
	

5)	Completing	partial	models	guided	by	experimental	density	data 

While	the	previous	workflows	have	address	model	building	and	model	refinement,	none	of	the	
aforementioned	tools	deal	with	completion	of	large	segments	of	protein.		These	may	arise	in	several	cases: 

1. Homology	models	(particularly	distant	ones)	may	have	large	insertions,	or	even	entire	domains	that	
are	lacking.	

2. The	models	produced	from	denovo_density	may	be	missing	significant	fractions	of	the	backbone	
3. It	may	be	difficult	to	manually	trace	long	stretches	of	low	local	resolution	into	density	

 
To	address	these	issues,	we	have	developed	a	tool	called	Rosetta	Enumerative	Sampling,	which	uses	a	
ensemble	search	algorithm	to	determine	a	large	number	of	conformations	that	are	both	consistent	with	the	
density	and	the	Rosetta	energy	function.	This	tool	can	be	used	on	a	partial	models	from	the	denovo_denisty	
application,	an	incomplete	homology	model,	or	any	other	starting	structure.	 
	
RosettaES	runs	best	when	working	with	data	at	resolutions	5	Å	or	better	with	segments	to	rebuild	shorter	
than	50	residues.		However,	with	very	large	amounts	of	sampling	(e.g.,	ensemble	sizes	>	250),	reliable	
models	may	be	produced	with	segments	longer	than	100	residues.		At	resolutions	worse	than	5	Å,	this	tool	
may	be	unreliable.		The	method	can	be	used	on	both	segmented	and	unsegmented	density	maps,	however,	
removal	of	density	belonging	to	parts	of	the	structure	not	being	modeled	may	improve	results.	
 
RosettaES	model	building	consists	of	three	steps.		Initially,	a	preparation	step	builds	the	fragments	that	are	
to	be	used	in	conformational	sampling.		Then	a	rebuilding	step	will	identify	each	unassigned	segment	in	the	
initial	model	and	build	an	ensemble	of	possible	solutions	for	each.		Finally,	a	combination	step	finds	all	the	
consistent	subsets	of	interactions,	and	refines	all	such	models	(if	there	is	only	one	segment,	the	script	simply	
refines	all	structures	in	the	ensemble).		In	this	combination	step,	if	assembly	fails	to	find	a	consistent	set	of	
solutions,	an	additional	round	of	sampling	will	be	carried	out,	forcing	different	solutions	than	the	previous	
model.		
 
Compared	to	the	other	sections,	the	workflow	is	a	bit	more	complicated	when	extended	to	multiple	compute	
cores.		To	handle	job	distribution	we	have	included	a	python	script	RunRosettaES.py	that	manages	this	job	
distribution	among	available	CPUs	on	a	single	machine.	(The	script	is	included	as	part	of	Rosetta,	in	
/main/source/scripts/python/public/EnumerativeSampling,	as	well	as	in	this	tutorial).			For	dealing	with	
job	schedulers	or	clusters	incompatible	with	this	script,	section	5E	gives	an	overview	of	job	distribution	with	
RosettaES. 

Step	5A.		Fragment	Picking 

The	first	step	–	much	like	Scenario	4	–	involves	selection	of	"fragment	files,"	which	predict	backbone	
conformation	from	local	sequence.		Unlike	Scenario	4,	we	have	a	custom	algorithm	for	fragment	picking.	
These	fragments	will	need	to	be	generated	before	running	RosettaES;	the	following	command	will	generate	
these	files	(5_rosettaES/A_PickFragments.sh): 
	
$ROSETTA3/source/bin/grower_prep.default.macosclangrelease \ 
     -pdb input.pdb \  
     -in::file::fasta t20sA.fasta \ 
     -fragsizes 3 9 \ 
     -fragamounts 100 20 

	

This	will	generate	100	3	residue	fragments	and	20	9	residue	fragments,	named	100.3mers	and	20.9mers,	
that	are	then	used	in	subsequent	steps	of	the	rebuilding	process. 



