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This tutorial is intended to introduce users to several different ways Rosetta may be used to solve various 
structure determination tasks given 3-5Å cryoEM density data. It is not intended to replace the user’s guide, 
available at https://www.rosettacommons.org/manuals/latest/main/. 

The tutorial is split up into five parts. 

1. An introduction to Rosetta in general, showing how one may score structures and minimize 
structures guided by experimental density data 

2. Our model rebuilding protocol (RosettaCM), where one wishes to recombine homologous 
structures, and rebuild small missing regions (typically 12 or fewer residues) 

3. An advanced application of RosettaCM, rebuilding and refining a symmetric assembly 

4. Another advanced application of RosettaCM, to determine the sequence threading of a model 
5. Our model completion tools, where one wishes to complete a partial model built by the de novo 

tool or wishes to rebuild large missing regions (12 or more residues) 

In each scenario, we present the most basic usage of Rosetta for the task, and then describe additional 
options that may be useful. Command-line flags and input scripts are provided in shaded boxes, with 
boldfaced text indicating parameters of note. These parameters are described in the text following the 
command line. 

Note: in all sections, you will need to update the command scripts to point at your installation of Rosetta and 
the Rosetta database. 

  



1) Rosetta and electron density basics 

This section provides a brief introduction to using Rosetta, and an overview of using density data within 
Rosetta. 

Overview of Rosetta 

The Rosetta documentation is a good source of additional information on several of the tools described in 
this document.  This is available at https://www.rosettacommons.org/docs/latest/Home. 

Additionally, many of the tools described in this document use the RosettaScripts framework, described at 
https://www.rosettacommons.org/docs/latest/scripting_documentation/RosettaScripts/RosettaScripts.  
Briefly, this allows protocols to be defined as a series of atomic "Movers" which manipulate a structure.  The 
format is as follows: 

<ROSETTASCRIPTS> 

    <SCOREFXNS> 

    </SCOREFXNS> 

    <MOVERS> 

    </MOVERS> 

    <PROTOCOLS> 

    </PROTOCOLS> 

</ROSETTASCRIPTS> 

Each block contains information in running the protocol: <SCOREFXNS> and <MOVERS> are used to declare 
score functions and movers; while <PROTOCOLS> is where the steps of the protocol are enumerated. 

Rosetta tools are run via the command line, with flags controlling general program behavior.  Many of the 
flags specifically for density refinement are outlined in the sections following. 

Density scoring in Rosetta 

Agreement to density is implemented in Rosetta as an additional energy term. Rosetta assesses agreement to 
density by computing the density that one would expect to see, given a model, and measuring the agreement 
of the expected and experimental density. 

elec_dens_fast 
This scoreterm is recommended for nearly all uses of density refinement in Rosetta. It uses interpolation on 
a precomputed grid of per-atom scores to approximate the density correlations. This version is significantly 
faster (~10x) then the exact scoring term below, and is very highly correlated. 

These energy terms may be provided to Rosetta in two ways. First, it may be provided in a RosettaScript XML 
file as input: 

<Reweight scoretype="elec_dens_fast" weight="35.0"/> 

For non-Rosetta script applications, the following flag controls the density scoring function weight: 

-edensity:fast_dens_wt 35.0 

 

The recommended weights for each of these terms vary depending on the density map resolution, starting 
model quality, and protocol. Section 2 describes how the weights may be tuned. However, the following are 

https://www.rosettacommons.org/docs/latest/Home
https://www.rosettacommons.org/docs/latest/scripting_documentation/RosettaScripts/RosettaScripts


good rules of thumb for setting the density weight within Rosetta: 
 
At resolutions better than 2.5Å: an elec_dens_fast  weight of 65.0 is generally reasonable. 
At resolutions between 2.5Å and 3.5Å: an elec_dens_fast  weight of 50.0 is generally reasonable. 
At resolutions worse than 3.5Å: an elec_dens_fast  weight of 35.0 is generally reasonable. 

At very low resolutions (worse than 6Å), the weight may need to be further reduced.  In general, if the 
Rosetta energies are positive (or significant outliers are flagged by Molprobity or other validation programs) 
then the weights need to be reduced. 

In addition to the score terms above, there are also several flags that control map scoring behavior. Maps are 
read into Rosetta using either the flag: 

-edensity::mapfile mapfile.mrc 

Or from XML: 

<LoadDensityMap name="loaddens" mapfile="mapfile.mrc"/> 

Maps may be in either CCP4 or MRC format (the map type is automatically detected from the header info). 

The resolution of the map, used when comparing calculated to experimental density, is specified with the 
flag: 

-edensity::mapreso 5.0 

Maps may also be resampled to reduce memory usage and runtime. This is done through the flag: 

-edensity::grid_spacing 2.0 

Notice that this flag should never be more than half the given resolution, and if using the fast scoring function 
never more than a third of the resolution. For both parameters, the default is generally fine (don’t resample, 
and assume the resolution is ~3x the grid sampling). 

Finally, one may choose to calculate density using either cryoEM or X-ray scattering factors. At low 
resolution, this probably makes little difference, but might at resolutions better than about 3.5Å. The default 
is to use X-ray scattering factors; to turn on cryoEM scattering factors instead, use the following flag: 

-edensity::cryoem_scatterers 

 

Example 1A and 1B: Refinement into density using 
the Relax application 

The most basic structure refinement tool in Rosetta is Rosetta’s 
relax (or fastrelax; both are names for the same protocol).  This 
protocol alternates cycles of discrete sidechain optimization with 
full-structure minimization: 



 

Relax is one of many compiled applications used in Rosetta.  While the much of the tutorial will use Rosetta’s 
XML interface to control the behavior of Rosetta, these two submodules (1A and 1B) instead will use the 
command-line relax application.  This will also serve as an introduction to Rosetta’s command line, which 
shares much similarity between different applications.  The command for Running relax is shown below 
(1_rosetta_introduction/A_relax_tors_density.sh): 

