shared model of the world (Reddy 1979, Clark 1996)


• An LM is a system for haphazardly stitching together linguistic forms from its 
vast training data, without any reference to meaning: a stochastic parrot.


• Nonetheless, humans encountering synthetic text make sense of it


• Coherence is in the eye of the beholder



Potential harms

• Denigration, stereotype threat, hate speech:                                               
harms to reader, harms to bystanders


• Cheap synthetic text can boost extremist recruiting (McGuffie & Newhouse 
2020) 


• LM errors attributed to human author in MT


• LMs can be probed to replicate training data for PII (Carlini et al 2020)


• LMs as hidden components can influence query expansion & results (Noble 
2018)



Risk management strategies




Allocate valuable research time carefully

• Incorporate energy and compute efficiency in planning and model evaluations


• Select datasets intentionally


• ‘Feeding AI systems on the world’s beauty, ugliness, and cruelty, but 
expecting it to reflect only the beauty is a fantasy.’ (Birhane and Prabhu 
2021, after Benjamin)


• Document process, data, motivations, and note potential users and 
stakeholders


• Pre-mortem analyses: consider worst cases and unanticipated causes


• Value sensitive design: identify stakeholders and design to support their 
values



Risks of backing off from LLMs?

• What about benefits of large LMs, like improved auto-captioning?


• Are LLMs in fact the only way to get these benefits?


• What about for lower resource languages & time/processing constrained 
applications?


• Are there other ways the risks could be mitigated to support the use of LMs?


• Watermarking synthetic text?


• Are there policy approaches that could effectively regulate the use of LLMs?



We would like you to consider

• Are ever larger language models (LMs) inevitable or necessary?


• What costs are associated with this research direction and what should we 
consider before pursuing it?


• Do the field of natural language processing or the public that it serves in fact 
need larger LMs?


• If so, how can we pursue this research direction while mitigating its 
associated risks?


• If not, what do we need instead?
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Sources for parrot photos:

https://www.maxpixel.net/Bird-Red-Parrot-Animal-Fly-Vintage-Wings-1300223
https://www.maxpixel.net/Parrots-Parrot-Birds-Isolated-Plumage-Branch-Bird-2850879
https://www.maxpixel.net/Tropical-Animal-World-Bill-Parrot-Cute-Bird-Ara-3080543
https://www.maxpixel.net/Animal-Ara-Plumage-Isolated-Bird-Parrot-4720084
https://www.maxpixel.net/Tropical-Ara-Bird-Feather-Exotic-Bill-Parrot-3064137
https://www.maxpixel.net/Plumage-Colorful-Exotic-Birds-Ara-Parrot-5202301
https://www.maxpixel.net/Flight-Parrots-Parrot-Isolated-2683451


