
2)	Model	refinement	via	iterative	local	rebuilding	

In	this	section,	we	introduce	our	cryoEM	refinement	protocol,	which	uses	an	iterative	local	rebuilding	
procedure	to	escape	local	minima	during	refinement.		The	section	is	divided	into	two	parts,	in	the	first,	we	
introduce	the	method	for	non-symmetric	systems;	in	the	second,	we	describe	how	to	use	this	method	for	
symmetric	systems.	

As	a	running	example,	we	refine	models	of	the	transmembrane	region	of	the	TRPV1	ion	channel,	using	a	3.4	
Å	cryoEM	single	particle	reconstruction	(M.	Liao,	E.	Cao,	D.	Julius,	Y.	Cheng,	Nature,	2013),	and	the	deposited	
model	(id:	3j5p)	as	a	starting	model.	We	will	first	refine	this	asymmetrically,	and	then	introduce	symmetric	
refinement.	�	

Example	2A:	Asymmetric	refinement	into	cryoEM	density	�	

A	summary	of	the	XML	used	for	refinement	(2_cryoem_refinement/A_asymm_refine.xml)	is	shown	below.	
Following,	a	brief	description	of	the	movers	and	options	available	is	provided.		

<ROSETTASCRIPTS>
 <SCOREFXNS>
 <ScoreFunction name="cen" weights="score4_smooth_cart">
 <Reweight scoretype="elec_dens_fast" weight="20"/>
 </ScoreFunction>
 <ScoreFunction name="dens_soft" weights="beta_soft">
 <Reweight scoretype="cart_bonded" weight="0.5"/>
 <Reweight scoretype="pro_close" weight="0.0"/>
 <Reweight scoretype="elec_dens_fast" weight="%%denswt%%"/>
 </ScoreFunction>
 <ScoreFunction name="dens" weights="beta_cart">
 <Reweight scoretype="elec_dens_fast" weight="%%denswt%%"/>
 <Set scale_sc_dens_byres="R:0.76,K:0.76,E:0.76,D:0.76,M:0.76,
 C:0.81,Q:0.81,H:0.81,N:0.81,T:0.81,S:0.81,Y:0.88,W:0.88,
 A:0.88,F:0.88,P:0.88,I:0.88,L:0.88,V:0.88"/>
 </ScoreFunction>
 </SCOREFXNS>
 <MOVERS>
 <SetupForDensityScoring name="setupdens"/>
 <LoadDensityMap name="loaddens" mapfile="%%map%%"/>

 <SwitchResidueTypeSetMover name="tocen" set="centroid"/>

 <MinMover name="cenmin" scorefxn="cen" type="lbfgs_armijo_nonmonotone"
 max_iter="200" tolerance="0.00001" bb="1" chi="1" jump="ALL"/>

 <CartesianSampler name="cen5_50" automode_scorecut="-0.5" scorefxn="cen"
 mcscorefxn="cen" fascorefxn="dens_soft" strategy="auto" fragbias="density"
 rms="%%rms%%" ncycles="200" fullatom="0" bbmove="1" nminsteps="25" temp="4"
 fraglens="7" nfrags="25"/>
 <CartesianSampler name="cen5_60" automode_scorecut="-0.3" scorefxn="cen"
 mcscorefxn="cen" fascorefxn="dens_soft" strategy="auto" fragbias="density"
 rms="%%rms%%" ncycles="200" fullatom="0" bbmove="1" nminsteps="25" temp="4"
 fraglens="7" nfrags="25"/>
 <CartesianSampler name="cen5_70" automode_scorecut="-0.1" scorefxn="cen"
 mcscorefxn="cen" fascorefxn="dens_soft" strategy="auto" fragbias="density"
 rms="%%rms%%" ncycles="200" fullatom="0" bbmove="1" nminsteps="25" temp="4"
 fraglens="7" nfrags="25"/>
 <CartesianSampler name="cen5_80" automode_scorecut="0.0" scorefxn="cen"
 mcscorefxn="cen" fascorefxn="dens_soft" strategy="auto" fragbias="density"
 rms="%%rms%%" ncycles="200" fullatom="0" bbmove="1" nminsteps="25" temp="4"
 fraglens="7" nfrags="25"/>