$ROSETTA3/source/bin/relax.linuxgccrelease \ 

 -in::file::s 1isrA.pdb \ 

 -ignore_unrecognized_res \ 

 -edensity::mapfile 1issA_6A.mrc \ 

 -edensity::mapreso 5.0 \ 

 -edensity::fastdens_wt 35.0 \ 

 -edensity::cryoem_scatterers \ 

 -crystal_refine \ 

 -beta \ 

 -out::suffix _tors_relax \ 

 -default_repeats 2 \ 

 -default_max_cycles 200 

The rosetta executable is specified first, followed by a set of command-line flags to control the behavior of 
relax.  Some flags of note are boldfaced above. First, the input structure is provided with the command  
-in::file::s. This is common to many Rosetta applications, and more than one input may be provided; 
each will be processed independently. The flags beginning with –edensity:: tell Rosetta about the density 
map into which it is being fit. The name of the mapfile (in CCP4 or MRC format), the resolution of the map, 
and the weights on the fit-to-density scoring function. These same flags are reused for many different 
protocols in addition to relax. Finally, the flag -crystal_refine the flag turns on several density-related options 
related to PDB reading and writing, and should always be used when refining against density data. 

Note: The input PDB must be aligned to the density map using some external tool. Rosetta will optionally 
rigid-body minimize the structure into density before rescoring by providing the flag –edensity::realign min 
to the application. 

This command line outputs a score file, score.sc, that gives, for each structure specified with -in::file::s,  the 
score with respect to each term in Rosetta’s energy function. The meaning of individual scoreterms as well as 
an overview of the Rosetta energy function can be found in the paper:  Alford RF,et al.  J Chem Theory 
Comput. 2017 Jun 13;13(6):3031-3048. 

Example 1B introduces two minor changes to the command line above: 

$ROSETTA3/source/bin/relax.linuxgccrelease \ 

 -in::file::s 1isrA.pdb \ 

 -ignore_unrecognized_res \ 

 -edensity::mapfile 1issA_6A.mrc \ 

 -edensity::mapreso 5.0 \ 

 -edensity::fastdens_wt 35.0 \ 

 -edensity::cryoem_scatterers \ 

 -crystal_refine \ 

 -relax:cartesian \ 

 -beta_cart \ 

 -out::suffix _relax_cart \ 

 -default_repeats 2 \ 

 -default_max_cycles 200 

 



These two changes modify the relax command to use Cartesian-space rather than torsion-space minimization.  
The note at the end of Example 1C explains the differences between these two refinement variants. 

Examples 1C: An introduction to RosettaScripts 

In this section we introduce RosettaScripts by way of a very simple refinement-into-density example. 
RosettaScripts provides an XML scripting interface to Rosetta that allows fine-grained control of 
protocols. The syntax is fully described in the Rosetta documentation; however, a very brief introduction is 
provided here. The basic syntax for the XML is illustrated here (1_rosetta_basics/C_relax_rosetta_scripts.xml): 

 

<ROSETTASCRIPTS> 

   <SCOREFXNS> 

      <ScoreFunction name="dens" weights="beta_cart"> 

         <Reweight scoretype="elec_dens_fast" weight="35.0"/> 

      </ScoreFunction> 

   </SCOREFXNS> 

   <MOVERS> 

       <SetupForDensityScoring name="setupdens"/> 

       <LoadDensityMap name="loaddens" mapfile="1issA_6A.mrc"/> 

       <FastRelax name="relaxcart" scorefxn="dens" repeats="2" cartesian="1"/> 

   </MOVERS> 

   <PROTOCOLS> 

      <Add mover="setupdens"/> 

      <Add mover="loaddens"/> 

      <Add mover="relaxcart"/> 

   </PROTOCOLS> 

   <OUTPUT scorefxn="dens"/> 

</ROSETTASCRIPTS> 

There are three "blocks" of declarations in this script.  In the first, <SCOREFXNS> … </SCOREFXNS>, the 
scorefunctions to be used throughout the protocol are declared; the second, <MOVERS> … </MOVERS>, 
movers – or atomic operations that modify a structure – are declared; finally, the third, <PROTOCOLS> … 
</PROTOCOLS>, a full protocol is declared as a sequence of movers. 

In this particular example, we declare a single scorefunction, dens, which uses the score function beta_cart (a 
default score function, don’t need to worry about it), and turns on elec_dens_fast, the fit-to-density score, with 
a weight of 35. We then declare three movers, SetupForDensityScoring, LoadDensityMap, and FastRelax, 
which sets up the loaded structure for density scoring, loads a map into memory, and then refines the 
structure using the FastRelax protocol. The declared scorefunction, dens, is used as an input to the FastRelax 
mover. 

To run this script, we use the following command line (1_rosetta_basics/ C_relax_rosetta_scripts.sh): 

$ROSETTA3/source/bin/rosetta_scripts.macosclangrelease \ 

  -database $ROSETTA3/database/ \ 

  -in::file::s 1isrA.pdb \ 

  -parser::protocol C_relax_rosetta_scripts.xml \ 

  -ignore_unrecognized_res \ 

  -edensity::mapreso 5.0 \ 

  -edensity::cryoem_scatterers \ 

  -crystal_refine \ 

  -out::suffix _relax \ 

  -beta 

Note: We do not have to specify the density weight or the map file on the command line, since they are 



handled within the XML file. However, other density options must be specified on the command line. When 
using RosettaScripts, the density weights must be specified in the XML, the input map may be 
specified either way. 

