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This	tutorial	is	intended	to	introduce	users	to	several	different	ways	Rosetta	may	be	used	to	solve	various	
structure	determination	tasks	given	3-5Å	cryoEM	density	data.	It	is	not	intended	to	replace	the	user’s	guide,	
available	at	https://www.rosettacommons.org/manuals/latest/main/.	

The	tutorial	is	split	up	into	four	parts.	

1. An	introduction	to	Rosetta	in	general,	showing	how	one	may	score	structures	and	minimize	
structures	guided	by	experimental	density	data	

2. Our	model	rebuilding	protocol	(RosettaCM),	where	one	wishes	to	recombine	homologous	
structures,	and	rebuild	small	missing	regions	(<12	residues)	

3. An	advanced	application	of	RosettaCM	to	determine	the	sequence	threading	of	a	model	
4. Our	model	completion	tools,	where	one	wishes	to	complete	a	partial	model	built	by	the	de	novo	

tool	or	wishes	to	rebuild	large	missing	regions	(12	or	more	residues)		

In	each	scenario,	we	present	the	most	basic	usage	of	Rosetta	for	the	task,	and	then	describe	additional	
options	that	may	be	useful.	Command-line	flags	and	input	scripts	are	provided	in	shaded	boxes,	with	
boldfaced	text	indicating	parameters	of	note.	These	parameters	are	described	in	the	text	following	the	
command	line.	

Note:	in	all	sections,	you	will	need	to	update	the	command	scripts	to	point	at	your	installation	of	Rosetta	and	
the	Rosetta	database.	

  



1)	Rosetta	and	electron	density	basics	

This	section	provides	a	brief	introduction	to	using	Rosetta,	and	an	overview	of	using	density	data	within	
Rosetta.	

Overview	of	Rosetta	

The	Rosetta	documentation	is	a	good	source	of	additional	information	on	several	of	the	tools	described	in	
this	document.		This	is	available	at	https://www.rosettacommons.org/docs/latest/Home.	

The	tools	described	in	this	document	use	the	RosettaScripts	framework,	described	at	
https://www.rosettacommons.org/docs/latest/scripting_documentation/RosettaScripts/RosettaScripts.		
Briefly,	this	allows	protocols	to	be	defined	as	a	series	of	atomic	"Movers"	which	manipulate	a	structure.		The	
format	is	as	follows:	

<ROSETTASCRIPTS> 
    <SCOREFXNS> 
    </SCOREFXNS> 
    <MOVERS> 
    </MOVERS> 
    <PROTOCOLS> 
    </PROTOCOLS> 
</ROSETTASCRIPTS> 

Each	block	contains	information	in	running	the	protocol:	<SCOREFXNS>	and	<MOVERS>	are	used	to	declare	
score	functions	and	movers;	while	<PROTOCOLS>	is	where	the	steps	of	the	protocol	are	enumerated.	

Rosetta	tools	are	run	via	the	command	line,	with	flags	controlling	general	program	behavior.		Many	of	the	
flags	specifically	for	density	refinement	are	outlined	in	the	sections	following.	

Density	scoring	in	Rosetta	

Agreement	to	density	is	implemented	in	Rosetta	as	an	additional	energy	term.	Rosetta	assesses	agreement	to	
density	by	computing	the	density	that	one	would	expect	to	see,	given	a	model,	and	measuring	the	agreement	
of	the	expected	and	experimental	density.	

elec_dens_fast	
This	scoreterm	is	recommended	for	nearly	all	uses	of	density	refinement	in	Rosetta.	It	uses	interpolation	on	
a	precomputed	grid	of	per-atom	scores	to	approximate	the	density	correlations.	This	version	is	significantly	
faster	(~10x)	then	the	exact	scoring	term	below,	and	is	very	highly	correlated.	

These	energy	terms	may	be	provided	to	Rosetta	in	two	ways.	First,	it	may	be	provided	in	a	RosettaScript	XML	
file	as	input:	

<Reweight scoretype="elec_dens_fast" weight="35.0"/> 

For	non-Rosetta	script	applications,	the	following	flag	controls	the	density	scoring	function	weight:	

-edensity:fast_dens_wt 35.0 
 
The	recommended	weights	for	each	of	these	terms	vary	depending	on	the	density	map	resolution,	starting	
model	quality,	and	protocol.	Section	2	describes	how	the	weights	may	be	tuned.	However,	the	following	are	



good	rules	of	thumb	for	setting	the	density	weight	within	Rosetta:	
	
At	resolutions	better	than	2.5Å:	an	elec_dens_fast		weight	of	65.0	is	generally	reasonable.	
At	resolutions	between	2.5Å	and	3.5Å:	an	elec_dens_fast		weight	of	50.0	is	generally	reasonable.	
At	resolutions	worse	than	3.5Å:	an	elec_dens_fast		weight	of	35.0	is	generally	reasonable.	
In	centroid	mode:	an	elec_dens_fast		weight	of	10.0	is	generally	reasonable	

At	very	low	resolutions	(worse	than	6Å),	the	weight	may	need	to	be	further	reduced.		In	general,	if	the	
Rosetta	energies	are	positive	(or	significant	outliers	are	flagged	by	Molprobity	or	other	validation	programs)	
then	the	weights	need	to	be	reduced.	

In	addition	to	the	score	terms	above,	there	are	also	several	flags	that	control	map	scoring	behavior.	Maps	are	
read	into	Rosetta	using	either	the	flag:	

-edensity::mapfile mapfile.mrc 

Or	from	XML:	

<LoadDensityMap name="loaddens" mapfile="mapfile.mrc"/> 

Maps	may	be	in	either	CCP4	or	MRC	format	(the	map	type	is	automatically	detected	from	the	header	info).	

The	resolution	of	the	map,	used	when	comparing	calculated	to	experimental	density,	is	specified	with	the	
flag:	

-edensity::mapreso 5.0 

Maps	may	also	be	resampled	to	reduce	memory	usage	and	runtime.	This	is	done	through	the	flag:	

-edensity::grid_spacing 2.0 

Notice	that	this	flag	should	never	be	more	than	half	the	given	resolution,	and	if	using	the	fast	scoring	function	
never	more	than	a	third	of	the	resolution.	For	both	parameters,	the	default	is	generally	fine	(don’t	resample,	
and	assume	the	resolution	is	~3x	the	grid	sampling).	