 <ReportFSC name="report" testmap="%%testmap%%" res_low="10.0" res_high="%%reso%%"/>

 <BfactorFitting name="fit_bs" max_iter="50" wt_adp="0.0005" init="1" exact="1"/>

 <FastRelax name="relaxcart" scorefxn="dens" repeats="1" cartesian="1"/>
 </MOVERS>

 <PROTOCOLS>
 <Add mover="setupdens"/>
 <Add mover="loaddens"/>
 <Add mover="tocen"/>
 <Add mover="cenmin"/>
 <Add mover="relaxcart"/>
 <Add mover="cen5_50"/>
 <Add mover="relaxcart"/>
 <Add mover="cen5_60"/>
 <Add mover="relaxcart"/>
 <Add mover="cen5_70"/>
 <Add mover="relaxcart"/>
 <Add mover="cen5_80"/>
 <Add mover="relaxcart"/>
 <Add mover="relaxcart"/>
 <Add mover="report"/>
 </PROTOCOLS>
 <OUTPUT scorefxn="dens"/>

</ROSETTASCRIPTS>

The	protocol	is	a	bit	involved,	but	is	described	in	the	following.		The	first	thing	to	note	is	the	use	of	macros	
like	"%%denswt%%".		These	are	command	arguments	that	may	be	specified	from	the	command	line	through	
the	flag	–parser::script_vars	denswt=25.0.		The	protocol	above	uses	these	macros	in	place	of	parameters	that	
users	would	most	like	to	change;	other	parameters	should	be	left	as	is	except	for	advanced	users.	

The	main	addition	is	the	CartesianSampler	mover.	This	mover	iteratively	locally	rebuilds	the	structure	in	
user-specified	or	automatically	determined	regions.		A	brief	description	of	the	arguments	to	this	mover:	

name="cen5_70":	the	name	of	the	mover,	referred	to	in	the	<PROTOCOLS>	block	(this	can	be	anything)	
strategy="auto":	the	strategy	to	use	in	selecting	what	to	rebuild.		One	of:	

• auto:	select	regions	automatically	based	on	density	fit	&	local	strain	(using	the	cutoff	in	
automode_scorecut,	e.g.,	automode_scorecut="-0.1")	

• user:	manually	specify	residues	(using	the	flag	residues,	e.g.,	residues="32A-48A")	
• rama:	select	regions	automatically	based	on	rama	score	only	

	

rms="1.5":	the	cutoff	on	similarity	when	locally	rebuilding.		Increasing	this	value	will	increase	model	
diversity	(allowing	worse	starting	models	to	be	refined	but	requiring	additional	sampling)	

ncycles="200":	the	number	of	rebuilding	cycles	to	consider.		Increasing	this	will	increase	runtime	and	
slightly	increase	model	diversity.	

fraglens="7":	the	segment	length	to	replace.		This	must	be	an	odd	number	from	5-13,	and	increasing	this	
value	will	increase	model	diversity	significantly.	

	

The	remaining	options	should	never	be	changed.	

Another	option	is	passed	to	the	density	scoring	via	the	<Set	scale_sc_dens_byres=.../>	tag.	In	the	refinement	
protocol,	this	sets	a	per-amino-acid	sidechain	reweighing.		The	weights	shown	in	this	example	were	
determined	by	fitting	these	parameters	into	refined	structures	into	several	3-5Å	cryoEM	density	maps;	the	
end	result	is	a	slight	downweighing	of	sidechain	density,	particularly	for	charged	sidechains.		This	should	not	
be	changed	except	by	advanced	users.	

The	MinMover	first	minimizes	the	structure	using	a	low-resolution	energy	function	(cen).	We	have	found	this	
step	is	most	useful	for	improving	protein	backbone	geometry,	particularly	with	hand-traced	models.	This	
low-resolution	scorefunction	uses	the	centroid	representation,	which	is	enabled	by	the	SwitchResidueTypeSet	
mover.	