Finally, in the previous XML file, the tag cartesian=1 appears, which refines the structure in Cartesian space. 
Rosetta also allows refinement in torsional space, which may be better for capturing domain motion, and for 
further reduction in model parameters against low-resolution data. To enable torsional refinement, we can 
simply make two small changes to the XML: 

<ROSETTASCRIPTS> 

   <SCOREFXNS> 

      <ScoreFunction name="dens" weights="beta"> 

         <Reweight scoretype="elec_dens_fast" weight="35.0"/> 

      </ScoreFunction> 

   </SCOREFXNS> 

   <MOVERS> 

       <SetupForDensityScoring name="setupdens"/> 

       <LoadDensityMap name="loaddens" mapfile="1issA_6A.mrc"/> 

       <FastRelax name="relaxcart" scorefxn="dens" repeats="2" cartesian="0"/> 

   </MOVERS> 

   <PROTOCOLS> 

      <Add mover="setupdens"/> 

      <Add mover="loaddens"/> 

      <Add mover="relaxcart"/> 

   </PROTOCOLS> 

   <OUTPUT scorefxn="dens"/> 

</ROSETTASCRIPTS> 

Cartesian versus torsional refinement 

One of the strengths of Rosetta is its ability to perform torsion-space refinement, which can be incredibly 
valuable in capturing things like domain motion of proteins which are simple moves in torsion space but can 
be complex in cartesian space.  The optimal type of refinement for a particular problem depends on the 
system itself, the map resolution, and the quality of the starting model.   A few general tips: 

• Several (2-4) repeats of torsion-space refinement followed by 1 repeat of Cartesian-space refinement 
is generally a good strategy 

• For very large (1000 residue+) systems or very poor quality input models (many clashes) cartesian 
refinement alone is better behaved.  



2) Model rebuilding with RosettaCM 

In this scenario, we introduce a tool, RosettaCM, for building missing portions of a model guided by density 
data. While initially developed for comparative modeling, it can be used for a variety of model-building tasks, 
including: 

• Building short missing regions (typically 12 or fewer residues) of models 
• Stitching together multiple domains of a multi-domain structure 
• Rebuilding and refining a symmetric protein complex (see Module 3) or a heteroligomeric 
• Determine the optimal threading of a peptide onto a backbone (see Module 4) and the energies for 

each possible threading  

In this first task, we introduce the use of RosettaCM using a simple task: rebuilding the incorrect portion of 
an alphafold prediction, and refining the resulting model into density. 

Preparing templates for use in RosettaCM  

In this case, we are going to be modelling the C-terminus of one chain of the PDB entry 7s9d (EMBD id: 
24993).  The alphafold prediction (7s9d_cterm_AF2.pdb) and the trimmed density map 
(emd_24993_trim.mrc) have been included in the zip file; alphafold prediction may be rerun (if desired) by 
feeding the fulllength sequence (7s9d_cterm.pdb) through Collabfold 
(https://colab.research.google.com/github/sokrypton/ColabFold/blob/main/AlphaFold2.ipynb 

Given this model and map, we need to do some preparation steps before running RosettaCM: 

1. We need to align the model into density.  While there are several tools for carrying this out, it is 
most straightforward to use Chimera.  First, load the model (7s9d_cterm_AF2.pdb) and map 
(emd_24993_trim.mrc) into Chimera.  Then, in the Model Panel (Favorites->Model Panel) select only 
the AF2 model as “Active”: 

 
and drag the model near to the density.  Once the model is close to aligned, use the command “Fit 
Into Map (Tools->Volume Data->Fit into Map) to snap the model into place.  Save the model as 
7s9d_cterm_aln.pdb. MAKE SURE to save relative to the map: 

 
2. First, the model suggests several disordered regions.  Using PyMol or a text editor remove these 

regions, which include residues 582-614 and 723-741.  Save the resulting model as 
7s9d_cterm_aln_trim_diso.pdb 

All intermediate files have also been provided. 

Example 2A-B: Refining and rebuilding the AlphaFold prediction  

We now want to refine the AlphaFold prediction into the corresponding density map.  While most of the 
model matches quite well, there is one region where the model poorly matches the density, around residues 
615-637.  We will first refine the model using Rosetta relax.  The command is nearly identical to that of 
section 1 (2_rosettaCM_alphafold/A_relax_tors_density.sh): 

https://colab.research.google.com/github/sokrypton/ColabFold/blob/main/AlphaFold2.ipynb


 

$ROSETTA3/source/bin/relax.linuxgccrelease \ 

 -in::file::s 7s9d_trim_aln_remove_disordered.pdb \ 

 -ignore_unrecognized_res \ 

 -edensity::mapfile emd_24993_trim.mrc \ 

 -edensity::mapreso 3.0 \ 

 -edensity::fastdens_wt 50.0 \ 

 -edensity::cryoem_scatterers \ 

 -crystal_refine \ 

 -beta \ 

 -default_repeats 2 \ 

 -default_max_cycles 200 

Only the input and the map file (bolded) are different from the corresponding command line in Section 1. 

Following refinement, the model matches the density somewhat better in this non-matching region, but 
there is still unexplained density as well as portions of backbone that are inconsistent with the density.  
Therefore, in our next step we will rebuild residues 615-637 in the AlphaFold model. 

Preparing a model for RosettaCM is fairly straightforward, as three main inputs are needed: 

1. A fasta sequence file of the residues we want to build 
2. A model for some of the fasta sequence.  This model can have missing residues (relative to the fasta 

file), but cannot have a different sequence than the fasta. 
3. A density map 

In this case, since we do not want to model the disordered regions, we will manually delete those regions 
from the fasta file (582-614 and 723-741).  Since this now leaves a “gap” in the sequence, we specify that in 
the fasta file using the symbol ‘/’.  Your edited fasta file should now be 
(2_rosettaCM_alphafold/7s9d_trim.fasta): 

> 7s9d_trim 

PSYIVLGQLPDTDVYIDIDAYEEVKEVPGIKIFQINAPIYYANSDLYSSALKRKTGVNPAFILGARRKAMKKYAKE/KYPPIVTKSTLPEELQR

FMPPGDNVHTIILDFTQVNFMDSVGVKTLAGIVKEYGDVGIYVYLAGCSAQVVSDLTQNQFFENPALLDLLFHSIHDAVLGSQVREALAEQ 

Furthermore, since we want to rebuild residues 615-637 from scratch, delete those from the relaxed PDB file 
using pymol or a text editor.  See the file 7s9d_trim_forCM.pdb for this input. 