Finally,	one	may	choose	to	calculate	density	using	either	cryoEM	or	X-ray	scattering	factors.	At	low	
resolution,	this	probably	makes	little	difference,	but	might	at	resolutions	better	than	about	3.5Å.	The	default	
is	to	use	X-ray	scattering	factors;	to	turn	on	cryoEM	scattering	factors	instead,	use	the	following	flag:	

-edensity::cryoem_scatterers 

 

Example	1A:	Scoring	a	PDB	in	Rosetta	with	density	

Most	simply,	one	may	wish	to	simply	score	a	model	using	Rosetta’s	energy	function	including	the	density	
terms.	This	is	easily	accomplished	using	the	score_jd2	application.	A	sample	command	line	to	rescore	the	
structure	in	density	is	given	in	1_rosetta_basics/A_run_rescore.sh.	It	illustrates	the	use	of	various	density	flags	
to	provide	Rosetta	with	experimental	density	information.	

	



$ROSETTA3/source/bin/score_jd2.macosclangrelease \  
  -database $ROSETTA3/database/ \ 
  -in::file::s 1isrA.pdb 1issA.pdb \ 
  -ignore_unrecognized_res \ 
  -edensity::mapfile 1issA_6A.mrc \ 
  -edensity::mapreso 5.0 \ 
  -edensity::grid_spacing 2.0 \ 
  -edensity::fastdens_wt 35.0 \ 
  -edensity::cryoem_scatterers \ 
  -crystal_refine 

Some	flags	of	note	are	boldfaced	above.	First,	the	input	structure	is	provided	with	the	command		
-in::file::s.	This	is	common	to	many	Rosetta	applications,	and	more	than	one	input	may	be	provided;	
each	will	be	processed	independently.	The	flags	beginning	with	–edensity::	tell	Rosetta	about	the	density	
map	into	which	it	is	being	fit.	The	name	of	the	mapfile	(in	CCP4	or	MRC	format),	the	resolution	of	the	map,	
the	grid	sampling	of	the	map	(which	should	never	be	more	than	half	the	resolution),	and	the	weights	on	the	
various	fit-to-density	scoring	functions.	These	same	flags	are	reused	for	many	different	protocols	in	addition	
to	relax.	Finally,	the	flag	-crystal_refine	the	flag	turns	on	several	density-related	options	related	to	PDB	
reading	and	writing,	and	should	always	be	used	when	refining	against	density	data.	

Note:	The	input	PDB	must	be	aligned	to	the	density	map	using	some	external	tool.	Rosetta	will	optionally	
rigid-body	minimize	the	structure	into	density	before	rescoring	by	providing	the	flag	–edensity::realign	min	
to	the	application.	If	this	is	done,	the	flag	–out::pdb	will	write	the	minimized	PDB	file	to	a	PDB	file.	

This	command	line	outputs	a	score	file,	score.sc,	that	gives,	for	each	structure	specified	with	-in::file::s,		the	
score	with	respect	to	each	term	in	Rosetta’s	energy	function.	The	meaning	of	individual	scoreterms	as	well	as	
an	overview	of	the	Rosetta	energy	function	can	be	found	in	the	paper:	

Alford	RF,	Leaver-Fay	A,	Jeliazkov	JR,	O'Meara	MJ,	DiMaio	FP,	Park	H,	Shapovalov	MV,	Renfrew	PD,	Mulligan	
VK,	Kappel	K,	Labonte	JW,	Pacella	MS,	Bonneau	R,	Bradley	P,	Dunbrack	RL	Jr,	Das	R,	Baker	D,	Kuhlman	B,	
Kortemme	T,	Gray	JJ.			The	Rosetta	All-Atom	Energy	Function	for	Macromolecular	Modeling	and	Design.		J	
Chem	Theory	Comput.	2017	Jun	13;13(6):3031-3048.	

	

Examples	1B	and	1C:	Simple	refinement	into	density	using	RosettaScripts	and	
relax	

In	this	section	we	introduce	RosettaScripts	by	way	of	a	very	simple	refinement-into-density	example.	
RosettaScripts	provides	an	XML	scripting	interface	to	Rosetta	that	allows	fine-grained	control	of	
protocols.	The	syntax	is	fully	described	in	the	Rosetta	documentation;	however,	a	very	brief	introduction	is	
provided	here.	The	basic	syntax	for	the	XML	is	illustrated	here	(1_rosetta_basics/B_relax_density.xml)	

<ROSETTASCRIPTS> 
   <SCOREFXNS> 
      <ScoreFunction name="dens" weights="beta_cart"> 
         <Reweight scoretype="elec_dens_fast" weight="35.0"/> 
         <Set scale_sc_dens_byres="R:0.76,K:0.76,E:0.76,D:0.76,M:0.76, 
            C:0.81,Q:0.81,H:0.81,N:0.81,T:0.81,S:0.81,Y:0.88,W:0.88, 
            A:0.88,F:0.88,P:0.88,I:0.88,L:0.88,V:0.88"/> 
      </ScoreFunction> 
   </SCOREFXNS> 
   <MOVERS> 
       <SetupForDensityScoring name="setupdens"/> 
       <LoadDensityMap name="loaddens" mapfile="1issA_6A.mrc"/> 
       <FastRelax name="relaxcart" scorefxn="dens" repeats="2" cartesian="1"/> 
   </MOVERS> 



   <PROTOCOLS> 
      <Add mover="setupdens"/> 
      <Add mover="loaddens"/> 
      <Add mover="relaxcart"/> 
   </PROTOCOLS> 
   <OUTPUT scorefxn="dens"/> 
</ROSETTASCRIPTS> 

There	are	three	"blocks"	of	declarations	in	this	script.		In	the	first,	<SCOREFXNS>	…	</SCOREFXNS>,	the	
scorefunctions	to	be	used	throughout	the	protocol	are	declared;	the	second,	<MOVERS>	…	</MOVERS>,	
movers	–	or	atomic	operations	that	modify	a	structure	–	are	declared;	finally,	the	third,	<PROTOCOLS>	…	
</PROTOCOLS>,	a	full	protocol	is	declared	as	a	sequence	of	movers.	

In	this	particular	example,	we	declare	a	single	scorefunction,	dens,	which	uses	the	score	function	beta_cart	(a	
default	score	function,	don’t	need	to	worry	about	it),	and	turns	on	elec_dens_fast,	the	fit-to-density	score,	with	
a	weight	of	35.	We	then	declare	three	movers,	SetupForDensityScoring,	LoadDensityMap,	and	FastRelax,	
which	sets	up	the	loaded	structure	for	density	scoring,	loads	a	map	into	memory,	and	then	refines	the	
structure	using	the	FastRelax	protocol.	The	declared	scorefunction,	dens,	is	used	as	an	input	to	the	FastRelax	
mover.	

