
4)	De	novo	model-building	guided	by	experimental	density	data	

In	this	scenario,	we	introduce	a	tool,	denovo_density,	aimed	at	automatically	building	backbone	and	placing	
sequence	in	3-4.5	Å	cryoEM	density	maps.		This	tool	is	primarily	intended	for	cases	where	a	model	is	to	be	
built	with	no	known	structural	homologues.		It	is	relatively	expensive	computationally,	and	consists	of	four	
basic	steps:	

• Search	for	local	backbone	"fragments"	in	the	density	map	
• Score	the	"compatability"	of	sets	of	placed	fragments	
• Monte	Carlo	sampling	for	the	"maximally	compatable"	fragment	set	
• Consensus	assignment	from	the	best-scoring	Monte	Carlo	trajectories	

The	input	of	the	method	is	a	segmented	density	map,	and	the	sequence	contained	in	this	region.		The	output	
of	the	method	is	a	"partial	model"	that	–	ideally	–	places	70-80%	of	the	sequence	into	the	density	map.		This	
partial	model	can	then	be	used	as	input	for	RosettaCM	(see	section	3	of	the	tutorial).	

This	method	is	under	constant	development.		Current	limitations	of	the	approach	–	hopefully	to	be	addressed	
in	future	revisions	–	include:	

• The	code	assumes	segmented	density	maps.		It	cannot	handle	symmetry,	and	poorly	handles	
unsegmented	density	maps.		Results	are	best	when	the	map	is	segments	to	only	contain	one	copy	of	
the	residues	getting	built.	

• It	has	only	been	tested	building	proteins	~600	residues	or	less.		While	it	should	conceptually	scale	to	
larger	proteins,	this	is	untested.		Furthermore,	with	larger	proteins,	the	memory	usage	of	steps	2	and	
3	increases	significantly,	so	care	must	be	taken.	

• It	currently	does	not	identify	and	build	ligands	or	nucleic	acids	

This	section	of	the	tutorial	walks	through	these	four	steps	of	the	protocol.		As	a	running	example,	we	again	
use	the	20S	proteasome	(Xueming	Li	et	al.,	Nature	Methods,	2013),	in	this	case	using	a	4.8Å	reconstruction	
determined	without	using	motion	correction.	We	will	pretend	that	known	homologous	structures	are	not	
available,	and	instead	will	build	models	into	density	denovo.	

Input	file	preparation:		download	fragment	files	from	Robetta	

Before	running	the	method,	a	user	must	first	create	a	"fragment	file"	that	predicts	local	backbone	
conformations	given	the	amino-acid	sequence.		The	easiest	way	to	do	so	is	to	submit	your	sequence	at	
http://robetta.bakerlab.org/.	

Alternately,	the	Rosetta	users	guide	describes	how	fragment	files	may	be	builtlocally	:	
(https://www.rosettacommons.org/manuals/archive/rosetta3.5_user_guide/dc/d10/app_fragment_picker.
html)	

Step	4A.		Local	fragment	search	

In	the	first	part	of	the	procedure,	we	search	the	density	map	for	each	sequence-predicted	backbone	
fragment.		This	part,	like	all	the	steps	in	this	section,	uses	a	Rosetta	application	denovo_density.	

The	command	to	run	fragment	searching	for	a	single	residue	(4_denovo_demo/A_search.sh):	



$ROSETTA3/source/bin/denovo_density.macosclangrelease \ 
 -in::file::fasta t20sA.fasta \ 
 -fragfile ./t001_.25.9mers \ 
 -mapfile ./T20S_48A_alpha_chainA.mrc \ 
 -n_to_search 500 -n_filtered 2500 -n_output 100 \ 
 -bw 16 \ 
 -atom_mask_min 2 \ 
 -atom_mask 3 \ 
 -clust_radius 3 \ 
 -clust_oversample 4 \ 

-point_radius 3 \ 
 -movestep 1 \ 
 -delR 2 \ 
 -frag_dens 0.8 \ 
 -ncyc 3 \ 
 -min_bb false \ 
 -pos $1 \ 
 -out:file:silent round1/t20s.$1.silent  

Most	of	the	arguments	shown	here	should	be	left	as-is.		However,	there	are	a	few	–	highlighted	above	in	
boldface	–	that	you	might	want	to	change:	

-n_to_search 500 -n_filtered 2500 

These	flags	control	the	number	of	translations	to	search,	and	the	number	of	intermediate	solutions	to	keep.		
As	a	rule	of	thumb,	these	should	be	about	2	and	10	times	the	number	of	residues	in	the	map,	
respectively.	

Make	note	of	the	following	flag:	

-pos $1 

This	flag	tells	the	code	to	only	search	for	fragments	at	the	assigned	positions.		This	allows	for	parallelization	
of	the	script,	by	running	separate	jobs	for	each	position	in	the	protein.		($1	means	the	script	takes	the	
position	as	an	input	argument).	