Finally, we need to set up RosettaCM for running.  Like the relax of section 1C, RosettaCM is controlled 
through an XML script using RosettaScripts. The XML is as follows 
(2_model_rebuilding/B_rosettaCM_monomer.xml): 

<ROSETTASCRIPTS> 

    <TASKOPERATIONS> 

    </TASKOPERATIONS> 

    <SCOREFXNS> 

        <ScoreFunction name="stage1" weights="score3"> 

            <Reweight scoretype="atom_pair_constraint" weight="0.1"/> 

            <Reweight scoretype="elec_dens_fast" weight="10"/> 

        </ScoreFunction> 

        <ScoreFunction name="stage2" weights="score4_smooth_cart"> 

            <Reweight scoretype="atom_pair_constraint" weight="0.1"/> 

            <Reweight scoretype="elec_dens_fast" weight="10"/> 

        </ScoreFunction> 

        <ScoreFunction name="fullatom" weights="beta_cart"> 

            <Reweight scoretype="atom_pair_constraint" weight="0.1"/> 



            <Reweight scoretype="elec_dens_fast" weight="35"/> 

        </ScoreFunction> 

    </SCOREFXNS> 

    <FILTERS> 

    </FILTERS> 

    <MOVERS> 

        <Hybridize name="hybridize" stage1_scorefxn="stage1" stage2_scorefxn="stage2" 

fa_scorefxn="fullatom"  batch="1" stage1_increase_cycles="1.0" stage2_increase_cycles="1.0"> 

            <Template pdb="7s9d_trim_forCM.pdb" weight="1.0" cst_file="AUTO"/> 

        </Hybridize> 

    </MOVERS> 

    <PROTOCOLS> 

        <Add mover="hybridize"/> 

    </PROTOCOLS> 

</ROSETTASCRIPTS> 

Given this XML, RosettaCM is then run with the following command line (B_rosettaCM_monomer.sh): 

$ROSETTA3/source/bin/rosetta_scripts.linuxgccrelease \ 

 -database $ROSETTA3/database/ \ 

 -in:file:fasta 7s9d_trim.fasta \ 

 -parser:protocol B_rosettaCM_monomer.xml \ 

 -nstruct 5 \ 

 -relax:jump_move true \ 

 -relax:dualspace \ 

 -out::suffix _asymm_$1 \ 

 -edensity::mapfile emd_24993_trim.mrc \ 

 -edensity::mapreso 3.0 \ 

 -edensity::cryoem_scatterers \ 

 -beta \ 

 -default_max_cycles 200 

The input command is similar to those seen before, but with a few key differences. First, the input to Rosetta 
is specified with -in:file:fasta rather than -in:file:s.  Also note that the input argument –nstruct 5 

is given, telling Rosetta to generate 50 models for each process.  Generally, 10s to hundreds of models are 
necessary to sufficiently sample conformational space; more and longer regions to rebuild require more 
models. 

  



3) Symmetric rebuilding and refinement with RosettaCM 

In this segment, we introduce a few more advanced uses of RosettaCM.  First, we demonstrate the use of 
sequence alignment tools (rather than AlphaFold) for generating the initial sequence alignment file.  
Secondly, we show how RosettaCM may be used for symmetric rebuilding and refinement. 

Example 3A: Preparing templates for use in RosettaCM  

In this section, we are walking through the process of generating homologous structures from templates for 
use in RosettaCM.  The process involves several setup steps before running RosettaCM: 

1. Identifying templates and homologues from hhpred 
2. Run partial_threading to map the sequence to the target 
3. Align the templates to density (as in section 2) 

Identifying alignments with hhpred 

We first need to identify homologous sequences.  To do this, we use the webserver hhpred 
(https://toolkit.tuebingen.mpg.de/).  We enter our sequence (seg.fasta) into the web form and click submit.  
We get results: 

 

In this case, there are many homologous sequences.  We need to convert this alignment to a format Rosetta 
can understand.  I have included a script (scripts/ prepare_hybridize_from_hhsearch.pl) that automates this 
although it may be performed manually with a text editor as well. 

Download the alignment by clicking “Raw Output” and then “Download” (or see the tutorial file seq.hhr). 

Most of these hits are very high sequence identity, making the modelling problem trivial.  We are going to 
focus on modelling starting from two distant structures of bacterioferritins: 

… 

60 3UOI_V Bacterioferritin (E.C.1  99.7   9E-18 1.9E-22  114.8  19.5  156    3-168     1-156 

… 

62 3GVY_C Bacterioferritin; bacte  99.7 3.6E-17 7.5E-22  112.0  19.3  154    6-169     2-155  

… 

Using a text editor, edit the file seq.hhr, removing all but these two alignments (or see the file seq_edit.hhr). 

Next, convert these alignments to Rosetta format using the given script (A_convert_hhr_file.sh).  In addition to 
converting the alignment file, it will also download the template files necessary for the next step.  Run this 
script without input arguments, and an output, alignment.filt, is produced: 