Finally,	note	the	additional	block:	

<Set scale_sc_dens_byres="R:0.76,K:0.76,E:0.76,D:0.76,M:0.76, 
            C:0.81,Q:0.81,H:0.81,N:0.81,T:0.81,S:0.81,Y:0.88,W:0.88, 
            A:0.88,F:0.88,P:0.88,I:0.88,L:0.88,V:0.88"/> 

This	adjusts	the	per-residue	sidechain	density	weights.		It	is	recommended	to	always	use	these	weights	when	
refining	against	cryoEM	density.	

To	run	this	script,	we	use	the	following	command	line	(1_rosetta_basics/B_relax_density.sh):	

$ROSETTA3/source/bin/rosetta_scripts.macosclangrelease \ 
  -database $ROSETTA3/database/ \ 
  -in::file::s 1isrA.pdb \ 
  -parser::protocol ex_B1_run_RS_relax_density.xml \ 
  -ignore_unrecognized_res \ 
  -edensity::mapreso 5.0 \ 
  -edensity::cryoem_scatterers \ 
  -crystal_refine \ 
  -out::suffix _relax \ 
  -beta 

Note:	We	do	not	have	to	specify	the	density	weight	or	the	map	file	on	the	command	line,	since	they	are	
handled	within	the	XML	file.	However,	other	density	options	must	be	specified	on	the	command	line.	When	
using	RosettaScripts,	the	density	weights	must	be	specified	in	the	XML,	the	input	map	may	be	
specified	either	way.	

Finally,	in	the	previous	XML	file,	the	tag	cartesian=1	appears,	which	refines	the	structure	in	Cartesian	space.	
Rosetta	also	allows	refinement	in	torsional	space,	which	may	be	better	for	capturing	domain	motion,	and	for	
further	reduction	in	model	parameters	against	low-resolution	data.	To	enable	torsional	refinement	
(1_rosetta_basics/C_relax_tors_density.xml),	we	make	three	small	changes	to	the	XML:	

<ROSETTASCRIPTS> 
   <SCOREFXNS> 
      <ScoreFunction name="dens" weights="beta"> 
         <Reweight scoretype="elec_dens_fast" weight="35.0"/> 
         <Set scale_sc_dens_byres="R:0.76,K:0.76,E:0.76,D:0.76,M:0.76, 



            C:0.81,Q:0.81,H:0.81,N:0.81,T:0.81,S:0.81,Y:0.88,W:0.88, 
            A:0.88,F:0.88,P:0.88,I:0.88,L:0.88,V:0.88"/> 
      </ScoreFunction> 
   </SCOREFXNS> 
   <MOVERS> 
       <SetupForDensityScoring name="setupdens"/> 
       <LoadDensityMap name="loaddens" mapfile="1issA_6A.mrc"/> 
       <FastRelax name="relaxcart" scorefxn="dens" repeats="5" cartesian="0"/> 
   </MOVERS> 
   <PROTOCOLS> 
      <Add mover="setupdens"/> 
      <Add mover="loaddens"/> 
      <Add mover="relaxcart"/> 
   </PROTOCOLS> 
   <OUTPUT scorefxn="dens"/> 
</ROSETTASCRIPTS> 

Cartesian	versus	torsional	refinement	

One	of	the	strengths	of	Rosetta	is	its	ability	to	perform	torsion-space	refinement,	which	can	be	incredibly	
valuable	in	capturing	things	like	domain	motion	of	proteins	which	are	simple	moves	in	torsion	space	but	can	
be	complex	in	cartesian	space.		The	optimal	type	of	refinement	for	a	particular	problem	depends	on	the	
system	itself,	the	map	resolution,	and	the	quality	of	the	starting	model.			A	few	general	tips:	

• Several	(2-4)	repeats	of	torsion-space	refinement	followed	by	1	repeat	of	Cartesian-space	refinement	
is	generally	a	good	strategy	

• For	very	large	(1000	residue+)	systems	or	very	poor	quality	input	models	(many	clashes)	cartesian	
refinement	alone	is	better	behaved. 	



2)	Model	rebuilding	with	RosettaCM	

In	this	scenario,	we	introduce	a	tool,	RosettaCM,	for	building	missing	portions	of	a	model	guided	by	density	
data.	While	primarily	geared	towards	comparative	modeling,	it	may	also	be	useful	for	building	portions	of	a	
protein	that	are	disordered	when	crystallized	or	difficult	regions	in	hand-built	models.	In	this	scenario,	we	
introduce	the	basic	rebuilding	protocol,	then	show	how	the	tool	may	also	be	used	to:	

• Combine	pieces	from	multiple	template	models	guided	by	density		
• Rebuild	with	user-defined	restraints		
• Iteratively	rebuild	models	in	difficult	cases	difficult	cases	 	

As	a	running	example,	we	use	horse	spleen	apoferritin	and	the	deposited	map	(EMD-2788).	

Example	2A:	Preparing	templates	for	use	in	RosettaCM		

In	many	cases,	much	of	the	setup	work	is	handled	by	a	script,	setup_RosettaCM.py	in	RosettaTools	(a	separate	
repository	available	from	rosettacommons.org).	This	script	takes	an	input	alignment	in	a	variety	of	formats,	
and	prepares	the	inputs	automatically.	It	is	executed	by	running	the	command:	 	

setup_RosettaCM.py \ 
-–fasta t20s.fasta \ 
--alignment tmpl.fasta \  
--alignment_format fasta \ 
--templates tmpl.pdb \ 
--rosetta_bin ~/Rosetta/main/source/bin \  
--verbose 

Inputs	include	the	full-length	fasta,	an	alignment	file	–	in	either	fasta,	ClustalW,	or	HHSearch	format	–	and	the	
corresponding	template	PDB	files.	This	script	will	prepare	all	the	necessary	inputs	in	order	to	run	
RosettaCM.		

Alternately,	the	setup	may	be	performed	manually.	In	this	case,	since	we	are	using	some	nonstandard	
features	(symmetry	and	density),	and	we	have	two	chains	in	the	asymmetric	unit	we	will	do	this;	alternately,	
the	inputs	from	the	previous	step	may	be	used	as	a	starting	point	and	subsequently	modified.	

Identifying	alignments	with	hhpred	

We	first	need	to	identify	homologous	sequences.		To	do	this,	we	use	the	webserver	hhpred	
(https://toolkit.tuebingen.mpg.de/).		We	enter	our	sequence	(seg.fasta)	into	the	web	form	and	click	submit.		
We	get	results:	

	



In	this	case,	there	are	many	homologous		

We	need	to	convert	this	alignment	to	a	format	Rosetta	can	understand.		I	have	included	a	script	(scripts/	
prepare_hybridize_from_hhsearch.pl)	that	automates	this	although	it	may	be	performed	manually	with	a	text	
editor	as	well.	

Download	the	alignment	by	clicking	“Raw	Output”	and	then	“Download”	(or	see	the	tutorial	file	seq.hhr).	

