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This	tutorial	is	intended	to	introduce	users	to	several	different	ways	Rosetta	may	be	used	to	solve	various	
structure	determination	tasks	given	3-5Å	cryoEM	density	data.	It	is	not	intended	to	replace	the	user’s	guide,	
available	at	https://www.rosettacommons.org/manuals/latest/main/.	

The	tutorial	is	split	up	into	four	parts.	

1. An	introduction	to	Rosetta	in	general,	showing	how	one	may	score	structures	and	minimize	
structures	guided	by	experimental	density	data	

2. Our	fragment-based	refinement	protocol	for	refinement	against	3-5Å	EM	density	
3. Our	model	rebuilding	protocol	(RosettaCM),	where	one	wishes	to	recombine	homologous	

structures,	and	rebuild	small	missing	regions	(<12	residues)	
4. Our	de	novo	model-building	tools,	where	one	wishes	to	rebuild	missing	regions	of	a	structure	(for	

example,	from	a	homology	model	
5. Our	model	completion	tools,	where	one	wishes	to	complete	a	partial	model	built	by	the	de	novo	

tool	or	wishes	to	rebuild	large	missing	regions	(12	or	more	residues)		

In	each	scenario,	we	present	the	most	basic	usage	of	Rosetta	for	the	task,	and	then	describe	additional	
options	that	may	be	useful.	Command-line	flags	and	input	scripts	are	provided	in	shaded	boxes,	with	
boldfaced	text	indicating	parameters	of	note.	These	parameters	are	described	in	the	text	following	the	
command	line.	

Note:	in	all	sections,	you	will	need	to	update	the	command	scripts	to	point	at	your	installation	of	Rosetta	and	
the	Rosetta	database.	

Which	section	should	one	read?	

• If	you	want	a	straightforward	introduction	to	scoring	and	basic	refinement	of	structures	in	Rosetta,		
read	Section	1	

• If	you	have	a	model	that	you	want	to	refine	into	a	3	-	4.5Å	density	map,	read	Section	2.	
• If	you	have	a	density	map	at	3	-	4.5Å	(or	worse!),	one	or	more	partial	models,	and	you	want	to	

combine	the	models	and	rebuild	short	insertions	and	deletions,	read	Section	3.	
• If	you	have	a	3	-	4.5Å	density	map	with	no	homology	information	available,	and	want	to	build	a	

model,	read	Section	4.	
• If	you	have	a	3	-	4.5Å	density	map	and	a	very	incomplete	model	you	want	to	complete,	read	Section	5.	

Other	notes.	

For	all	the	applications	in	this	tutorial,	it	is	recommended	that	you	download	the	latest	weekly	release	of	
Rosetta.	

Also,	for	brevity,	some	of	the	command	lines	and	XML	scripts	have	been	trimmed	in	this	document.		The	
tutorial	files	contain	the	full	command	lines	and	XML	scripts;	if	something	is	omitted	in	this	document,	it	
should	not	be	changed	from	the	value	in	the	tutorial	file.	

  



1)	Rosetta	and	electron	density	basics	

This	section	provides	a	brief	introduction	to	using	Rosetta,	and	an	overview	of	using	density	data	within	
Rosetta.	

Overview	of	Rosetta	

The	Rosetta	documentation	is	a	good	source	of	additional	information	on	several	of	the	tools	described	in	
this	document.		This	is	available	at	https://www.rosettacommons.org/docs/latest/Home.	

The	tools	described	in	this	document	use	the	RosettaScripts	framework,	described	at	
https://www.rosettacommons.org/docs/latest/scripting_documentation/RosettaScripts/RosettaScripts.		
Briefly,	this	allows	protocols	to	be	defined	as	a	series	of	atomic	"Movers"	which	manipulate	a	structure.		The	
format	is	as	follows:	

<ROSETTASCRIPTS> 
    <SCOREFXNS> 
    </SCOREFXNS> 
    <MOVERS> 
    </MOVERS> 
    <PROTOCOLS> 
    </PROTOCOLS> 
    <OUTPUT /> 
</ROSETTASCRIPTS> 

Each	block	contains	information	in	running	the	protocol:	<SCOREFXNS>	and	<MOVERS>	are	used	to	declare	
score	functions	and	movers;	while	<PROTOCOLS>	is	where	the	steps	of	the	protocol	are	enumerated.	

Rosetta	tools	are	run	via	the	command	line,	with	flags	controlling	general	program	behavior.		Many	of	the	
flags	specifically	for	density	refinement	are	outlined	in	the	sections	following.	

Density	scoring	in	Rosetta	

Agreement	to	density	is	implemented	in	Rosetta	as	an	additional	energy	term.	Rosetta	assesses	agreement	to	
density	by	computing	the	density	that	one	would	expect	to	see,	given	a	model,	and	measuring	the	agreement	
of	the	expected	and	experimental	density.	

elec_dens_fast	
This	scoreterm	is	recommended	for	nearly	all	uses	of	density	refinement	in	Rosetta.	It	uses	interpolation	on	
a	precomputed	grid	of	per-atom	scores	to	approximate	the	density	correlations.	This	version	is	significantly	
faster	(~10x)	then	the	exact	scoring	term	below,	and	is	very	highly	correlated.	