https://toolkit.tuebingen.mpg.de/


## 1XXX_ 3uoiV_201 

# hhsearch 

scores_from_program: 0 1.00 

2 

IRQNYSTEVEAAVNRLVNLYLRASYTYLSLGFYFDRDDVALEGVCHFFRELAEEKREGAERLLKMQNQRGGRALFQDLQKPSQDEWGTTLDAMK

AAIVLEKSLNQALLDLHALGSAQADPHLCDFLESHFLDEEVKLIKKMGDHLTNIQRLVGSQAGLGEYLFERL 

0 --MQGDPDVLRLLNEQLTSELTAINQYFLHSKMQDN--WGFTELAAHTRAESFDEMRHAEEITDRILLLDGLPNYQRIGSLRI--

GQTLREQFEADLAIEYDVLNRLKPGIVMCREKQDTTSAVLLE-KIVADEEEHIDYLETQLELMDK-----LGEELYSAQCV 

-- 

## 1XXX_ 3gvyC_202 

# hhsearch 

scores_from_program: 0 1.00 

5 

NYSTEVEAAVNRLVNLYLRASYTYLSLGFYFDRDDVALEGVCHFFRELAEEKREGAERLLKMQNQRGGRALFQDLQKPSQDEWGTTLDAMKAAI

VLEKSLNQALLDLHALGSAQADPHLCDFLESHFLDEEVKLIKKMGDHLTNIQRLVGSQAGLGEYLFERLT 

0 QGDAKVIEYLNAALRSELTAVSQYWLHYRLQED--WGFGSIAHKSRKESIEEMHHADKLIQRIIFLGGHPNLQRLNPLRI--

GQTLRETLDADLAAEHDARTLYIEARDHCEKVRDYPSKMLFE-ELIADEEGHIDYLETQIDLMGS-----IGEQNYGMLNAK  

--  

In this format, the first line is '##' followed by a code for the target and one for the template. The second line 
identifies the source of the alignment; the third just keep as it is. The fourth line is the target sequence and 
the fifth is the template; the number is an 'offset', identifying where the sequence starts. However, the 
number doesn't use the PDB resid but just counts residues starting at 0. The sixth line is '--'. Multiple 
alignments may be concatenated in a single file, with the template code identifying the template 
corresponding to each alignment.  

Example 3B: Run partial threading and dock models into density 

RosettaCM takes as inputs partially threaded models, that is models where aligned positions have their 
residue identities remapped, and unaligned residues are not present. To generate these models from an 
alignment file and template, we can run the Rosetta command (3_model_rebuilding/B_partialthread.sh): 

$ ROSETTA3/source/bin/partial_thread.macosclangrelease \ 
 -database ~/Rosetta/main/database/ \ 

 -in::file::fasta seq.fasta \ 

 -in::file::alignment alignments.filt \ 

 -in::file::template_pdb 3uoiV.pdb 3gvyC.pdb pdb 

This will output a two partially threaded models – 3uoiV_201.pdb and 3gvyC_202.pdb – that will be used as 
input for RosettaCM. 

The final step of the method is to align the partially threaded models into the density map.  This can be done 
most easily using Chimera’s “fit into map” tool.  It may be easiest to align one partial thread into the density 
and then align the other model to that.  Aligned versions of the templates are included as 3uoiV_201_aln.pdb 
and 3gvyC_202_aln.pdb. 

Example 3C: Running RosettaCM as a monomer. 

For our first step, we will be modelling the monomer structure using RosettaCM.  While the assembly is 
symmetric, and we want to model in the full assembly, this serves as a sanity-check to make sure our system 
is set up correctly.   

Like the methods introduced in Scenario 1, RosettaCM is controlled through an XML script using 
RosettaScripts. The XML is as follows (2_model_rebuilding/C_rosettaCM_singletarget.xml): 

<ROSETTASCRIPTS> 



    <TASKOPERATIONS> 

    </TASKOPERATIONS> 

    <SCOREFXNS> 

        <ScoreFunction name="stage1" weights="score3" symmetric="1"> 

            <Reweight scoretype="atom_pair_constraint" weight="0.1"/> 

            <Reweight scoretype="elec_dens_fast" weight="10"/> 

        </ScoreFunction> 

        <ScoreFunction name="stage2" weights="score4_smooth_cart" symmetric="1"> 

            <Reweight scoretype="atom_pair_constraint" weight="0.1"/> 

            <Reweight scoretype="elec_dens_fast" weight="10"/> 

        </ScoreFunction> 

        <ScoreFunction name="fullatom" weights="beta_cart" symmetric="1"> 

            <Reweight scoretype="atom_pair_constraint" weight="0.1"/> 

            <Reweight scoretype="elec_dens_fast" weight="35"/> 

        </ScoreFunction> 

    </SCOREFXNS> 

    <FILTERS> 

    </FILTERS> 

    <MOVERS> 

        <Hybridize name="hybridize" stage1_scorefxn="stage1" stage2_scorefxn="stage2"  

                   fa_scorefxn="fullatom" batch="1"> 

            <Template pdb="3uoiV_201_aln.pdb" weight="1.0" cst_file="AUTO"/> 

            <Template pdb="3gvyC_202_aln.pdb" weight="1.0" cst_file="AUTO"/>             

        </Hybridize> 

    </MOVERS> 

    <PROTOCOLS> 

        <Add mover="hybridize"/> 

    </PROTOCOLS> 

</ROSETTASCRIPTS> 

The main work is done through a single mover, Hybridize which handles all stages of model-building. Input 
structures are specified via Template lines (in this case there is only one). For each template line, we specify 
the pdb input, as well as a couple of other parameters: a weight (the relative frequency we sample each 
template with); a constraint file (setting this to "auto" sets up automatic constraints to the template, while 
setting this to "none" turns off all constraints, user-defined constraints are described later). 

A few notes about using multiple models with hybridize: 

• With density, we need to ensure that all input models are aligned to the density. This can be done 
using Chimera’s alignment tools.  It may be easier to align a single model to the density and then 
align all other models to this model. 

• In each trajectory, a starting model is chosen at random; the constraints and symmetry from this 
selected model are chosen at the start of each run. If we wish to use a portion of a model, but do 
not want to use its symmetry or constraints, we can assign it a weight of 0: backbone 
conformations from this model will be used in conformational sampling, but the symmetry and 
constraints will never be used.  

• Similarly, gaps in the selected starting model are rebuilt before recombination occurs. If one of the 
templates has poor coverage, but provides valuable structural features, it should be used, but 
with weight 0.  