Most	of	these	hits	are	very	high	sequence	identity,	making	the	modelling	problem	trivial.		We	are	going	to	
focus	on	modelling	starting	from	two	distant	structures	of	bacterioferritins:	

… 
60 3UOI_V Bacterioferritin (E.C.1  99.7   9E-18 1.9E-22  114.8  19.5  156    3-168     1-156 
… 
62 3GVY_C Bacterioferritin; bacte  99.7 3.6E-17 7.5E-22  112.0  19.3  154    6-169     2-155  
… 

Using	a	text	editor,	edit	the	file	seq.hhr,	removing	all	but	these	two	alignments	(or	see	the	file	seq_edit.hhr).	

Next,	convert	these	alignments	to	Rosetta	format	using	the	given	script	(A_convert_hhr_file.sh).		In	addition	to	
converting	the	alignment	file,	it	will	also	download	the	template	files	necessary	for	the	next	step.		Run	this	
script	without	input	arguments,	and	an	output,	alignment.filt,	is	produced:	

## 1XXX_ 3uoiV_201 
# hhsearch 
scores_from_program: 0 1.00 
2 
IRQNYSTEVEAAVNRLVNLYLRASYTYLSLGFYFDRDDVALEGVCHFFRELAEEKREGAERLLKMQNQRGGRALFQDLQKPSQDEWGTTLDAMK
AAIVLEKSLNQALLDLHALGSAQADPHLCDFLESHFLDEEVKLIKKMGDHLTNIQRLVGSQAGLGEYLFERL 
0 --MQGDPDVLRLLNEQLTSELTAINQYFLHSKMQDN--WGFTELAAHTRAESFDEMRHAEEITDRILLLDGLPNYQRIGSLRI--
GQTLREQFEADLAIEYDVLNRLKPGIVMCREKQDTTSAVLLE-KIVADEEEHIDYLETQLELMDK-----LGEELYSAQCV 
-- 
## 1XXX_ 3gvyC_202 
# hhsearch 
scores_from_program: 0 1.00 
5 
NYSTEVEAAVNRLVNLYLRASYTYLSLGFYFDRDDVALEGVCHFFRELAEEKREGAERLLKMQNQRGGRALFQDLQKPSQDEWGTTLDAMKAAI
VLEKSLNQALLDLHALGSAQADPHLCDFLESHFLDEEVKLIKKMGDHLTNIQRLVGSQAGLGEYLFERLT 
0 QGDAKVIEYLNAALRSELTAVSQYWLHYRLQED--WGFGSIAHKSRKESIEEMHHADKLIQRIIFLGGHPNLQRLNPLRI--
GQTLRETLDADLAAEHDARTLYIEARDHCEKVRDYPSKMLFE-ELIADEEGHIDYLETQIDLMGS-----IGEQNYGMLNAK  
--  

In	this	format,	the	first	line	is	'##'	followed	by	a	code	for	the	target	and	one	for	the	template.	The	second	line	
identifies	the	source	of	the	alignment;	the	third	just	keep	as	it	is.	The	fourth	line	is	the	target	sequence	and	
the	fifth	is	the	template;	the	number	is	an	'offset',	identifying	where	the	sequence	starts.	However,	the	
number	doesn't	use	the	PDB	resid	but	just	counts	residues	starting	at	0.	The	sixth	line	is	'--'.	Multiple	
alignments	may	be	concatenated	in	a	single	file,	with	the	template	code	identifying	the	template	
corresponding	to	each	alignment.		

	

Example	2B:	Run	partial	threading	and	dock	models	into	density	

RosettaCM	takes	as	inputs	partially	threaded	models,	that	is	models	where	aligned	positions	have	their	
residue	identities	remapped,	and	unaligned	residues	are	not	present.	To	generate	these	models	from	an	
alignment	file	and	template,	we	can	run	the	Rosetta	command	(3_model_rebuilding/A_partialthread.sh):	



$	ROSETTA3/source/bin/partial_thread.macosclangrelease \ 
 -database ~/Rosetta/main/database/ \ 
 -in::file::fasta seq.fasta \ 
 -in::file::alignment alignments.filt \ 
 -in::file::template_pdb 3uoiV.pdb 3gvyC.pdb pdb 

This	will	output	a	two	partially	threaded	models	–	3uoiV_201.pdb	and	3gvyC_202.pdb	–	that	will	be	used	as	
input	for	RosettaCM.	

The	final	step	of	the	method	is	to	align	the	partially	threaded	models	into	the	density	map.		This	can	be	done	
most	easily	using	Chimera’s	“fit	into	map”	tool.		It	may	be	easiest	to	align	one	partial	thread	into	the	density	
and	then	align	the	other	model	to	that.		Aligned	versions	of	the	templates	are	included	as	3uoiV_201_aln.pdb	
and	3gvyC_202_aln.pdb.	

Example	2C:	Running	RosettaCM	as	a	monomer.	

For	our	first	step,	we	will	be	modelling	the	monomer	structure	using	RosettaCM.		While	the	assembly	is	
symmetric,	and	the	next	part	will	be	carried	out	in	the	context	of	the	assembly,	it	may	be	useful	in	some	cases	
to	model	individual	components	of	larger	assemblies.		Such	modelling	is	much	faster,	allowing	for	much	
greater	conformational	sampling,	and	it	is	often	useful	to	model	individual	subunits	before	modelling	the	
entire	complex.			

Like	the	methods	introduced	in	Scenario	1,	RosettaCM	is	controlled	through	an	XML	script	using	
RosettaScripts.	The	XML	is	as	follows	(2_model_rebuilding/C_rosettaCM_singletarget.xml):	

<ROSETTASCRIPTS> 
    <TASKOPERATIONS> 
    </TASKOPERATIONS> 
    <SCOREFXNS> 
        <ScoreFunction name="stage1" weights="score3" symmetric="1"> 
            <Reweight scoretype="atom_pair_constraint" weight="0.1"/> 
            <Reweight scoretype="elec_dens_fast" weight="10"/> 
        </ScoreFunction> 
        <ScoreFunction name="stage2" weights="score4_smooth_cart" symmetric="1"> 
            <Reweight scoretype="atom_pair_constraint" weight="0.1"/> 
            <Reweight scoretype="elec_dens_fast" weight="10"/> 
        </ScoreFunction> 
        <ScoreFunction name="fullatom" weights="beta_cart" symmetric="1"> 
            <Reweight scoretype="atom_pair_constraint" weight="0.1"/> 
            <Reweight scoretype="elec_dens_fast" weight="35"/> 
                <Set scale_sc_dens_byres="R:0.76,K:0.76,E:0.76,D:0.76,M:0.76, 
                    C:0.81,Q:0.81,H:0.81,N:0.81,T:0.81,S:0.81,Y:0.88,W:0.88, 
                    A:0.88,F:0.88,P:0.88,I:0.88,L:0.88,V:0.88"/> 
        </ScoreFunction> 
    </SCOREFXNS> 
    <FILTERS> 
    </FILTERS> 
    <MOVERS> 
        <Hybridize name="hybridize" stage1_scorefxn="stage1" stage2_scorefxn="stage2"  
                   fa_scorefxn="fullatom" batch="1"> 
            <Template pdb="3uoiV_201_aln.pdb" weight="1.0" cst_file="AUTO"/> 
            <Template pdb="3gvyC_202_aln.pdb" weight="1.0" cst_file="AUTO"/>             
        </Hybridize> 
    </MOVERS> 
    <PROTOCOLS> 
        <Add mover="hybridize"/> 
    </PROTOCOLS> 
</ROSETTASCRIPTS> 