These	energy	terms	may	be	provided	to	Rosetta	in	two	ways.	First,	it	may	be	provided	in	a	RosettaScript	XML	
file	as	input:	

<Reweight scoretype="elec_dens_fast" weight="35.0"/> 

For	non-Rosetta	script	applications,	the	following	flag	controls	the	density	scoring	function	weight:	

-edensity:fast_dens_wt 35.0 
 
The	recommended	weights	for	each	of	these	terms	vary	depending	on	the	density	map	resolution,	starting	



model	quality,	and	protocol.	Section	2	describes	how	the	weights	may	be	tuned.	However,	the	following	are	
good	rules	of	thumb	for	setting	the	density	weight	within	Rosetta:	
	
At	resolutions	better	than	2.5Å:	an	elec_dens_fast		weight	of	65.0	is	generally	reasonable.	
At	resolutions	between	2.5Å	and	3.5Å:	an	elec_dens_fast		weight	of	50.0	is	generally	reasonable.	
At	resolutions	worse	than	3.5Å:	an	elec_dens_fast		weight	of	35.0	is	generally	reasonable.	
In	centroid	mode	(described	in	part	4):	an	elec_dens_fast		weight	of	10.0	is	generally	reasonable	

At	very	low	resolutions	(worse	than	6Å),	the	weight	may	need	to	be	further	reduced.		In	general,	if	the	
Rosetta	energies	are	positive	(or	significant	outliers	are	flagged	by	Molprobity	or	other	validation	programs)	
then	the	weights	need	to	be	reduced.	

In	addition	to	the	score	terms	above,	there	are	also	several	flags	that	control	map	scoring	behavior.	Maps	are	
read	into	Rosetta	using	either	the	flag:	

-edensity::mapfile mapfile.mrc 

Or	from	XML:	

<LoadDensityMap name="loaddens" mapfile="mapfile.mrc"/> 

Maps	may	be	in	either	CCP4	or	MRC	format	(the	map	type	is	automatically	detected	from	the	header	info).	

The	resolution	of	the	map,	used	when	comparing	calculated	to	experimental	density,	is	specified	with	the	
flag:	

-edensity::mapreso 5.0 

Maps	may	also	be	resampled	to	reduce	memory	usage	and	runtime.	This	is	done	through	the	flag:	

-edensity::grid_spacing 2.0 

Notice	that	this	flag	should	never	be	more	than	half	the	given	resolution,	and	if	using	the	fast	scoring	function	
never	more	than	a	third	of	the	resolution.	For	both	parameters,	the	default	is	generally	fine	(don’t	resample,	
and	assume	the	resolution	is	~3x	the	grid	sampling).	

Finally,	one	may	choose	to	calculate	density	using	either	cryoEM	or	X-ray	scattering	factors.	At	low	
resolution,	this	probably	makes	little	difference,	but	might	at	resolutions	better	than	about	3.5Å.	The	default	
is	to	use	X-ray	scattering	factors;	to	turn	on	cryoEM	scattering	factors	instead,	use	the	following	flag:	

-edensity::cryoem_scatterers 

 

Example	1A:	Scoring	a	PDB	in	Rosetta	with	density	

Most	simply,	one	may	wish	to	simply	score	a	model	using	Rosetta’s	energy	function	including	the	density	
terms.	This	is	easily	accomplished	using	the	score_jd2	application.	A	sample	command	line	to	rescore	the	
structure	in	density	is	given	in	1_rosetta_basics/A_run_rescore.sh.	It	illustrates	the	use	of	various	density	flags	
to	provide	Rosetta	with	experimental	density	information.	

	



$ROSETTA3/source/bin/score_jd2.macosclangrelease \  
  -database $ROSETTA3/database/ \ 
  -in::file::s 1isrA.pdb 1issA.pdb \ 
  -ignore_unrecognized_res \ 
  -edensity::mapfile 1issA_6A.mrc \ 
  -edensity::mapreso 5.0 \ 
  -edensity::grid_spacing 2.0 \ 
  -edensity::fastdens_wt 35.0 \ 
  -edensity::cryoem_scatterers \ 
  -crystal_refine 

Some	flags	of	note	are	boldfaced	above.	First,	the	input	structure	is	provided	with	the	command		
-in::file::s.	This	is	common	to	many	Rosetta	applications,	and	more	than	one	input	may	be	provided;	
each	will	be	processed	independently.	The	flags	beginning	with	–edensity::	tell	Rosetta	about	the	density	
map	into	which	it	is	being	fit.	The	name	of	the	mapfile	(in	CCP4	or	MRC	format),	the	resolution	of	the	map,	
the	grid	sampling	of	the	map	(which	should	never	be	more	than	half	the	resolution),	and	the	weights	on	the	
various	fit-to-density	scoring	functions.	These	same	flags	are	reused	for	many	different	protocols	in	addition	
to	relax.	Finally,	the	flag	-crystal_refine	the	flag	turns	on	several	density-related	options	related	to	PDB	
reading	and	writing,	and	should	always	be	used	when	refining	against	density	data.	