The	FitBFactors	mover	fits	real-space	atomic	B	factors	to	maximize	model-map	correlation.	A	constraint	
enforcing	nearby	atoms	to	take	the	same	B	factors	is	also	employed,	and	the	weight	on	this	term	is	controlled	
with	the	wt_adp	term	(0.0005	is	generally	well-behaved).	Finally,	init=1	means	to	do	a	quick	scan	of	overall	B	
factors	before	beginning	refinement;	if	there	is	more	than	one	call	to	this	mover	in	a	single	trajectory,	then	
only	the	first	needs	to	have	init=1.	Exact=1	should	always	be	used.	

Finally,	the	ReportFSC	mover	assesses	model	agreement	to	the	map	used	for	fitting	as	well	as	an	independent	
map	using	the	integrated	FSC	over	high-resolution	shells.		We	have	found	integrating	from	10Å	to	the	
resolution	of	the	data	is	best	for	model	discrimination.	

Finally,	this	command	is	executed	using	the	following	(scenario2_cryoem_refinement/A_asymm_refine.sh):	

$ROSETTA3/source/bin/rosetta_scripts.macosclangrelease \
 -database $ROSETTA3/database/ \
 -in::file::s 3j5p_transmem_A.pdb \
 -parser::protocol A_asymm_refine.xml \
 -parser::script_vars denswt=35 rms=1.5 reso=3.4 map=half1_34A.mrc testmap=half2_34A.mrc \
 -ignore_unrecognized_res \
 -edensity::mapreso 3.4 \
 -default_max_cycles 200 \
 -edensity::cryoem_scatterers \
 -beta \
 -out::suffix _asymm \
 -crystal_refine

In	bold	are	the	parameters	that	should	be	changed	in	adapting	this	run	for	other	systems.		The	first	is	the	
input	structure,	which	should	be	specified	with	the	argument	–in::file::s.		The	second	are	the	parameters	to	
be	passed	through	to	the	script	(using	the	macro	replacement	machinery	of	RosettaScripts).		Three	of	these	
describe	the	input	maps:	

map=half1_34A.mrc	–	the	map	to	refine	against	
testmap=half2_34A.mrc	–	an	independent	map	for	validation		

(if	not	using	split	maps,	just	provide	the	same	map	as	the	previous	argument)	
reso=3.4	–	the	resolution	of	the	data		

(note	that	this	needs	to	be	provided	twice	in	the	command	line,	once	for	scoring	and	once	for	
reporting)	

The	other	two	are	parameters	to	the	algorithm:	
denswt=35	–	the	weight	on	the	experimental	density	data	
rms=1.5	–	the	amount	of	deviation	to	allow	in	fragment	insertion	moves	

(larger	values	will	lead	to	more	model	deviation)	

The	density	weight	of	25	works	reasonably	well	as	a	starting	point,	but	one	might	want	to	explore	several	
different	values	using	an	independent	reconstruction.		Manual	inspection	of	output	models	for	molprobity	
score,	free	FSC,	and	(free	FSC	–	work	FSC)	should	provide	clues	as	to	which	weight	works	best.	

A	description	of	much	of	the	work	in	this	section	is	described	in	the	reference:	

Wang	RY,	Song	Y,	Barad	BA,	Cheng	Y,	Fraser	JS,	DiMaio	F.		Automated	structure	refinement	of	
macromolecular	assemblies	from	cryo-EM	maps	using	Rosetta.	Elife.	2016	Sep	26;5.	pii:	e17219.	

	

Job	distribution	

It	is	generally	useful	to	sample	~100	models	from	each	starting	point.		For	this	purpose,	it	may	be	useful	to	
run	multiple	jobs	in	parallel.		To	prevent	output	structures	from	clobbering	one	another,	the	flag	–out::suffix	
may	be	useful,	where	each	separate	job	is	given	a	different	suffix.	

For	example,	on	a	16-core	machine,	we	may	specify	-out::suffix	_$1,	then	(using	GNU	parallel)	run	the	
following:	

parallel –j16 ./	A_asymm_refine.sh {} ::: {1..16}

Finally, GNU parallel allows launching of jobs remotely if SSH keys have been set up for passwordless login. To
run:

parallel –S 16/node1,16/node2,16/node3,16/node4 –-workdir . ./	B1_rosettaCM_singletarget.sh {}
::: {1..48}

This	will	launch	instead	48	jobs	spread	across	four	machines.		See	the	GNU	parallel	documentation	
(https://www.gnu.org/software/parallel/)	for	more	information.	