The	main	work	is	done	through	a	single	mover,	Hybridize	which	handles	all	stages	of	model-building.	Input	



structures	are	specified	via	Template	lines	(in	this	case	there	is	only	one).	For	each	template	line,	we	specify	
the	pdb	input,	as	well	as	a	couple	of	other	parameters:	a	weight	(the	relative	frequency	we	sample	each	
template	with);	a	constraint	file	(setting	this	to	"auto"	sets	up	automatic	constraints	to	the	template,	while	
setting	this	to	"none"	turns	off	all	constraints,	user-defined	constraints	are	described	later).	

A	few	notes	about	using	multiple	models	with	hybridize:	

• With	density,	we	need	to	ensure	that	all	input	models	are	aligned	to	the	density.	This	can	be	done	
using	Chimera’s	alignment	tools.		It	may	be	easier	to	align	a	single	model	to	the	density	and	then	
align	all	other	models	to	this	model.	

• In	each	trajectory,	a	starting	model	is	chosen	at	random;	the	constraints	and	symmetry	from	this	
selected	model	are	chosen	at	the	start	of	each	run.	If	we	wish	to	use	a	portion	of	a	model,	but	do	
not	want	to	use	its	symmetry	or	constraints,	we	can	assign	it	a	weight	of	0:	backbone	
conformations	from	this	model	will	be	used	in	conformational	sampling,	but	the	symmetry	and	
constraints	will	never	be	used.		

• Similarly,	gaps	in	the	selected	starting	model	are	rebuilt	before	recombination	occurs.	If	one	of	the	
templates	has	poor	coverage,	but	provides	valuable	structural	features,	it	should	be	used,	but	
with	weight	0.		

Given	this	XML,	RosettaCM	is	then	run	with	the	following	command	line	(C_rosettaCM_singletarget.sh):	

$ROSETTA3/source/bin/rosetta_scripts.macosclangrelease \ 
 -database $ROSETTA3/database/ \ 
 -in:file:fasta t20s.fasta \ 
 -parser:protocol C_rosettaCM_singletarget.xml \ 
 -nstruct 5 \ 
 -relax:jump_move true \ 
 -relax:dualspace \ 
 -out::suffix _singletgt \ 
 -edensity::mapfile t20S_41A_half1.mrc \ 
 -edensity::mapreso 5.0 \ 
 -edensity::cryoem_scatterers \ 
 -beta \ 
 -default_max_cycles 200 

The	input	command	is	similar	to	those	seen	before,	but	with	a	few	key	differences.	First,	the	input	to	Rosetta	
is	specified	with	-in:file:fasta	rather	than	-in:file:s.		Also	note	that	the	input	argument	–nstruct 5	
is	given,	telling	Rosetta	to	generate	50	models	for	each	process.		Generally,	hundreds	to	thousands	of	models	
are	necessary	to	sufficiently	sample	conformational	space;	more	and	longer	regions	to	rebuild	require	more	
models.	

Job	distribution	
It	is	generally	useful	to	sample	~100	models	from	each	starting	point.		For	this	purpose,	it	may	be	useful	to	
run	multiple	jobs	in	parallel.		To	prevent	output	structures	from	clobbering	one	another,	the	flag	–out::suffix	
may	be	useful,	where	each	separate	job	is	given	a	different	suffix.	

For	example,	on	a	16-core	machine,	we	may	specify	-out::suffix	_$1,	then	(using	GNU	parallel)	run	the	
following:	

parallel –j16 ./	C_rosettaCM_monomer.sh {} ::: {1..16} 

Finally, GNU parallel allows launching of jobs remotely if SSH keys have been set up for passwordless login.  To 
run: 



parallel –S 16/node1,16/node2,16/node3,16/node4 –-workdir . ./	C_rosettaCM_monomer.sh {} ::: 
{1..48} 

This	will	launch	instead	48	jobs	spread	across	four	machines.		See	the	GNU	parallel	documentation	
(https://www.gnu.org/software/parallel/)	for	more	information.	

Analyzing	results	and	model	selection	
While	this	is	an	active	topic	of	research,	generally	–	once	a	density	weight	has	been	chosen	–	to	select	the	
best	models	from	among	the	full	set,	we	want	to	select	models	optimizing	both	model	geometry	and	fit-to-
density	values.		Model	geometry	may	be	evaluated	using	Rosetta	energies	after	subtracting	density	energies,	
which		may	be	done	by	inspecting	the	score*.sc	files	produced	as	output.		Density	fit	may	be	evaluated	using	
the	density	energy	in	Rosetta	as	well	as	FSCs	using	the	ReportFSC	mover	(not	covered	in	this	tutorial,	see	
part	2	of	the	main	tutorial)	

No	matter	the	selection	criteria,	the	top	models	(5-10)	should	be	inspected	for	model	convergence	as	
well	as	visually	inspected	for	density	map	agreement.	

Example	2D:	Running	RosettaCM	with	symmetry.	

Next,	we	need	to	set	up	symmetric	modeling	with	RosettaCM.	We	use	a	script,	make_symmdef_file.pl	script	in	
order	to	generate	a	symmetry	definition	file	for	use	in	Rosetta.	A	straightforward	way	to	do	so	is	to	use	
Chimera	to	dock	the	necessary	chains	into	density.		This	script’s	required	inputs	depend	on	the	underlying	
symmetry:	

• For	cyclic	(C)	and	dihedral	(D)	symmetries,	we	only	need	a	single	"primary	chain"	and	an	adjacent	
chain	in	each	point	group;	

• For	helical	symmetries,	we	need	an	adjacent	chain	in	the	layer	(if	there	is	one)	and	an	adjacent	chain	
up	the	helical	axis	

• For	other	symmetries	we	need	all	chains	adjacent	to	a	single	subunit.	