Step	5B.	Generate	Possible	Conformations	For	Each	Segment 
	
The	grower	considers	assigning	positions	for	each	unassigned	segment	of	density	(that	is,	each	stretch	of	
amino	acids	present	in	the	fasta	file	but	missing	from	the	input	structure).		Each	segment	is	referred	to	using	
a	segment	id,	in	which	each	segment	is	numbered	from	N-	to	C-terminus	(with	multiple	chains	given	in	order	
in	the	input	fasta	file).		The	script	is	run	in	two	parts:	first,	the	script	is	run	once	for	each	segment	to	rebuild;	
then,	the	script	is	run	in	“assembly	mode”	given	the	outputs	produced	by	rebuilding	each	segment	
individually.		Thus,	for	rebuilding	the	two	segments	in	the	test	case,	the	script	is	called	three	times:	once	to	
build	each	segment,	and	once	to	assemble	the	results. 
	
In	the	first	step,	we	perform	conformational	sampling	of	each	of	the	two	segments,	generating	an	ensemble	
of	putative	solutions	for	each.	This	can	be	done	calling	the	command	(5_rosettaES/B1_SampleSegment1.sh):	
 
python RunRosettaES.py \ 
     -rs runES.sh \ 
     -x RosettaES.xml \ 
     -f t20sA.fasta \ 
     -p input.pdb \ 
     -d T20S_48A_alpha_chainA.mrc \ 
     -l 1 \ 
     -c 16 \ 
     -n loop_1 

 
The	arguments	to	this	program	are	as	follows: 

• -rs	runES.sh	-	the	script	that	is	launched	on	each	core	and	contains	Rosetta	flags	and	inputs 
• -x	RosettaES.xml	-	the	XML	script	describing	parameters	for	conformational	sampling	(see	below) 
• -f	t20sA.fasta	-	the	input	fasta	file	(with	chainbreaks	specified	by	‘/’) 
• -p	input.pdb	-	the	input	pdb	file.		This	needs	to	match	the	input	sequence,	and	all	residues	present	in	

the	fasta	but	absent	in	the	PDB	will	get	built. 
• -d	T20S_48A_alpha_chainA.mrc	-	the	input	density	map 
• -l	1	-	the	segment	id	of	the	segment	to	rebuild.		This	command	should	be	called	once	for	each	segment	

to	rebuild,	varying	this	argument	from	1	to	N 
• -c	16	-	the	number	of	compute	cores	to	use 
• -n	loop_1	-	the	output	tag	for	this	job	(results	will	be	placed	in	a	folder	with	this	name).		Tags	should	

be	unique	for	each	segment. 
 
The	input	XML	file	exposes	key	parameters	for	conformational	sampling.		In	the	tutorial,	this	file,	
5_rosettaES/RosettaES.xml,	contains	a	block: 
	
... 
<FragmentExtension name="ext" fasta="full.fasta" scorefxn="dens"  
    censcorefxn="cendens" beamwidth="32" dumpbeam="0" samplesheets="1" read_from_file="0" 
    continuous_weight="0.3" looporder="1" comparatorrounds=”100” windowdensweight=”30” 
    readbeams="%%readbeams%%" storedbeams="%%beams%%" 
    steps="%%steps%%" pcount="%%pcount%%" filterprevious="%%filterprevious%%" 
    filterbeams="%%filterbeams%%"> 
        <Fragments fragfile="100.3mers"/> 
        <Fragments fragfile="20.9mers"/> 
</FragmentExtension> 
... 

	
The	sampling	behavior	of	RosettaES	is	controlled	by	the	block	above.		Many	of	the	tags	in	this	block	–	fasta,	
dumpbeam,	read_from_file,	storedbeams,	steps,	pcount,	filterprevious,	comparitorrounds,	and	filterbeams	–	are	
used	by	the	job	distribution	script	to	pass	results	from	one	step	to	the	next,	and	they	should	be	left	as-is. 
	
	



Others	are	user-specified,	and	can	be	modified	based	on	the	size	of	the	loop	and	resolution	of	the	data: 
• beamwidth:	controls	the	maximum	number	of	solutions	to	be	held	at	each	step.		

Setting	the	value	higher	will	increase	run	time	but	may	improve	accuracy. 
• windowdensweight:	the	relative	contribution	of	density	in	model	selection 

 
For	many	cases,	the	default	parameters	are	sufficient.		However,	if	the	segment	to	grow	is	long	(50+	
residues),	you	may	need	to	increase	beamwidth;	if	the	density	is	low	resolution,	you	might	need	to	decrease	
windowdensweight	to	15	or	20. 
	