Given this XML, RosettaCM is then run with the following command line (C_rosettaCM_singletarget.sh): 

$ROSETTA3/source/bin/rosetta_scripts.macosclangrelease \ 

 -database $ROSETTA3/database/ \ 

 -in:file:fasta t20s.fasta \ 

 -parser:protocol C_rosettaCM_singletarget.xml \ 

 -nstruct 5 \ 

 -relax:jump_move true \ 

 -relax:dualspace \ 

 -out::suffix _singletgt \ 



 -edensity::mapfile t20S_41A_half1.mrc \ 

 -edensity::mapreso 5.0 \ 

 -edensity::cryoem_scatterers \ 

 -beta \ 

 -default_max_cycles 200 

The input command is similar to those seen before, but with a few key differences. First, the input to Rosetta 
is specified with -in:file:fasta rather than -in:file:s.  Also note that the input argument –nstruct 5 

is given, telling Rosetta to generate 50 models for each process.  Generally, hundreds to thousands of models 
are necessary to sufficiently sample conformational space; more and longer regions to rebuild require more 
models. 

Job distribution 

It is generally useful to sample ~100 models from each starting point.  For this purpose, it may be useful to 
run multiple jobs in parallel.  To prevent output structures from clobbering one another, the flag –out::suffix 
may be useful, where each separate job is given a different suffix. 

For example, on a 16-core machine, we may specify -out::suffix _$1, then (using GNU parallel) run the 
following: 

parallel –j16 ./ C_rosettaCM_monomer.sh {} ::: {1..16} 

Finally, GNU parallel allows launching of jobs remotely if SSH keys have been set up for passwordless login.  To 

run: 

parallel –S 16/node1,16/node2,16/node3,16/node4 –-workdir . ./ C_rosettaCM_monomer.sh {} ::: 
{1..48} 

This will launch instead 48 jobs spread across four machines.  See the GNU parallel documentation 
(https://www.gnu.org/software/parallel/) for more information. 

Analyzing results and model selection 

While this is an active topic of research, generally – once a density weight has been chosen – to select the 
best models from among the full set, we want to select models optimizing both model geometry and fit-to-
density values.  Model geometry may be evaluated using Rosetta energies after subtracting density energies, 
which  may be done by inspecting the score*.sc files produced as output.  Density fit may be evaluated using 
the density energy in Rosetta as well as FSCs using the ReportFSC mover (not covered in this tutorial, see 
part 2 of the main tutorial) 

No matter the selection criteria, the top models (5-10) should be inspected for model convergence as 
well as visually inspected for density map agreement. 

Example 3D: Running RosettaCM with symmetry. 

Next, we need to set up symmetric modeling with RosettaCM. We use a script, make_symmdef_file.pl script in 
order to generate a symmetry definition file for use in Rosetta. A straightforward way to do so is to use 
Chimera to dock the necessary chains into density.  This script’s required inputs depend on the underlying 
symmetry: 

• For cyclic (C) and dihedral (D) symmetries, we only need a single "primary chain" and an adjacent 
chain in each point group; 

https://www.gnu.org/software/parallel/


• For helical symmetries, we need an adjacent chain in the layer (if there is one) and an adjacent chain 
up the helical axis 

• For other symmetries we need all chains adjacent to a single subunit. 

Since this case falls into the latter case, (for examples with C and D symmetry see the main tutorial), we need 
to create a PDB file that contains one chain plus all adjacent chains docked into density.  An example, 
3gvyC_symm_r.pdb, is included.  

In this case, manually docking 24 models would be much too tedious.  Instead, we can dock a single chain 
with chimera (we have already done this in the previous subsection) and generate the full symmetry with 
chimera: 

 sym #1 group O center 88.2,88.2,88.2 

Where does this 88.2 come from?  Well, the map was deposited with an “origin” 0,0,0, a voxel spacing of 
1.346A, and a grid of 132x132x132.  That means the center of the map is at index 65.5 (in X,Y,and Z), or at 
the position 65.5 x 1.346A = 88.2A (in X, Y, and Z). 

 

Either way, save the chimera files in a single output file and then relabel chains using the included script: 

scripts/relabel_chains.pl 3gvyC_symm.pdb 

To generate our Rosetta symmetry file from this input, we then simply must run the command 
(D_make_symmdef.sh): 

$ROSETTA3/source/src/apps/public/symmetry/make_symmdef_file.pl \ 

  -m pseudo -a A \ 

  -p 3gvyC_symm_r.pdb > ferritin.symm 

Since we have already created the input templates using the partial_thread application, we simply need to 
use the output of the partial threading together with the symmetry definition file.  

We then need to make two small modifications to our inputs: 

 ... 
        <Hybridize name="hybridize" stage1_scorefxn="stage1" stage2_scorefxn="stage2"  

                   fa_scorefxn="fullatom" batch="1”> 

            <Template pdb="3uoiV_201_aln.pdb" weight="1.0"  

                      cst_file="AUTO" symmdef="ferritin.symm"/> 

            <Template pdb="3gvyC_202_aln.pdb" weight="1.0"  

                      cst_file="AUTO" symmdef="ferritin.symm"/> 

        </Hybridize> 

... 

  



4) Advanced modelling: using partial_thread and relax to determine 
sequence threading 

In this section, we will use the same tools introduced in the previous sections to tackle a more challenging 
problem, determining the alignment of sequence to a backbone model.  This is based on Egelman et al., 
Structure, 2015. 

 

For this example we have a map (left) that clearly identifies helices in the density.  However, the threading of 
sequence is ambiguous: it is not known which is the N- and which is the C-terminus, and there are only 24 
resolved residues, compared to 29 amino acids in the sequence. 

However, since the helix orientations are straightforward, we can brute-force this problem.  We create three 
models: 

1. polyA_symm.pdb, in which two helices are docked, from which we can get the symmetry definition file 
2. polyA_ctermin.pdb, a monomer in one orientation 
3. polyA_ntermin.pdb, a monomer in the other orientation 

 

Example 4A: Build the symmetry definition file. 

As in section two, we start by building the symmetry definition file: 

$ROSETTA3/source/src/apps/public/symmetry/make_symmdef_file.pl \ 

   -m HELIX -a J -b K \ 

   -p polyA_symm.pdb -r 1000 -t 8 > h.symm 

Since we have helical symmetry, some of the options are a bit different.  “-m HELIX” specifies we run in 
helical mode, and the arguments “-a J -b K” indicate the “primary chain” (J) and the chain up the helical axis 
(K).  Finally, the argument “-t 8” indicates how many subunits to generate in each direction. 