For	this	step,	you	need	to	run	the	script	once	for	each	position	in	the	protein.		This	can	be	done	very	simply	
with	the	bash	command	(for	this	case,	the	221	indicates	there	are	221	residues	in	the	protein):	

for i in `seq 1 221`; do ./A_search.sh $i; done 

The	output	of	this	script	is	a	single	file	for	each	position	in	the	protein,	that	identifies	the	placement	
and	configuration	of	each	docked	fragment.		These	files	are	used	as	input	for	the	next	step	of	the	
process.	

However,	as	each	position	runs	independently,	and	each	position	might	take	30	minutes	to	an	hour	
for	the	search,	you	will	probably	want	to	parallelize	this	over	many	processors.	

Job	distribution	

As	this	is	the	most	computationally	intensive	step,	it	makes	sense	to	parallelize	this	step,	by	run	this	
procedure	separately	for	each	position	in	the	protein.		Using	GNU	parallel.	

parallel –j16 ./A_search.sh {} ::: {1..221} 

GNU	parallel	allows	launching	of	jobs	remotely	if	SSH	keys	have	been	set	up	for	passwordless	login.		To	run:	



parallel –S 16/node1,16/node2,16/node3,16/node4 -–workdir . ./A_search.sh {} ::: {1..221} 

This	will	launch	instead	48	jobs	spread	across	four	machines.		See	the	GNU	parallel	documentation	for	more	
information.	

Other	useful	options	

There	are	two	options	controlling	fragment	placement	that	may	also	be	useful	in	cases	where	there	is	some	
previous	knowledge	about	the	structure	in	question.		The	first	of	these	deals	with	the	case	where	the	
backbone	structure	is	known	(or	at	least	somewhat	known)	but	registration	of	the	sequence	with	the	
backbone	model	is	ambiguous.		In	this	case,	a	known	backbone	model	can	be	provided	with	the	flag:	

-ca_positions backbone.pdb 

In	this	case,	the	code	will	only	consider	fragments	centered	on	the	C	alpha	positions	from	the	input	model.		
This	offers	a	significant	speedup	as	well	as	reduced	search	space.	

Alternately,	if	part	of	the	structure	is	known	in	advance,	it	may	be	provided	with	the	flag:	

-startmodel start.pdb 

In	this	case,	the	matching	routine	will	match	only	the	native	fragments	covered	by	start	model,	ensuring	that	
these	positions	will	be	maintained	throughout	the	refinement.		When	using	this	options	there	are	two	
important	things	to	keep	in	mind:	

• The	numbering	in	the	PDB	file	must	match	the	numbering	of	the	input	fasta	
• Any	continuous	segments	shorter	than	9	amino	acids	in	the	input	file	will	get	ignored	

	

Step	4B.		Placed	fragment	scoring	

In	this	step,	we	want	to	take	the	placements	from	the	previous	step	and	score	them	for	compatability.		The	
outputs	from	step	A	are	used	as	inputs	in	this	step	(4_denovo_demo/B_score.sh):	

$ROSETTA3/source/bin/denovo_density.macosclangrelease \ 
 -mode score \ 
 -in::file::silent round1/t20s*silent \ 
 -scorefile round1/scores1 \ 
 -n_matches 50 

	
Highlighted	in	bold	are	the	input	files	(-in::file::silent)	–	the	outputs	from	the	previous	step	–	and	the	score	
file	to	be	written	(-scorefile),	the	output	of	this	step.		If	the	output	is	written	to	a	separate	folder,	you	will	
need	to	point	the	command	line	to	this	alternate	location.	
	
This	step	is	relatively	fast	(less	than	5	minutes)	and	can	be	run	on	a	single	processor.	

Step	4C.		Monte	Carlo	fragment	assembly	

In	the	third	step,	we	use	the	outputs	from	the	previous	two	steps,	and	try	to	generate	a	"maximally	



consistent"	fragment	assignment.		It	uses	Monte	Carlo	sampling	and	a	scorefunction	assessing	fragment	
compatibility	to	identify	this	fragment	set.		The	command	line	(4_denovo_demo/C_assemble.sh):	

$ROSETTA3/source/bin/denovo_density.macosclangrelease \ 
 -mode assemble \ 
 -nstruct 5 \ 
 -in::file::silent round1/t20s*silent \ 
 -scorefile round1/scores1 \ 
 -assembly_weights 4 20 6 \ 
 -null_weight -150 \ 
 -out:file:silent round1/assembled.$1 \ 
 -scale_cycles 1 \ 
 -mute core 

 
As	with	step	B,	the	outputs	of	the	previous	two	steps	need	to	be	provided	as	inputs:	
	