Several	options	should	rarely	be	modified,	but	may	need	to	be	in	specific	cases: 

• samplesheets:	Controls	whether	or	not	beta	sheet	sampling	should	be	performed.		
It	is	recommended	to	use	this	except	when	working	with	symmetric	systems. 

• continuous_weight:	Controls	the	penalty	on	discontinuous	density.		
Setting	this	value	to	1	will	completely	remove	any	penalty	on	discontinuous	density;		
setting	it	closer	to	0	will	increase	the	penalty.		You	may	wish	to	raise	this	value	to	0.7	(or	more)	if	you	
anticipate	the	segment	you	are	trying	to	model	does	not	follow	a	continuous	path	of	density. 

 
Finally,	the	option	comparitorrounds	is	used	in	multi-segment	assembly	(see	section	5C)	
	
After	running	the	script	with	this	XML,	there	are	two	important	intermediate	output	files,	placed	in	the	folder	
loop_1	(the	argument	to	-n): 

• .lps	(for	loop	partial	solution)	files,	which	are	then	combined	in	step	5C,	in	cases	where	there	are	
multiple	segments	to	model 

• taboo/beamX.txt	files,	where	X	corresponds	to	the	number	of	residues	added	to	the	segment.		These	
are	generated	as	the	search	adds	residues,	and	are	used	to	pass	information	from	one	step	to	the	next	
(as	additional	residues	are	added	in	a	single	segment). 
 

Note:	This	process	should	then	be	repeated	for	all	remaining	segments	to	rebuild	In	the	tutorial,	the	
command	5_rosettaES/B2_SampleSegment2.sh	builds	conformations	for	the	second	segment	in	this	file.	All	
segments	can	be	sampled	independently	of	one	another,	so	if	many	compute	nodes	are	available,	each	
segment	can	be	sampled	simultaneously	on	separate	nodes.	
	
Finally,	while	in	most	cases,	users	will	want	to	take	these	models	into	the	assembly	step	(part	5C),	if	there	is	
only	one	segment	to	rebuild,	or	if	the	sampling	results	want	to	be	inspected,	the	final	output	ensemble	can	be	
saved	as	PDB	files	with	the	command	(5_rosettaES/B1.2_InspectIntermediates.sh): 
 
python RunRosettaES.py \ 
     -rs runES.sh \ 
     -x RosettaES.xml \ 
     -f t20sA.fasta \ 
     -p input.pdb \ 
     -d T20S_48A_alpha_chainA.mrc \ 
     -l 1 \ 
     -db loop_1/taboo/beam17.txt 

	
Note,	the	number	of	the	beam	file	(17)	corresponds	to	the	total	number	of	residues	built.		Intermediate	
results	(after	growing	N	residues)	can	be	inspected	by	changing	this	to	a	lower	number	(e.g.,	beam14.txt	
shows	solutions	after	14	of	the	17	residues	have	been	rebuilt). 
	

	

	



Step	5C.	Find	a	set	of	consistent	conformations. 

In	cases	where	there	are	multiple	interacting	segments,	we	want	to	find	all	nonclashing	combinations.		This	
step	will	take	the	loop	partial	solution	(lps)	files	generated	in	step	B	and	use	a	Monte	Carlo	Assembly	(MCA)	
algorithm	in	order	to	identify	sets	of	solutions	that	are	self-consistent.		This	section	assumes	that	all	
missing	segments	have	been	built	in	step	B.		To	run	this	assembly,	we	perform	conformational	sampling	
using	the	script,	passing	the	.lps	files	generated	in	step	B	(5_rosettaES/C_AssembleResults.sh): 
	
python RunRosettaES.py \ 
     -rs runES.sh \ 
     -x RosettaES.xml \ 
     -f t20sA.fasta \ 
     -p input.pdb \ 
     -d T20S_48A_alpha_chainA.mrc \ 
     -lps loop_*/lps*.txt 

 
The	flag	-lps	points	to	the	outputs	of	the	individual	segment	jobs’	output.		As	before,	the	script	will	use	(and	
modify)	an	input	XML	file.		For	assembly,	only	a	single	parameter	is	important	to	modify:	
comparatorrounds="100”.		This	parameter	controls	the	number	of	Monte	Carlo	trajectories	(it	is	unlikely	you	
will	need	to	change	this	parameter).	 
	