When running in this mode, note: 

• Rosetta outputs a file, polyA_symm_model_JK.pdb, of the symmetry it identifies.  You should ensure 
that this makes sense given the map. 

• Rosetta outputs the helical parameters inferred from the model, including the helical rise and the 
subunits per turn.  This should match what was determined experimentally. 
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Running this command produces a symmetry definition file, “h.symm”, to be used as input in subsequent 
steps. 

Finally, we need to make a small edit to this file for density refinement.  Change: 

set_dof JUMP_0_0_0 z(2.20334489451302) angle_z 

set_dof JUMP_0_0_0_to_com x(17.509223919948) 

set_dof JUMP_0_0_0_to_subunit angle_x angle_y angle_z 

To: 

set_dof JUMP_0_0_0_to_com x y z 

set_dof JUMP_0_0_0_to_subunit angle_x angle_y angle_z 

That is, delete the first line (which allows refinement of the symmetry operators) 

Example 4B: Generate the partial threads. 

In this case, we use the partial_thread tool introduced last section to generate all the of different sequence 
threadings we are going to model.  The included script, scripts/generate_threadings.pl will be used to 
generate the input alignment file, though it may also be done manually using a text editor. 

The resulting alignment file (alignment.filt): 

## 1XXX ctermin_0 

# 

scores_from_program: 0.0 

0 QARILEADAEILRAYARILEAHAEILRAQ 

0 AAAAAAAAAAAAAAAAAAAAAAAAA---- 

-- 

## 1XXX ntermin_0 

# 

scores_from_program: 0.0 

0 QARILEADAEILRAYARILEAHAEILRAQ 

0 AAAAAAAAAAAAAAAAAAAAAAAAA---- 

-- 

… 

## 1XXX ntermin_1 

# 

scores_from_program: 0.0 

0 QARILEADAEILRAYARILEAHAEILRAQ 

0 -AAAAAAAAAAAAAAAAAAAAAAAAA--- 

-- 

… 

## 1XXX ntermin_2 

# 

scores_from_program: 0.0 

0 QARILEADAEILRAYARILEAHAEILRAQ 

0 --AAAAAAAAAAAAAAAAAAAAAAAAA-- 

-- 

… 

The alignment file simply slides the sequence along the input poly-alanine model. 

We then run the partial_thread application on this model, producing a total of 10 input models: 

 



$ROSETTA3/source/bin/partial_thread.macosclangrelease \ 

 -database ~/Rosetta/main/database/ \ 

 -in::file::fasta seq.fasta \ 

 -in::file::alignment alignments.filt \ 

  

Example 4C: Refine all the models. 

In the final step, we refine each of the models against the density map, using the same relax script that was 
used in part one of the tutorial (with some modifications for symmetry). 

The command line (C_relax_density.sh): 

$ROSETTA3/source/bin/rosetta_scripts.macosclangrelease \ 

 -database ~/Rosetta/main/database/ \ 

 -render_density \ 

 -in::file::s ntermin_*.pdb ctermin_*.pdb \ 

 -parser::protocol C_relax_density.xml \ 

 -ignore_unrecognized_res \ 

 -edensity::mapreso 3.8 \ 

 -edensity::cryoem_scatterers \ 

 -crystal_refine \ 

 -beta \ 

 -out::suffix _relax \ 

 -default_max_cycles 200 

And the XML file: 

<ROSETTASCRIPTS> 

   <SCOREFXNS> 

      <ScoreFunction name="dens" weights="beta_cart"> 

         <Reweight scoretype="elec_dens_fast" weight="35.0"/> 

      </ScoreFunction> 

   </SCOREFXNS> 

 

   <MOVERS> 

       <SetupForSymmetry name="setupdens" definition="h_edit.symm"/> 

       <LoadDensityMap name="loaddens" mapfile="emd_6123.map"/> 

       <FastRelax name="relaxtors" scorefxn="dens" repeats="1" cartesian="0"/> 

       <FastRelax name="relaxcart" scorefxn="dens" repeats="1" cartesian="1"/> 

   </MOVERS> 

 

   <PROTOCOLS> 

      <Add mover="setupdens"/> 

      <Add mover="loaddens"/> 

      <Add mover="relaxtors"/> 

      <Add mover="relaxcart"/> 

   </PROTOCOLS> 

   <OUTPUT scorefxn="dens"/> 

</ROSETTASCRIPTS>  

Note the way that symmetry information is loaded, with the bolded mover above.  Additionally, looking at 
the protocol shows that we perform one cycle of torsion refinement, followed by one cycle of cartesian 
refinement. 

Finally, we can analyze results by looking at the output *.sc score files.  For each threading, they show a score 
breakdown of each of the threaded models.  We can evaluate these results using the command: 



grep SCORE: *.sc | grep -v desc| sort -nk 2 

This command sorts the outputs by total energy.  What does this show?  What if we sort by density energy 
instead? 

  



5) Building large segments using RosettaES 

RosettaCM (section 2) is a powerful tool for rebuilding small segments guided by density.  However, it poorly 
deals with model completion of large segments of protein.  These may arise in several cases: 

1. Homology models (particularly distant ones) may have large insertions, or even entire domains that 
are lacking. 

2. The models produced from denovo_density may be missing significant fractions of the backbone 
3. It may be difficult to manually trace long stretches of low local resolution into density 

 
To address these issues, we have developed a tool called Rosetta Enumerative Sampling, which uses a 
ensemble search algorithm to determine a large number of conformations that are both consistent with the 
density and the Rosetta energy function. This tool can be used on a partial models from the denovo_density 
application, an incomplete homology model, or any other starting structure.  
 