Since	this	case	falls	into	the	latter	case,	(for	examples	with	C	and	D	symmetry	see	the	main	tutorial),	we	need	
to	create	a	PDB	file	that	contains	one	chain	plus	all	adjacent	chains	docked	into	density.		An	example,	
3gvyC_symm_r.pdb,	is	included.		

Chimera	can	be	useful	here	as	well.		From	within	chimera,	we	can	run	the	following	command	to	generate	
symmetry	for	this	case:	

 sym #1 group O center 88.9,88.9,88.9 

Either	way,	save	the	chimera	files	in	a	single	output	file	and	then	relabel	chains	using	the	included	script:	

scripts/relabel_chains.pl 3gvyC_symm.pdb 

To	generate	our	Rosetta	symmetry	file	from	this	input,	we	then	simply	have	to	run	the	command	
(D_make_symmdef.sh):	

$ROSETTA3/source/src/apps/public/symmetry/make_symmdef_file.pl \ 
  -m pseudo -a A \ 
  -p 3gvyC_symm_r.pdb > ferritin.symm 

Since	we	have	already	created	the	input	templates	using	the	partial_thread	application,	we	simply	need	to	



use	the	output	of	the	partial	threading	together	with	the	symmetry	definition	file.		

We	then	need	to	make	two	small	modifications	to	our	inputs:	

	... 
        <Hybridize name="hybridize" stage1_scorefxn="stage1" stage2_scorefxn="stage2"  
                   fa_scorefxn="fullatom" batch="1”> 
            <Template pdb="3uoiV_201_aln.pdb" weight="1.0"  
                      cst_file="AUTO" symmdef="ferritin.symm"/> 
            <Template pdb="3gvyC_202_aln.pdb" weight="1.0"  
                      cst_file="AUTO" symmdef="ferritin.symm"/> 
        </Hybridize> 
... 

 

	 	



3)	Advanced	modelling:	using	partial_thread	and	relax	to	determine	
sequence	threading	

In	this	section,	we	will	use	the	same	tools	introduced	in	the	previous	sections	to	tackle	a	more	challenging	
problem,	determining	the	alignment	of	sequence	to	a	backbone	model.		This	is	based	on	Egelman	et	al.,	
Structure,	2015.	

	

For	this	example	we	have	a	map	(left)	that	clearly	identifies	helices	in	the	density.		However,	the	threading	of	
sequence	is	ambiguous:	it	is	not	known	which	is	the	N-	and	which	is	the	C-terminus,	and	there	are	only	24	
resolved	residues,	compared	to	29	amino	acids	in	the	sequence.	

However,	since	the	helix	orientations	are	straightforward,	we	can	brute-force	this	problem.		We	create	three	
models:	

1. polyA_symm.pdb,	in	which	two	helices	are	docked,	from	which	we	can	get	the	symmetry	definition	file	
2. polyA_ctermin.pdb,	a	monomer	in	one	orientation	
3. polyA_ntermin.pdb,	a	monomer	in	the	other	orientation	

	

Example	3A:	Build	the	symmetry	definition	file.	

As	in	section	two,	we	start	by	building	the	symmetry	definition	file:	

$ROSETTA3/source/src/apps/public/symmetry/make_symmdef_file.pl \ 
   -m HELIX -a J -b K \ 
   -p polyA_symm.pdb -r 1000 -t 8 > h.symm 

Since	we	have	helical	symmetry,	some	of	the	options	are	a	bit	different.		“-m	HELIX”	specifies	we	run	in	
helical	mode,	and	the	arguments	“-a	J	-b	K”	indicate	the	“primary	chain”	(J)	and	the	chain	up	the	helical	axis	
(K).		Finally,	the	argument	“-t	8”	indicates	how	many	subunits	to	generate	in	each	direction.	

When	running	in	this	mode,	note:	

• Rosetta	outputs	a	file,	polyA_symm_model_JK.pdb,	of	the	symmetry	it	identifies.		You	should	ensure	
that	this	makes	sense	given	the	map.	

• Rosetta	outputs	the	helical	parameters	inferred	from	the	model,	including	the	helical	rise	and	the	
subunits	per	turn.		This	should	match	what	was	determined	experimentally.	
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Running	this	command	produces	a	symmetry	definition	file,	“h.symm”,	to	be	used	as	input	in	subsequent	
steps.	

Finally,	we	need	to	make	a	small	edit	to	this	file	for	density	refinement.		Change:	

set_dof JUMP_0_0_0 z(2.20334489451302) angle_z 
set_dof JUMP_0_0_0_to_com x(17.509223919948) 
set_dof JUMP_0_0_0_to_subunit angle_x angle_y angle_z	

To:	

set_dof JUMP_0_0_0_to_com x y z 
set_dof JUMP_0_0_0_to_subunit angle_x angle_y angle_z 

That	is,	delete	the	first	line	(which	allows	refinement	of	the	symmetry	operators)	

Example	3B:	Generate	the	partial	threads.	

In	this	case,	we	use	the	partial_thread	tool	introduced	last	section	to	generate	all	the	of	different	sequence	
threadings	we	are	going	to	model.		The	included	script,	scripts/generate_threadings.pl	will	be	used	to	
generate	the	input	alignment	file,	though	it	may	also	be	done	manually	using	a	text	editor.	

The	resulting	alignment	file	(alignment.filt):	

## 1XXX ctermin_0 
# 
scores_from_program: 0.0 
0 QARILEADAEILRAYARILEAHAEILRAQ 
0 AAAAAAAAAAAAAAAAAAAAAAAAA---- 
-- 
## 1XXX ntermin_0 
# 
scores_from_program: 0.0 
0 QARILEADAEILRAYARILEAHAEILRAQ 
0 AAAAAAAAAAAAAAAAAAAAAAAAA---- 
-- 
… 
## 1XXX ntermin_1 
# 
scores_from_program: 0.0 
0 QARILEADAEILRAYARILEAHAEILRAQ 
0 -AAAAAAAAAAAAAAAAAAAAAAAAA--- 
-- 
… 
## 1XXX ntermin_2 
# 
scores_from_program: 0.0 
0 QARILEADAEILRAYARILEAHAEILRAQ 
0 --AAAAAAAAAAAAAAAAAAAAAAAAA-- 
-- 
… 

The	alignment	file	simply	slides	the	sequence	along	the	input	poly-alanine	model.	

We	then	run	the	partial_thread	application	on	this	model,	producing	a	total	of	10	input	models:	

$ROSETTA3/source/bin/partial_thread.macosclangrelease \ 
 -database ~/Rosetta/main/database/ \ 



 -in::file::fasta seq.fasta \ 
 -in::file::alignment alignments.filt \ 

 	

Example	3C:	Refine	all	the	models.	