The	output	of	this	step	is	PDB	files,	that	will	be	placed	in	the	working	directory	with	the	prefix	
aftercomparator_RRR_XXX.pdb,	where	RRR	is	the	trajectory	id,	and	XXX	is	the	energy.			A	text	file	
recommendation.txt	will	be	written	that	reports	the	clash	score	of	the	best	model.		 
	
If	the	number	in	recommendation.txt	is	above	+100	it	is	recommend	you	perform	additional	rounds	of	
sampling.			To	do	so,	additional	potential	solutions	should	be	sampled	by	repeating	step	B	and	providing	the	
same	directory	name	as	input,	without	deleting	the	intermediate	files.	The	script	will	then	enter	that	
directory	and	use	the	already-computed	solutions	(stored	in	the	folder	"taboo")	to	guide	sampling	toward	
previously	unexplored	regions.	See	section	D	for	more	details. 
	
If	the	number	in	recommendation.txt	is	below	+100,	then	models	should	be	run	through	Rosetta	
refinement	to	accurately	rank	them.		That	can	be	done	using	this	command	(5_rosettaES/D_RefineOutput): 
	
python RunRosettaES.py \ 
     -rlxs runrelax.sh \ 
     -x RosettaES.xml \ 
     -p input.pdb \ 
     -d T20S_48A_alpha_chainA.mrc \ 
     -c 16 \ 
     -rp aftercomparator_*.pdb 

 
Where	runrelax.sh	contains	a	command	for	relaxing	structures	in	Rosetta.	

Step	5D.	Interpreting	results 
	
RosettaES	will	produce	a	100	models	as	output	(or	whatever	is	specified	in		comparatorrounds),	with	scores	
in	the	file	score.sc.		When	first	looking	at	the	output	from	a	run,	it	is	good	to	visually	inspect	the	lowest-
energy	5-10	structures.		Ideally,	these	lowest-energy	models	will	be	very	tightly	converged,	but	the	lack	of	
convergence	does	not	indicate	failure	in	sampling,	and	the	presence	of	convergence	does	not	necessary	
indicate	the	solution	is	correct.		Instead,	the	lowest-scoring	models	should	be	examined	with	attention	to	the	
following: 
	



Insufficient	sampling.		Models	should	initially	be	inspected	for	clearly	incorrect	features	that	might	not	have	
been	properly	penalized	by	Rosetta.		These	include: 

• unexplained	density,	particularly	small	sidechains	placed	into	a	large	density	protrusions 
• regions	with	poor	fit	to	density 
• unresolved	clashes 

 
If	these	features	are	present	in	the	lowest-energy	models,	it	suggests	that	the	conformational	sampling	
performed	by	RosettaES	may	not	have	been	sufficient.		There	are	several	ways	to	address	this	issue.		The	first	
is	to	increase	conformational	sampling.		This	can	be	done	by	either:	a)	increased	the	beamwidth	parameter	
and	rerunning	anew,	b)	and/or	performing	additional	rounds	of	taboo	search	(taboo	sampling	occurs	
automatically	if	the	“taboo/”	folder	in	the	running	directory	is	populated	with	beam	files”),	or	c)	reducing	the	
search	space	by	eliminating	regions	of	density. 
	
The	latter	can	also	be	performed	by	manually	removing	parts	of	the	map	you	do	not	wish	to	sample	or	by	
including	additional	portions	of	the	model,	for	example	if	you	are	building	a	model	that	has	4	missing	regions	
and	you	believe	you	have	accurately	sampled	3	of	them	(they	do	not	posses	any	of	the	pathologies	listed	
above	and	fit	the	density	well),	you	can	combine	them	by	treating	them	as	templates	for	RosettaCM	(use	a	
fasta	file	with	the	missing	segment	removed)	and	use	the	result	as	input	for	RosettaES	to	build	the	last	
region. 
	
Unresolved	residues.	RosettaES	will	always	attempt	to	build	all	residues	present	in	the	fasta	file,	however,	in	
many	cases	not	all	residues	will	be	resolved	in	the	map	(particularly	at	termini).	Because	RosettaES	will	
heavily	penalize	models	that	do	not	fit	the	density,	you	will	often	find	models	that	are	"overly	compacted"	at	
termini	or	internal	loops,	to	try	to	squeeze	these	residues	into	density.		 
	