RosettaES model building consists of three steps.  Initially, a preparation step builds the fragments that are 
to be used in conformational sampling.  Then a rebuilding step will identify each unassigned segment in the 
initial model and build an ensemble of possible solutions for each.  Finally, a combination step finds all the 
consistent subsets of interactions, and refines all such models (if there is only one segment, the script simply 
refines all structures in the ensemble).  In this combination step, if assembly fails to find a consistent set of 
solutions, an additional round of sampling will be carried out, forcing different solutions than the previous 
model.  

Note that a full tutorial of RosettaES is given in section five main tutorial; in this “mini tutorial,” we 
will only be using this tool to rebuild a single missing segment from a model. 

Compared to the other sections, the workflow is a bit more complicated when extended to multiple compute 
cores.  To handle job distribution we have included a python script RunRosettaES.py that manages this job 
distribution among available CPUs on a single machine. (The script is included as part of Rosetta, in 
/main/source/scripts/python/public/EnumerativeSampling, as well as in this tutorial).   For dealing with 
job schedulers or clusters incompatible with this script, section 5E gives an overview of job distribution with 
RosettaES. 

Step 5A.  Fragment Picking 

The first step involves selection of "fragment files," which predict backbone conformation from local 
sequence.  We have a custom algorithm for fragment picking in RosettaES.  These fragments will need to be 
generated before running RosettaES; the following command will generate these files (A_PickFragments.sh): 

 
$ROSETTA3/source/bin/grower_prep.default.macosclangrelease \ 

     -pdb input.pdb \  

     -in::file::fasta t20sA.fasta \ 

     -fragsizes 3 9 \ 

     -fragamounts 100 20 

 

This will generate 100 3 residue fragments and 20 9 residue fragments, named 100.3mers and 20.9mers, 
that are then used in subsequent steps of the rebuilding process. 

Step 5B. Generate conformations for the missing segment 

 
The grower considers assigning positions for each unassigned segment of density (that is, each stretch of 
amino acids present in the fasta file but missing from the input structure).  Each segment is referred to using 



a segment id, in which each segment is numbered from N- to C-terminus (with multiple chains given in order 
in the input fasta file).  The script is run in two parts: first, the script is run once for each segment to rebuild; 
then, the script is run in “assembly mode” given the outputs produced by rebuilding each segment 
individually.  Thus, for rebuilding the two segments in the test case, the script is called three times: once to 
build each segment, and once to assemble the results. 
 
In the first step, we perform conformational sampling for a difficult segment in aopferritin, generating an 
ensemble of putative solutions. This can be done calling the command (B_SampleSegment.sh): 

 

python RunRosettaES.py \ 

     -rs runES.sh \ 

     -x RosettaES.xml \ 

     -f seq.fasta \ 

     -p difficult_loop.pdb \ 

     -d ../2_rosettaCM_apoferritin/emd_2788.map \ 

     -l 1 \ 

     -c 16 \ 

     -n loop_1 

 

The arguments to this program are as follows: 
• -rs runES.sh - the script that is launched on each core and contains Rosetta flags and inputs 
• -x RosettaES.xml - the XML script describing parameters for conformational sampling (see below) 
• -f t20sA.fasta - the input fasta file (with chainbreaks specified by ‘/’) 
• -p input.pdb - the input pdb file.  This needs to match the input sequence, and all residues present in 

the fasta but absent in the PDB will get built. 
• -d T20S_48A_alpha_chainA.mrc - the input density map 

• -l 1 - the segment id of the segment to rebuild.  This command should be called once for each segment 
to rebuild, varying this argument from 1 to N 

• -c 16 - the number of compute cores to use 
• -n loop_1 - the output tag for this job (results will be placed in a folder with this name).  Tags should 

be unique for each segment. 
 

The input XML file exposes key parameters for conformational sampling.  In the tutorial, this file, 
RosettaES.xml, contains a block: 

 
... 

<FragmentExtension name="ext" fasta="full.fasta" scorefxn="dens"  

    censcorefxn="cendens" beamwidth="32" dumpbeam="0" samplesheets="1" read_from_file="0" 

    continuous_weight="0.3" looporder="1" comparatorrounds=”100” windowdensweight=”30” 

    readbeams="%%readbeams%%" storedbeams="%%beams%%" 

    steps="%%steps%%" pcount="%%pcount%%" filterprevious="%%filterprevious%%" 

    filterbeams="%%filterbeams%%"> 

        <Fragments fragfile="100.3mers"/> 

        <Fragments fragfile="20.9mers"/> 

</FragmentExtension> 

... 

 
The sampling behavior of RosettaES is controlled by the block above.  Most of these paraeters should be left 
as-is.  However, the ONE main exception is the parameter beamwidth.  This controls the controls the 
maximum number of solutions to be held at each step. Setting the value higher will increase run time but 
may improve accuracy.  It is recommended to start with this value equal to the number of compute cores, 
and increase as needed. 
 
After running the script with this XML, there are two important intermediate output files, placed in the folder 
loop_1 (the argument to -n): 



• .lps (for loop partial solution) files, which are then combined in step 5C, in cases where there are 
multiple segments to model 

• loop_1/beam_X.txt files, where X corresponds to the number of residues added to the segment.  These 
are generated as the search adds residues, and are used to pass information from one step to the next 
(as additional residues are added in a single segment). 

 
Finally, while in most cases, users will want to want for a run to finish to inspect the beam, if the sampling 
results want to be inspected as the code is running, the final output ensemble can be saved as PDB files with 
the command (B2_InspectIntermediates.sh): 
 

python RunRosettaES.py \ 

     -rs runES.sh \ 

     -x RosettaES.xml \ 

     -f seq.fasta \ 

     -p difficult_loop.pdb \ 

     -d ../2_rosettaCM_apoferritin/emd_2788.map \ 

     -l 1 \ 

     -db loop_1/beam_17.txt 

 
Note, the number of the beam file (17) corresponds to the total number of residues built.  Intermediate 
results (after growing N residues) can be inspected by changing this to a lower number (e.g., beam_14.txt 
shows solutions after 14 residues have been rebuilt). 

 