In	the	final	step,	we	refine	each	of	the	models	against	the	density	map,	using	the	same	relax	script	that	was	
used	in	part	one	of	the	tutorial	(with	some	modifications	for	symmetry).	

The	command	line	(C_relax_density.sh):	

$ROSETTA3/source/bin/rosetta_scripts.macosclangrelease \ 
 -database ~/Rosetta/main/database/ \ 
 -render_density \ 
 -in::file::s ntermin_*.pdb ctermin_*.pdb \ 
 -parser::protocol C_relax_density.xml \ 
 -ignore_unrecognized_res \ 
 -edensity::mapreso 3.8 \ 
 -edensity::cryoem_scatterers \ 
 -crystal_refine \ 
 -beta \ 
 -out::suffix _relax \ 
 -default_max_cycles 200	

And	the	XML	file:	

<ROSETTASCRIPTS> 
   <SCOREFXNS> 
      <ScoreFunction name="dens" weights="beta_cart"> 
         <Reweight scoretype="elec_dens_fast" weight="35.0"/> 
         <Set 
scale_sc_dens_byres="R:0.76,K:0.76,E:0.76,D:0.76,M:0.76,C:0.81,Q:0.81,H:0.81,N:0.81,T:0.81,S:0
.81,Y:0.88,W:0.88,A:0.88,F:0.88,P:0.88,I:0.88,L:0.88,V:0.88"/> 
      </ScoreFunction> 
   </SCOREFXNS> 
 
   <MOVERS> 
       <SetupForSymmetry name="setupdens" definition="h_edit.symm"/> 
       <LoadDensityMap name="loaddens" mapfile="emd_6123.map"/> 
       <FastRelax name="relaxtors" scorefxn="dens" repeats="1" cartesian="0"/> 
       <FastRelax name="relaxcart" scorefxn="dens" repeats="1" cartesian="1"/> 
   </MOVERS> 
 
   <PROTOCOLS> 
      <Add mover="setupdens"/> 
      <Add mover="loaddens"/> 
      <Add mover="relaxtors"/> 
      <Add mover="relaxcart"/> 
   </PROTOCOLS> 
   <OUTPUT scorefxn="dens"/> 
</ROSETTASCRIPTS>  

Note	the	way	that	symmetry	information	is	loaded,	with	the	bolded	mover	above.		Additionally,	looking	at	
the	protocol	shows	that	we	perform	one	cycle	of	torsion	refinement,	followed	by	one	cycle	of	cartesian	
refinement.	

Finally,	we	can	analyze	results	by	looking	at	the	output	*.sc	score	files.		For	each	threading,	they	show	a	score	
breakdown	of	each	of	the	threaded	models.		We	can	evaluate	these	results	using	the	command:	



grep SCORE: *.sc | grep -v desc| sort -nk 2 

This	command	sorts	the	outputs	by	total	energy.		What	does	this	show?		What	if	we	sort	by	density	energy	
instead?	

	 	



4)	Building	large	segments	using	RosettaES	

RosettaCM	(section	2)	is	a	powerful	tool	for	rebuilding	small	segments	guided	by	density.		However,	it	poorly	
deals	with	model	completion	of	large	segments	of	protein.		These	may	arise	in	several	cases:	

1. Homology	models	(particularly	distant	ones)	may	have	large	insertions,	or	even	entire	domains	that	
are	lacking.	

2. The	models	produced	from	denovo_density	may	be	missing	significant	fractions	of	the	backbone	
3. It	may	be	difficult	to	manually	trace	long	stretches	of	low	local	resolution	into	density	

	
To	address	these	issues,	we	have	developed	a	tool	called	Rosetta	Enumerative	Sampling,	which	uses	a	
ensemble	search	algorithm	to	determine	a	large	number	of	conformations	that	are	both	consistent	with	the	
density	and	the	Rosetta	energy	function.	This	tool	can	be	used	on	a	partial	models	from	the	denovo_density	
application,	an	incomplete	homology	model,	or	any	other	starting	structure.	 
	
RosettaES	model	building	consists	of	three	steps.		Initially,	a	preparation	step	builds	the	fragments	that	are	
to	be	used	in	conformational	sampling.		Then	a	rebuilding	step	will	identify	each	unassigned	segment	in	the	
initial	model	and	build	an	ensemble	of	possible	solutions	for	each.		Finally,	a	combination	step	finds	all	the	
consistent	subsets	of	interactions,	and	refines	all	such	models	(if	there	is	only	one	segment,	the	script	simply	
refines	all	structures	in	the	ensemble).		In	this	combination	step,	if	assembly	fails	to	find	a	consistent	set	of	
solutions,	an	additional	round	of	sampling	will	be	carried	out,	forcing	different	solutions	than	the	previous	
model.		

Note	that	a	full	tutorial	of	RosettaES	is	given	in	section	five	main	tutorial;	in	this	“mini	tutorial,”	we	
will	only	be	using	this	tool	to	rebuild	a	single	missing	segment	from	a	model.	

Compared	to	the	other	sections,	the	workflow	is	a	bit	more	complicated	when	extended	to	multiple	compute	
cores.		To	handle	job	distribution	we	have	included	a	python	script	RunRosettaES.py	that	manages	this	job	
distribution	among	available	CPUs	on	a	single	machine.	(The	script	is	included	as	part	of	Rosetta,	in	
/main/source/scripts/python/public/EnumerativeSampling,	as	well	as	in	this	tutorial).			For	dealing	with	
job	schedulers	or	clusters	incompatible	with	this	script,	section	5E	gives	an	overview	of	job	distribution	with	
RosettaES. 

Step	4A.		Fragment	Picking 

The	first	step	involves	selection	of	"fragment	files,"	which	predict	backbone	conformation	from	local	
sequence.		We	have	a	custom	algorithm	for	fragment	picking	in	RosettaES.		These	fragments	will	need	to	be	
generated	before	running	RosettaES;	the	following	command	will	generate	these	files	(A_PickFragments.sh): 
	
$ROSETTA3/source/bin/grower_prep.default.macosclangrelease \ 
     -pdb input.pdb \  
     -in::file::fasta t20sA.fasta \ 
     -fragsizes 3 9 \ 
     -fragamounts 100 20 

	
This	will	generate	100	3	residue	fragments	and	20	9	residue	fragments,	named	100.3mers	and	20.9mers,	
that	are	then	used	in	subsequent	steps	of	the	rebuilding	process. 