-in::file::silent round1/t20s*silent 
-scorefile round1/scores1 

	
The	script	then	writes	a	single	file	for	each	independent	trajectory:	
	
-out:file:silent round1/assembled.$1 

	
Finally,	each	job	will	generate	several	(in	this	case	5)	independent	trajectories:	
	
-nstruct 5 

	
It	is	recommended	to	generate	a	total	of	1000	independent	trajectories.		As	with	step	A,	this	can	be	
somewhat	time-consuming	(though	not	as	time-consuming	as	step	A).		Therefore	it	is	recommended	to	
parallelize	this	as	before:	
	
parallel –j16 ./C_assemble.sh {} ::: {1..200} 

Or	across	multiple	machines:	

parallel –S 16/node1,16/node2,16/node3,16/node4 -–workdir . ./C_assemble.sh {} ::: {1..200} 

	

Step	4D.		Consensus	assignment	

The	final	step	of	the	protocol	is	to	identify	the	consensus	assignment	from	the	lowest-scoring	Monte	Carlo	
trajectories.		This	is	done	using	the	following	command	(4_denovo_demo/D_consensus.sh):	

$ROSETTA3/source/bin/denovo_density.macosclangrelease \ 
 -mode consensus \ 
 -in::file::silent round1/assembled.*silent \ 
 -consensus_frac 1.0 -energy_cut 0.05 \ 
 -mute core 

The	output	trajectories	of	the	previous	step	are	provided	as	input	to	this	script	with	–in::file::silent.		This	
script	looks	for	a	consensus	assignment	in	the	best-scoring	trajectories,	and	will	output	a	PDB	file,	
S_0001.pdb.	



This	PDB	file	contains	sequence	placed	into	density.		Ideally,	the	model	at	this	point	is	more	than	70%	
complete,	and	this	file	can	then	be	used	as	input	to	RosettaCM	(see	section	3).		If	instead	this	structure	
contains	a	reasonable	partial	model,	but	with	less	than	70%	coverage,	the	iterative	approach	of	the	next	
section	can	further	improve	the	coverage	of	the	partial	model.	

Step	4E.		Iterative	assembly	to	increase	model	coverage	

In	some	cases,	it	may	be	necessary	to	iterate	refinement,	as	subsequent	rounds	of	denovo	building	may	trace	
portions	of	the	model	unable	to	be	placed	in	previous	rounds.		The	following	command	line	illustrates	how	
assembly	may	be	iterated	(4_denovo_demo/E_search_iter.sh):	

$ROSETTA3/source/bin/denovo_density.macosclangrelease \ 
 -in::file::fasta t20sA.fasta \ 
 -fragfile ./t001_.25.9mers \ 
 -startmodel round1_model.pdb \ 
 -mapfile ./T20S_48A_alpha_chainA.mrc \ 
 -n_to_search 250 -n_filtered 1250 -n_output 50 \ 
 -bw 16 \ 
 -atom_mask_min 2 \ 
 -atom_mask 3 \ 
 -clust_radius 3 \ 
 -clust_oversample 4 \ 

-point_radius 3 \ 
 -movestep 1 \ 
 -delR 2 \ 
 -frag_dens 0.8 \ 
 -ncyc 3 \ 
 -min_bb false \ 
 -pos $1 \ 
 -out:file:silent round2/t20s.$1.silent 

 
This	step	is	nearly	identical	to	step	A,	with	two	key	chages	highlighted	in	bold.			The	first	change	indicates	
that		the	output	of	the	previous	step	is	to	be	used	as	an	initial	model:	
	
-startmodel round1_model.pdb 

	
Following	inspection,	this	model	may	also	be	manually	edited	as	well.	
	
The	second	change	makes	sure	the	outputs	don’t	clobber	the	outputs	from	the	previous	step:	
	
-out:file:silent t20s.rd2.$1.silent 

	
As	with	step	A,	this	should	be	parallelized	over	many	processors,	e.g,	using	GNU	parallel:	
	
parallel –S 16/node1,16/node2,16/node3,16/node4 -–workdir . ./	E_search_iter.sh {} ::: {1..221} 
	

Once	complete,	steps	B,C,	and	D	may	be	then	followed	in	order,	making	sure	that	the	input	and	output	files	
are	updated	to	indicate	the	round	2	models.	
	

NOTE:	At	each	step,	be	certain	that	your	outputs	are	not	overwriting	one	another.		Once	the	partial	model	
has	been	calculated,	it	is	safe	to	delete	the	intermediate	files	created	as	part	of	the	construction	process.		In	
this	case,	the	same	output	file	names	may	be	reused	(thus,	the	same	scripts	can	be	used	for	each	iteration	
aside	from	the	first).	
	
	
	


