
3)	Model	rebuilding	guided	by	experimental	density	data	

In	this	scenario,	we	introduce	a	tool,	RosettaCM,	for	building	missing	portions	of	a	model	guided	by	density	
data.	While	primarily	geared	towards	comparative	modeling,	it	may	also	be	useful	for	building	portions	of	a	
protein	that	are	disordered	when	crystallized	or	difficult	regions	in	hand-built	models.	In	this	scenario,	we	
introduce	the	basic	rebuilding	protocol,	then	show	how	the	tool	may	also	be	used	to:	

• Combine	pieces	from	multiple	template	models	guided	by	density		
• Rebuild	with	user-defined	restraints		
• Iteratively	rebuild	models	in	difficult	cases	difficult	cases	�	

As	a	running	example,	we	use	the	20S	proteasome	(Xueming	Li	et	al.,	Nature	Methods,	2013),	where	only	a	
subset	of	particles	were	used,	resulting	in	a	4.1Å	reconstruction.	We	are	building	models	starting	from	a	
homologous	structure	(pdb	id:	1iru)	as	the	starting	model	(25%/32%	sequence	identity	to	chains	A/B).	�	

Example	3A:	Preparing	templates	for	use	in	RosettaCM		

In	many	cases,	much	of	the	setup	work	is	handled	by	a	script,	setup_RosettaCM.py	in	RosettaTools	(a	separate	
repository	available	from	rosettacommons.org).	This	script	takes	an	input	alignment	in	a	variety	of	formats,	
and	prepares	the	inputs	automatically.	It	is	executed	by	running	the	command:	�	

setup_RosettaCM.py \
-–fasta t20s.fasta \
--alignment tmpl.fasta \
--alignment_format fasta \
--templates tmpl.pdb \
--rosetta_bin ~/Rosetta/main/source/bin \
--verbose

Inputs	include	the	full-length	fasta,	an	alignment	file	–	in	either	fasta,	ClustalW,	or	HHSearch	format	–	and	the	
corresponding	template	PDB	files.	This	script	will	prepare	all	the	necessary	inputs	in	order	to	run	
RosettaCM.		

Alternately,	the	setup	may	be	performed	manually.	In	this	case,	since	we	are	using	some	nonstandard	
features	(symmetry	and	density),	and	we	have	two	chains	in	the	asymmetric	unit	we	will	do	this;	alternately,	
the	inputs	from	the	previous	step	may	be	used	as	a	starting	point	and	subsequently	modified.		In	this	case,	
we	first	convert	our	alignment	to	Rosetta	format	(scenario2_model_rebuilding/20S_1iru.ali):	�	

1XXX_ 1iruAH_thread
hhsearch
scores_from_program: 0 1.00
0 TVFSPDGRLFQVEYAREAVKK-GSTALGMKFANGVLLISDKKVRSRLIEQNSIEKIQLIDDYVAAVTSGLVADAR...
0 TIFSPEGRLYQVEYAFKAINQGGLTSVAVRGKDCAVIVTQKKVPDKLLDSSTVTHLFKITENIGCVMTGMTADSR...
--

In	this	format,	the	first	line	is	'##'	followed	by	a	code	for	the	target	and	one	for	the	template.	The	second	line	
identifies	the	source	of	the	alignment;	the	third	just	keep	as	it	is.	The	fourth	line	is	the	target	sequence	and	
the	fifth	is	the	template;	the	number	is	an	'offset',	identifying	where	the	sequence	starts.	However,	the	
number	doesn't	use	the	PDB	resid	but	just	counts	residues	starting	at	0.	The	sixth	line	is	'--'.	Multiple	
alignments	may	be	concatenated	in	a	single	file,	with	the	template	code	identifying	the	template	
corresponding	to	each	alignment.		

RosettaCM	takes	as	inputs	partially	threaded	models,	that	is	models	where	aligned	positions	have	their	

residue	identities	remapped,	and	unaligned	residues	are	not	present.	To	generate	these	models	from	an	
alignment	file	and	template,	we	can	run	the	Rosetta	command	(3_model_rebuilding/A_partialthread.sh):	

$ROSETTA3/source/bin/ partial_thread.macosclangrelease \
 -database $ROSETTA3/database/ \
 -in::file::fasta t20s.fasta \
 -in::file::alignment 20S_1iru.ali \
 -in::file::template_pdb 1iruAH_aln.pdb

This	will	output	a	partially	threaded	model	in	1iruA_thread.pdb	that	is	correctly	numbered	for	input	into	
RosettaCM.	