If	this	happens	at	termini	it	is	suggested	that	you	examine	intermediate	structures	that	have	yet	to	attempt	to	
assign	these	unresolved	residues	in	order	to	find	a	good	model.			If	this	happens	internally	(or	if	you	have	a	
good	idea	a	priori	what	residues	should	be	modeled),	these	regions	can	be	removed	from	the	input	fasta.		If	
internal	segments	are	deleted,	be	sure	to	treat	the	deletion	correctly,	by	putting	a	'/'	in	the	fasta	file.	 
	

Step	5E.	Customizing	job	distribution. 
	
Job	distribution	in	RosettaES	is	complicated,	since	each	"growing	step"	can	be	parallelized,	but	subsequent	
steps	need	all	the	information	from	the	previous	step.		Consequently,	the	script	provided	(RosettaES.py)	
manages	jobs,	by	calling	Rosetta	jobs	at	each	round,	collecting	and	combining	the	results	of	the	previous	
round,	then	splitting	input	files	for	the	next	round.		On	systems	where	it	is	not	possible	to	run	this	script,	this	
section	describes	in	some	detail	what	the	script	is	doing. 
	
To	manage	this	the	python	script	uses	the	provided	XML	file	as	input,	rewriting	several	parameters	
depending	on	the	protocol	step.		These	varying	parameters	include: 

• readbeams,	a	boolean	option	that	tells	Rosetta	whether	it	should	load	intermediate	solutions 
• beamfile,	the	name	of	the	beamfile	that	stores	the	intermediate	solutions 
• steps,	how	many	residues	to	add	(0	means	only	do	filtering,	otherwise	set	to	1,	setting	to	“-1”	will	

build	all	missing	residues) 
• pcount,	used	to	uniquely	tag	output	files	from	each	core 
• filterprevious,	a	boolean	option	that	controls	whether	intermediate	solutions	should	be	read	for	taboo	

search 
• filterbeams,	the	filename	of	the	intermediate	solutions	for	use	in	taboo. 

 
In	order	to	build	a	missing	segment	the	script	will	perform	the	following	steps: 
	



1. Launch	a	job	with		
readbeams="0",	beamfile="na",	steps="1",	pcount="1",	filterprevious="0",	filterbeams="na".		
This	will	produce	a	file	named	beam1.1.txt	from	Rosetta.	

2. Parse	the	beam1.1.txt	file	and	split	into	N	files	(where	N	is	the	number	of	parallel	jobs	to	run).		
New	files	are	labeled	beam_$r.$i.txt	where	$r	is	the	number	of	residues	added	so	far,		
and	$i	ranges	from	1	to	N.	

3. Submit	N	rosetta	jobs	with	pcount	set	as	the	job	number,	readbeams	set	to	"true",	and	beamfile	set	to	
the	corresponding	output	of	step	2.		

4. Output	files	are	parsed	by	the	script	and	compiled	into	a	single	file	with	the	name	beam$r.txt,	with	
$r	the	number	of	residues	grown.	

5. Rosetta	is	run	on	a	single	core	to	filter	the	aggregate	solution	set.	Here,	
readbeams=”1”,	beamfile=”beam$r.txt”,	and	steps="0".		
A	file	named	beam_0.txt	will	have	the	filtered	results.	

6. Repeat	steps	2-6	using	the	beam_0.txt	as	the	input	for	step	2.	This	is	done	until	the	segment	is	
complete	and	Rosetta	produces	an	empty	file	called	finished.txt.	The	presence	of	this	file	triggers	the	
program	to	perform	one	final	round	of	filtering	and	exit.	

 
The	last	step	of	RosettaES	will	additionally	produce	a	file	with	the	name	"lpsfile_$s.0.txt,"	used	for	assembly.	
To	run	assembly	with	these	files	first	combine	them	into	a	single	file,	described	below,	and	run	with	
readfromfile=”filename”.		This	new	file	should	start	with	the	a	number	corresponding	to	the	total	number	of	
missing	segments,	then	for	each	missing	segment	provide	a	number	for	the	total	solutions	in	that	segmented	
followed	by	the	solution	information	contained	in	the	lpsfile_$s.0.txt	described	above.	Segments	should	be	
arranged	to	match	the	order	in	which	they	occur	in	the	fasta.	 
	

	
	