Analyzing	results	and	model	selection	

While	this	is	an	active	topic	of	research,	generally	–	once	a	density	weight	has	been	chosen	–	to	select	the	
best	models	from	among	the	full	set,	we	want	to	select	models	optimizing	both	model	geometry	and	free	FSC	
values.		Model	geometry	may	be	evaluated	using	either:	a)	Molprobity,	or	b)	Rosetta	energies	after	
subtracting	density	energies.		The	latter	may	be	done	by	inspecting	the	score*.sc	files	produced	as	output.	

Using	the	above	script,	the	free	FSC	value	may	be	determined	from	the	output	PDB	files.		The	header	contains	
a	line	like:	

REMARK 1 FSC[mask=4.45657](10:3) = 0.590966 / 0.591017

The	two	numbers	at	the	end	of	the	line	indicate	the	"work"	and	"free"	integrated	FSC	values.	

Generally,	we	select	the	best	20%	of	models	by	geometry,	and	selecting	the	best	overall	by	free	FSC.		

The	top	5	models	should	be	inspected	for	model	convergence	as	well	as	visually	inspected	for	density	

map	agreement.	

Example	2B:	Symmetric	refinement	into	cryoEM	density	�	

As	this	is	a	symmetric	system,	to	correctly	evaluate	the	energetics	of	the	system,	we	need	to	model	with	
symmetry-related	copies	present.	This	may	be	done	through	a	two-step	process:	first,	we	run	the	
make_symmdef_file.pl	script	to	prepare	a	description	of	the	symmetry	of	the	system	in	a	Rosetta-readable	
format.	Next,	we	enable	symmetric	scoring	and	optimization	within	the	XML	file.	

The	information	that	Rosetta	needs	to	know	about	a	symmetric	system	is	encoded	in	the	symmetry	definition	
file.	It	tells	Rosetta:	(a)	how	to	score	a	structure	symmetrically	from	only	asymmetric	unit	interactions,	and	
(b)	how	the	rigid-body	degrees	of	freedom	are	allowed	to	move	to	maintain	the	symmetry	of	the	system.	

To	aid	in	creating	a	symmetry	definition	file	from	a	symmetric	(or	near-symmetric)	PDB,	an	application,	

make_symmdef_file.pl,	has	been	included	in	src/apps/public/symmetry.	To	generate	the	
symmetry�definition	file	for	TRPV1,	we	run	the	command	in	2_cryoem_refinement/B1_make_symmdef.sh.	

$ROSETTA3/source/src/apps/public/symmetry/make_symmdef_file.pl \
 -m NCS -a A -i B \
 -p 3j5p_transmem.pdb –r 1000 > TRPV1.symm

This	script	needs	a	few	pieces	of	information:	with	–m,	the	type	of	symmetry	to	generate	(here	NCS),	with	–a,	
the	primary	chain	(here	A),	and	with	–i,	an	adjacent	chain	in	each	symmetry	group,	separated	by	spaces	(here	
just	B).	For	Cn	symmetries,	only	one	adjacent	chain	is	given;	for	Dn,	two	are	given.	Finally,	with	–r,	we	give	
the	contact	distance	between	a	neighbor	chain	and	the	primary	chain	necessary	to	include	that	subunit	
explicitly	(here,	1000,	to	ensure	every	symmetrically	related	copy	is	included).	If	the	input	system	is	
asymmetric,	the	script	will	make	a	symmetrical	version	of	it	(sometimes	significantly	perturbing	it	in	the	
process).	There	are	a	lot	of	other	options,	including	forcing	symmetrical	order	and	helical	and	higher-order	
symmetries,	see	the	documentation!	

In	addition	to	the	definition	file	written	to	STDOUT,	the	script	will	also	write	a	file	
3j5p_transmem_symm.pdb,	containing	the	symmetrized	version	of	the	input	file,	and	a	file	
3j5p_transmem_INPUT.pdb,	that	contains	only	the	mainchain,	to	be	used	as	input	(in	addition	to	the	
symmetry	definition	file).	