Step	4B.	Generate	conformations	for	the	missing	segment 
	
The	grower	considers	assigning	positions	for	each	unassigned	segment	of	density	(that	is,	each	stretch	of	
amino	acids	present	in	the	fasta	file	but	missing	from	the	input	structure).		Each	segment	is	referred	to	using	



a	segment	id,	in	which	each	segment	is	numbered	from	N-	to	C-terminus	(with	multiple	chains	given	in	order	
in	the	input	fasta	file).		The	script	is	run	in	two	parts:	first,	the	script	is	run	once	for	each	segment	to	rebuild;	
then,	the	script	is	run	in	“assembly	mode”	given	the	outputs	produced	by	rebuilding	each	segment	
individually.		Thus,	for	rebuilding	the	two	segments	in	the	test	case,	the	script	is	called	three	times:	once	to	
build	each	segment,	and	once	to	assemble	the	results. 
	
In	the	first	step,	we	perform	conformational	sampling	for	a	difficult	segment	in	aopferritin,	generating	an	
ensemble	of	putative	solutions.	This	can	be	done	calling	the	command	(B_SampleSegment.sh):	
 
python RunRosettaES.py \ 
     -rs runES.sh \ 
     -x RosettaES.xml \ 
     -f seq.fasta \ 
     -p difficult_loop.pdb \ 
     -d ../2_rosettaCM_apoferritin/emd_2788.map \ 
     -l 1 \ 
     -c 16 \ 
     -n loop_1 

 
The	arguments	to	this	program	are	as	follows: 

• -rs	runES.sh	-	the	script	that	is	launched	on	each	core	and	contains	Rosetta	flags	and	inputs 
• -x	RosettaES.xml	-	the	XML	script	describing	parameters	for	conformational	sampling	(see	below) 
• -f	t20sA.fasta	-	the	input	fasta	file	(with	chainbreaks	specified	by	‘/’) 
• -p	input.pdb	-	the	input	pdb	file.		This	needs	to	match	the	input	sequence,	and	all	residues	present	in	

the	fasta	but	absent	in	the	PDB	will	get	built. 
• -d	T20S_48A_alpha_chainA.mrc	-	the	input	density	map 
• -l	1	-	the	segment	id	of	the	segment	to	rebuild.		This	command	should	be	called	once	for	each	segment	

to	rebuild,	varying	this	argument	from	1	to	N 
• -c	16	-	the	number	of	compute	cores	to	use 
• -n	loop_1	-	the	output	tag	for	this	job	(results	will	be	placed	in	a	folder	with	this	name).		Tags	should	

be	unique	for	each	segment. 
 
The	input	XML	file	exposes	key	parameters	for	conformational	sampling.		In	the	tutorial,	this	file,	
RosettaES.xml,	contains	a	block: 
	
... 
<FragmentExtension name="ext" fasta="full.fasta" scorefxn="dens"  
    censcorefxn="cendens" beamwidth="32" dumpbeam="0" samplesheets="1" read_from_file="0" 
    continuous_weight="0.3" looporder="1" comparatorrounds=”100” windowdensweight=”30” 
    readbeams="%%readbeams%%" storedbeams="%%beams%%" 
    steps="%%steps%%" pcount="%%pcount%%" filterprevious="%%filterprevious%%" 
    filterbeams="%%filterbeams%%"> 
        <Fragments fragfile="100.3mers"/> 
        <Fragments fragfile="20.9mers"/> 
</FragmentExtension> 
... 

	
The	sampling	behavior	of	RosettaES	is	controlled	by	the	block	above.		Many	of	the	tags	in	this	block	–	fasta,	
dumpbeam,	read_from_file,	storedbeams,	steps,	pcount,	filterprevious,	comparitorrounds,	and	filterbeams	–	are	
used	by	the	job	distribution	script	to	pass	results	from	one	step	to	the	next,	and	they	should	be	left	as-is. 
	
	
Others	are	user-specified,	and	can	be	modified	based	on	the	size	of	the	loop	and	resolution	of	the	data: 

• beamwidth:	controls	the	maximum	number	of	solutions	to	be	held	at	each	step.		
Setting	the	value	higher	will	increase	run	time	but	may	improve	accuracy. 

• windowdensweight:	the	relative	contribution	of	density	in	model	selection 



 
For	many	cases,	the	default	parameters	are	sufficient.		However,	if	the	segment	to	grow	is	long	(50+	
residues),	you	may	need	to	increase	beamwidth;	if	the	density	is	low	resolution,	you	might	need	to	decrease	
windowdensweight	to	15	or	20. 
	
Several	options	should	rarely	be	modified,	but	may	need	to	be	in	specific	cases: 

• samplesheets:	Controls	whether	or	not	beta	sheet	sampling	should	be	performed.		
It	is	recommended	to	use	this	except	when	working	with	symmetric	systems. 

• continuous_weight:	Controls	the	penalty	on	discontinuous	density.		
Setting	this	value	to	1	will	completely	remove	any	penalty	on	discontinuous	density;		
setting	it	closer	to	0	will	increase	the	penalty.		You	may	wish	to	raise	this	value	to	0.7	(or	more)	if	you	
anticipate	the	segment	you	are	trying	to	model	does	not	follow	a	continuous	path	of	density. 

 
Finally,	the	option	comparitorrounds	is	used	in	multi-segment	assembly	(see	section	5C)	
	
After	running	the	script	with	this	XML,	there	are	two	important	intermediate	output	files,	placed	in	the	folder	
loop_1	(the	argument	to	-n): 

• .lps	(for	loop	partial	solution)	files,	which	are	then	combined	in	step	5C,	in	cases	where	there	are	
multiple	segments	to	model 

• loop_1/beam_X.txt	files,	where	X	corresponds	to	the	number	of	residues	added	to	the	segment.		These	
are	generated	as	the	search	adds	residues,	and	are	used	to	pass	information	from	one	step	to	the	next	
(as	additional	residues	are	added	in	a	single	segment). 

	
Finally,	while	in	most	cases,	users	will	want	to	want	for	a	run	to	finish	to	inspect	the	beam,	if	the	sampling	
results	want	to	be	inspected	as	the	code	is	running,	the	final	output	ensemble	can	be	saved	as	PDB	files	with	
the	command	(B2_InspectIntermediates.sh): 
 
python RunRosettaES.py \ 
     -rs runES.sh \ 
     -x RosettaES.xml \ 
     -f seq.fasta \ 
     -p difficult_loop.pdb \ 
     -d ../2_rosettaCM_apoferritin/emd_2788.map \ 
     -l 1 \ 
     -db loop_1/beam_17.txt 

	
Note,	the	number	of	the	beam	file	(17)	corresponds	to	the	total	number	of	residues	built.		Intermediate	
results	(after	growing	N	residues)	can	be	inspected	by	changing	this	to	a	lower	number	(e.g.,	beam_14.txt	
shows	solutions	after	14	residues	have	been	rebuilt). 

	