Next,	we	need	to	set	up	symmetric	modeling	with	RosettaCM.	As	in	Scenario	1,	we	use	the	
make_symmdef_file.pl	script	in	order	to	generate	a	symmetry	definition	file	for	use	in	Rosetta.	A	
straightforward	way	to	do	so	is	to	use	Chimera	to	dock	the	necessary	chains	into	density.	We	need	a	single	
"primary	chain"	and	a	couple	of	an	adjacent	chain	in	each	point	group;	since	the	proteasome	features	D7	
symmetry,	that	means	we	need	an	adjacent	chain	in	the	7-fold	complex,	as	well	as	a	chain	in	the	opposite	
ring.	An	example	has	been	created	in	scenario2_model_rebuilding/setup_symm.pdb	where	three	copies	of	the	
threaded	model	have	been	docked	into	density	with	Chimera.	To	generate	our	D7	symmetry	file	from	this	
input,	we	then	simply	have	to	run	the	command	(3_model_rebuilding/B_make_symmdef.sh):	

~/rosetta_source/src/apps/public/symmetry/make_symmdef_file.pl \
 -m NCS -a A -i B C \
 -p setup_symm.pdb –r 1000 > D7.symm

Since	we	have	already	created	the	input	templates	using	the	partial_thread	application,	we	can	ignore	the	
setup_symm_INPUT.pdb	file	and	use	the	output	of	partial	thread	as	the	input.	However,	we	still	need	to	align	
all	the	threaded	models	to	this	input	structure.	This	can	either	be	done	with	the	program	TMalign	(external	
to	Rosetta)	or	by	using	Chimera	to	dock	the	individual	threaded	models	into	density.	In	this	case,	where	we	
have	just	one	template,	it	has	already	been	aligned	to	the	template	in	
scenario2_model_rebuilding/tmpl_thread_aln.pdb.	

As	in	Scenario	1,	we	need	to	make	a	small	edit	to	the	symmetry	definition	file	for	density	refinement.	Change	
the	following	lines:	

set_dof JUMP0_0_to_com x(35.3434689631743)
set_dof JUMP0_0_to_subunit angle_x angle_y angle_z
set_dof JUMP0_0 x(39.2905097135684) angle_x

To	(3_model_rebuilding/D7_edit.symm):	

set_dof JUMP0_0_to_com x y z
set_dof JUMP0_0_to_subunit angle_x angle_y angle_z

Note:	The	20S	proteasome	case	we	are	using	contains	two	chains	in	the	asymmetric	unit.	To	specify	this	as	
inputs	to	RosettaCM,	we	need	to	list	the	fasta	file,	separating	the	chains	by	the	slash	character	‘/’.	This	is	
really	only	necessary	in	the	fasta	provided	as	input	to	RosettaCM	(next	step)	however,	there	is	no	harm	is	
doing	this	in	every	step.	

Example	3B:	Running	RosettaCM	using	a	single	template	model	as	input.	

Like	the	methods	introduced	in	Scenario	1,	RosettaCM	is	controlled	through	an	XML	script	using	
RosettaScripts.	The	XML	is	as	follows	(3_model_rebuilding/C_rosettaCM_singletarget.xml):	