The	symmetry	definition	file	looks	something	like	this:	

symmetry_name TRPV1__4
E = 4*VRT0_base + 4*(VRT0_base:VRT3_base) + 2*(VRT0_base:VRT2_base) anchor_residue CoM
...
set_dof JUMP0_to_com x(11.7023996817515)
set_dof JUMP0_to_subunit angle_x angle_y angle_z
...

The	omitted	sections	describe	a	system	of	virtual	residues	that	maintain	the	symmetry	of	the	system,	and	
they	generally	should	remain	unedited.	

The	two	set_dof	lines	should	be	edited.	There	are	two	possibilities	when	refining	symmetric	structures	into	
density:	

A)	we	don’t	want	to	refine	the	rigid	body	orientation	of	the	entire	system;		
we	know	the	symmetry	axes	and	we	don’t	want	them	to	move	

B)	we	do	want	to	refine	the	orientation	of	the	entire	system,	including	symmetry	axes	

Generally,	in	cryoEM,	where	the	maps	are	symmetrically	averaged,	and	the	symmetry	is	known,	we	want	to	
use	strategy	A.	However,	in	some	cases	(for	example,	if	our	starting	model	was	not	perfectly	symmetric)	we	
want	to	use	strategy	B.	In	both	cases,	a	minor	edit	to	the	set_dof	lines	in	the	symmdef	file	is	necessary.	

For	strategy	A,	because	we	are	using	density,	we	need	to	change	the	first	set_dof	line	to	the	following:		

set_dof JUMP0_to_com x y z

For	strategy	B,	we	leave	the	two	lines	unchanged	and	instead	add	a	third	line:		

set_dof JUMP0 x y z angle_x angle_y angle_z

For	Dn	symmetries,	the	changes	are	similar,	except	in	A	the	jump	name	is	JUMP0_0_to_com.		The	rest	of	this	
section	uses	strategy	A;	the	edited	symmetry	definition	file	is	in	scenario1_cryoem_refinement/C4_edit.symm	

Once	a	symmetry	definition	file	has	been	generated,	then	refining	structures	in	Rosetta	symmetrically	is	
straightforward.	The	changes	to	the	previous	XML	file	are	indicated	below	(see	
2_cryoem_refinement/B2_symm_refine.xml):	

...
<ScoreFunction name="cen" weights="score4_smooth_cart" symmetric="1">
<ScoreFunction name="dens_soft" weights="eta_soft" symmetric="1">
<ScoreFunction name="dens" weights="talaris2013_cart" symmetric="1">
...
<SetupForSymmetry name="setupsymm" definition="%%symmdef%%"/>
...
<SymMinMover name="cenmin" scorefxn="cen" type="lbfgs_armijo_nonmonotone"
 max_iter="200" tolerance="0.00001" bb="1" chi="1" jump="ALL"/>

In	all	three	declared	scorefunctions,	symmetric=1	must	be	given.	Additionally,	the	SetupForDensityScoring	
mover	must	be	replaced	with	the	SetupForSymmetry	mover.	Finally,	the	MinMover	must	be	replaced	with	its	
symmetric	counterpart,	SymMinMover.	

The	command	for	running	this	script	is	largely	the	same	as	before,	with	a	few	additions:

$ROSETTA3/source/bin/rosetta_scripts.macosclangrelease \
 -database $ROSETTA3/database/ \
 -in::file::s 3j5p_transmem_A.pdb \
 -parser::protocol A_asymm_refine.xml \
 -parser::script_vars \
 denswt=25 rms=1.5 reso=3.4 map=half1_34A.mrc \
 testmap=half2_34A.mrc symmdef=TRPV1_edit.symm \
 -ignore_unrecognized_res \
 -score_symm_complex false \
 -edensity::mapreso 3.4 \
 -default_max_cycles 200 \
 -edensity::cryoem_scatterers \
 -beta \
 -out::suffix _symm \
 -crystal_refine

The	command	symmdef=TRPV1_edit.symm	passes	the	symmetry	definition	file	to	Rosetta.		The	flag		
-score_symm_complex	false	depends	on	whether	strategy	(a)	or	(b)	was	employed	above.		If	(a),	then	false	
should	be	used;	if	(b),	then	true	should	be	used.	
	
Note:	The	input	PDB	(-in::file::s)	is	of	the	monomer	(that	is,	the	asymmetric	unit).	 	