<ROSETTASCRIPTS>
 <TASKOPERATIONS>
 </TASKOPERATIONS>
 <SCOREFXNS>
 <ScoreFunction name="stage1" weights="score3" symmetric="1">
 <Reweight scoretype="atom_pair_constraint" weight="0.1"/>
 <Reweight scoretype="elec_dens_fast" weight="10"/>
 </ScoreFunction>
 <ScoreFunction name="stage2" weights="score4_smooth_cart" symmetric="1">
 <Reweight scoretype="atom_pair_constraint" weight="0.1"/>
 <Reweight scoretype="elec_dens_fast" weight="10"/>
 </ScoreFunction>
 <ScoreFunction name="fullatom" weights="beta_cart" symmetric="1">
 <Reweight scoretype="atom_pair_constraint" weight="0.1"/>
 <Reweight scoretype="elec_dens_fast" weight="35"/>
 <Set scale_sc_dens_byres="R:0.76,K:0.76,E:0.76,D:0.76,M:0.76,
 C:0.81,Q:0.81,H:0.81,N:0.81,T:0.81,S:0.81,Y:0.88,W:0.88,
 A:0.88,F:0.88,P:0.88,I:0.88,L:0.88,V:0.88"/>
 </ScoreFunction>
 </SCOREFXNS>
 <FILTERS>
 </FILTERS>
 <MOVERS>
 <Hybridize name="hybridize" stage1_scorefxn="stage1" stage2_scorefxn="stage2"
 fa_scorefxn="fullatom" batch="1" stage1_increase_cycles="1.0"
 stage2_increase_cycles="1.0" linmin_only="0" realign_domains="0">
 <Template pdb="1iruA_thread.pdb" weight="1.0"
 cst_file="AUTO" symmdef="D7_edit.symm"/>
 </Hybridize>
 </MOVERS>
 <PROTOCOLS>
 <Add mover="hybridize"/>
 </PROTOCOLS>
</ROSETTASCRIPTS>

The	main	work	is	done	through	a	single	mover,	Hybridize	which	handles	all	stages	of	model-building.	Input	
structures	are	specified	via	Template	lines	(in	this	case	there	is	only	one).	For	each	template	line,	we	specify	
the	pdb	input,	as	well	as	a	couple	of	other	parameters:	a	weight	(the	relative	frequency	we	sample	each	
template	with);	a	constraint	file	(setting	this	to	"auto"	sets	up	automatic	constraints	to	the	template,	while	
setting	this	to	"none"	turns	off	all	constraints,	user-defined	constraints	are	described	later);	and	an	
(optional)	symmetry	definition	file.	

Note:	Be	sure	that	your	templates	are	aligned	to	the	density!	

Given	this	XML,	RosettaCM	is	then	run	with	the	following	command	line	(3_model_rebuilding/	
B1_rosettaCM_singletarget.sh):	

$ROSETTA3/source/bin/rosetta_scripts.macosclangrelease \
 -database $ROSETTA3/database/ \
 -in:file:fasta t20s.fasta \
 -parser:protocol C_rosettaCM_singletarget.xml \
 -nstruct 50 \
 -relax:jump_move true \
 -relax:dualspace \
 -out::suffix _singletgt \
 -edensity::mapfile t20S_41A_half1.mrc \
 -edensity::mapreso 5.0 \
 -edensity::cryoem_scatterers \
 -beta \
 -default_max_cycles 200

The	input	command	is	similar	to	those	seen	before,	but	with	a	few	key	differences.	First,	the	input	to	Rosetta	

is	specified	with	-in:file:fasta	rather	than	-in:file:s.		Also	note	that	the	input	argument	–nstruct	50	is	given,	
telling	Rosetta	to	generate	50	models	for	each	process.		Generally,	hundreds	to	thousands	of	models	are	
necessary	to	sufficiently	sample	conformational	space;	more	and	longer	regions	to	rebuild	require	more	
models.	

Running	without	symmetry	

Running	without	symmetry	requires	only	two	small	changes	to	the	XML	file:	
• Remove	the	tag:		symmdef="D7_edit.symm"	
• Remove	the	three	tags	symmetric=1	

Job	distribution	

As	with	section	2,	a	combination	of		-out::suffix	and	GNU	parallel	is	useful	for	distributing	jobs.		For	example,	
one	may	replace	the	–out::suffix	line	above	with	–out::suffix	_$1,	then	launch	jobs	with:	

parallel –j16 ./	B1_rosettaCM_singletarget.sh {} ::: {1..16}

The	total	number	of	structures	generated	is	the	number	of	structures	specified	with	–nstruct	times	the	
number	of	jobs	launched	(in	this	instance,	50	structure	times	16	jobs	=	800	structures).		Depending	on	the	
runtime	per	structure	(variable	depending	on	structure	size)	and	the	number	of	CPUs	available,	both	of	these	
numbers	may	be	adjusted.	

Finally,	GNU	parallel	allows	launching	of	jobs	remotely	if	SSH	keys	have	been	set	up	for	passwordless	login.		
To	run:	

parallel –S 16/node1,16/node2,16/node3,16/node4 -–workdir . ./	B1_rosettaCM_singletarget.sh {}
::: {1..48}

This	will	launch	instead	48	jobs	spread	across	four	machines.		See	the	GNU	parallel	documentation	for	more	
information.r	

Example	3C:	Running	RosettaCM	using	multiple	template	models	as	input.	

One	of	the	strengths	of	RosettaCM	is	its	ability	to	make	use	of	multiple	template	structures,	and	to	recombine	
portions	of	these	models	during	conformational	sampling.	This	is	particularly	useful	when	multiple	
homologous	structures	are	available,	some	with	closer	sequence	identity,	and	some	with	more	complete	
coverage.	The	protocol	allows	the	combination	of	features	of	both	models.	

To	make	use	of	this	feature,	we	simply	add	additional	template	lines	in	the	input	XML.	In	this	case,	we	add	
the	template	1ryp	(scenario3_model_rebuilding/	C1_rosettaCM_multitarget.xml):	

	...
 <Hybridize name="hybridize" stage1_scorefxn="stage1" stage2_scorefxn="stage2"
 fa_scorefxn="fullatom" batch="1" stage1_increase_cycles="1.0"
 stage2_increase_cycles="1.0" linmin_only="0" realign_domains="0">
 <Template pdb="1iruA_thread.pdb" weight="1.0"
 cst_file="auto" symmdef="D7_edit.symm"/>
 <Template pdb="1rypA_thread.pdb" weight="1.0"
 cst_file="auto" symmdef="D7_edit.symm"/>
 </Hybridize>
...

The	rest	is	handled	automatically	by	the	protocol.	However,	there	are	a	few	caveats	when	using	multiple	

input	structures:	

• With	density,	we	need	to	ensure	that	all	input	models	are	aligned	to	the	density.	This	can	be	done	
using	either	TMalign	or	Chimera’s	alignment	tools.		

• In	each	trajectory,	a	starting	model	is	chosen	at	random;	the	constraints	and	symmetry	from	this	
selected	model	are	chosen	at	the	start	of	each	run.	If	we	wish	to	use	a	portion	of	a	model,	but	do	
not	want	to	use	its	symmetry	or	constraints,	we	can	assign	it	a	weight	of	0:	backbone	
conformations	from	this	model	will	be	used	in	conformational	sampling,	but	the	symmetry	and	
constraints	will	never	be	used.		

• Similarly,	gaps	in	the	selected	starting	model	are	rebuilt	before	recombination	occurs.	If	one	of	the	
templates	has	poor	coverage,	but	provides	valuable	structural	features,	it	should	be	used,	but	

with	weight	0.		

Example	3D:	Running	RosettaCM	with	user	specified	constraints.	

Another	strength	of	RosettaCM	is	the	ability	to	make	use	of	additional	experimental	information	that	
provides	restraints	over	conformational	space.	While	previously,	we	have	used	cst_file=auto	to	automatically	
generate	constraints	from	template	structures,	if	experiments	provide	distance	constraints	(or	some	other	
positional	restraint,	we	may	make	use	of	them	in	model	rebuilding	as	well.	

The	Rosetta	documentation	provides	a	good	overview	of	the	types	of	constraints	that	may	be	used,	with	a	
number	of	different	constraint	types	and	functional	forms	possible.	For	this	demo,	we	will	assume	we	have	
knowledge	on	the	distance	between	residues	107	and	143	that	we	want	to	use	during	rebuilding.	

This	information	can	be	encoded	in	a	constraint	file	(scenario3_model_rebuilding/D1_constraints.cst):		

AtomPair CA 107 CA 143 HARMONIC 5.0 1.0

Note:	The	numbering	of	residues	is	based	upon	the	order	in	the	input	fasta	file	(and	does	not	reset	between	
chains!).	

We	then	replace	the	cst_file=auto	lines	in	the	XML	with	our	own	constraint	file	
(scenario3_model_rebuilding/D1_constraints.xml):	

...
 <Template pdb="tmpl_thread_aln.pdb" weight="1.0"
 cst_file="D1_constraints.cst" symmdef="D7_edit.symm"/>
...

We	can	then	rebuild	and	refine	as	before.	

Example	3E:	Model	selection	and	running	RosettaCM	iteratively	

With	possibly	hundreds	of	generated	models,	there	are	a	few	strategies	to	identify	the	best-sampled	models.	
Generally,	models	should	be	filtered	on	two	different	criteria	–	the	total	score	and	the	density	score	–	in	some	
way.	We	often	select	the	best	10-20%	of	models	based	on	total	score,	and	the	sort	these	models	by	density	
score,	but	visual	inspection	of	the	best	by	both	criteria	can	often	be	beneficial	in	difficult	cases.	

Finally,	one	strategy	for	solving	difficult	structures	is	to	apply	RosettaCM	iteratively.	Using	the	above	criteria,	
we	can	select	the	best	5-10	models	from	the	first	round	of	refinement,	and	feed	them	as	inputs	into	the	next	
round.		Models	can	be	selected	by	energy	by	looking	at	the	score	column	in	the	output	.sc	files.	

This	is	very	briefly	illustrated	in	the	following	XML	(scenario3_model_rebuilding/E1_rosettaCM_iter.xml):	

 ...
 <Hybridize name="hybridize" stage1_scorefxn="stage1" stage2_scorefxn="stage2"
 fa_scorefxn="fullatom" batch="1">
 <Template pdb="expected_outputs/S_multitgt_0001_A.pdb" weight="1.0"
 cst_file="NONE" symmdef="D7_edit.symm"/>
 <Template pdb="expected_outputs/S_multitgt_0002_A.pdb" weight="1.0"
 cst_file="NONE" symmdef="D7_edit.symm"/>
 <Template pdb="expected_outputs/S_multitgt_0003_A.pdb" weight="1.0"
 cst_file="NONE" symmdef="D7_edit.symm"/>
 </Hybridize>
...

There	is	also	some	manipulation	of	input	models	that	can	prove	beneficial.	If	one	wants	to	force	rebuilding	
some	segment	of	backbone,	they	can	simply	delete	those	residues	in	all	input	models.	Similarly	if	one	wants	
to	force	some	region	to	adopt	a	conformation	taking	in	one	input	model,	they	can	delete	all	other	
conformations	from	all	models.	

Example	3F:	Running	with	Ligands	and/or	Nucleic	Acids	

RosettaCM	can	be	run	with	ligands	as	well	as	nucleic	acids.		While	nucleic	acids	are	read	by	Rosetta	natively,	
ligands	require	an	additional	input	to	Rosetta,	a	params	file.	

For	ligands,	a	mol2	file	of	the	ligand	which	contains	hydrogen	atoms	is	required.		The	program	OpenBabel	
(http://openbabel.org/wiki/Main_Page)	is	capable	of	both	converting	from	PDB	to	mol2	as	well	as	adding	
hydrogens	to	a	molecule	given	a	PDB	file	of	the	ligand.	

Given	a	mol2	file,	molfile_to_params.py,	included	in	Rosetta,	at	$ROSETTA3/source/scripts/python/public/	
will	generate	a	params	file.		To	use:	

python $ROSETTA3/source/scripts/python/apps/public/molfile_to_params.py \
--keep-names --clobber –centroid XXX.mol2 -p XXX -n XXX

Replace	"XXX"	with	the	ligands	three	letter	code.		This	script	will	create	an	XXX.params	file	as	well	as	several	
other	files.		This	file	can	be	passed	into	Rosetta	using	the	flag:	
	
-extra_res_fa XXX.fa.params
-extra_res_cen XXX.cen.params

	
If	there	is	more	than	one	unique	ligand,	run	the	script	on	each	unique	ligand,	and	pass	a	list	of	params	files	
using	each	of	the	flags.	
	
When	modelling	with	ligands	or	nucleic	acids	in	RosettaCM,	two	additional	things	are	needed:	
1.	The	ligand	or	nucleic	acids	must	be	added	to	the	END	of	each	template	file	with	a	weight	>	0	
2.	An	additional	flag	needs	to	get	added	to	Hybridize:	
<Hybridize name="hybridize" stage1_scorefxn="stage1" stage2_scorefxn="stage2"
 fa_scorefxn="fullatom" batch="1" add_hetatm="1">

	
	 	