Note:	The	input	PDB	must	be	aligned	to	the	density	map	using	some	external	tool.	Rosetta	will	optionally	
rigid-body	minimize	the	structure	into	density	before	rescoring	by	providing	the	flag	–edensity::realign	min	
to	the	application.	If	this	is	done,	the	flag	–out::pdb	will	write	the	minimized	PDB	file	to	a	PDB	file.	

This	command	line	outputs	a	score	file,	score.sc,	that	gives,	for	each	structure	specified	with	-in::file::s,		the	
score	with	respect	to	each	term	in	Rosetta’s	energy	function.	The	meaning	of	individual	scoreterms	as	well	as	
an	overview	of	the	Rosetta	energy	function	can	be	found	in	the	paper:	

Alford	RF,	Leaver-Fay	A,	Jeliazkov	JR,	O'Meara	MJ,	DiMaio	FP,	Park	H,	Shapovalov	MV,	Renfrew	PD,	Mulligan	
VK,	Kappel	K,	Labonte	JW,	Pacella	MS,	Bonneau	R,	Bradley	P,	Dunbrack	RL	Jr,	Das	R,	Baker	D,	Kuhlman	B,	
Kortemme	T,	Gray	JJ.			The	Rosetta	All-Atom	Energy	Function	for	Macromolecular	Modeling	and	Design.		J	
Chem	Theory	Comput.	2017	Jun	13;13(6):3031-3048.	

	

Example	1B:	Simple	refinement	into	density	using	RosettaScripts	and	relax	

In	this	section	we	introduce	RosettaScripts	by	way	of	a	very	simple	refinement-into-density	example.	
RosettaScripts	provides	an	XML	scripting	interface	to	Rosetta	that	allows	fine-grained	control	of	
protocols.	The	syntax	is	fully	described	in	the	Rosetta	documentation;	however,	a	very	brief	introduction	is	
provided	here.	The	basic	syntax	for	the	XML	is	illustrated	here	(1_rosetta_basics/B_relax_density.xml)	

<ROSETTASCRIPTS> 
   <SCOREFXNS> 
      <ScoreFunction name="dens" weights="beta_cart"> 
         <Reweight scoretype="elec_dens_fast" weight="35.0"/> 
         <Set scale_sc_dens_byres="R:0.76,K:0.76,E:0.76,D:0.76,M:0.76, 
            C:0.81,Q:0.81,H:0.81,N:0.81,T:0.81,S:0.81,Y:0.88,W:0.88, 
            A:0.88,F:0.88,P:0.88,I:0.88,L:0.88,V:0.88"/> 
      </ScoreFunction> 
   </SCOREFXNS> 
   <MOVERS> 
       <SetupForDensityScoring name="setupdens"/> 
       <LoadDensityMap name="loaddens" mapfile="1issA_6A.mrc"/> 
       <FastRelax name="relaxcart" scorefxn="dens" repeats="2" cartesian="1"/> 
   </MOVERS> 
   <PROTOCOLS> 



      <Add mover="setupdens"/> 
      <Add mover="loaddens"/> 
      <Add mover="relaxcart"/> 
   </PROTOCOLS> 
   <OUTPUT scorefxn="dens"/> 
</ROSETTASCRIPTS> 

There	are	three	"blocks"	of	declarations	in	this	script.		In	the	first,	<SCOREFXNS>	…	</SCOREFXNS>,	the	
scorefunctions	to	be	used	throughout	the	protocol	are	declared;	the	second,	<MOVERS>	…	</MOVERS>,	
movers	–	or	atomic	operations	that	modify	a	structure	–	are	declared;	finally,	the	third,	<PROTOCOLS>	…	
</PROTOCOLS>,	a	full	protocol	is	declared	as	a	sequence	of	movers.	

In	this	particular	example,	we	declare	a	single	scorefunction,	dens,	which	uses	the	score	function	beta_cart	(a	
default	score	function,	don’t	need	to	worry	about	it),	and	turns	on	elec_dens_fast,	the	fit-to-density	score,	with	
a	weight	of	35.	We	then	declare	three	movers,	SetupForDensityScoring,	LoadDensityMap,	and	FastRelax,	
which	sets	up	the	loaded	structure	for	density	scoring,	loads	a	map	into	memory,	and	then	refines	the	
structure	using	the	FastRelax	protocol.	The	declared	scorefunction,	dens,	is	used	as	an	input	to	the	FastRelax	
mover.	

To	run	this	script,	we	use	the	following	command	line	(1_rosetta_basics/B_relax_density.sh):	

$ROSETTA3/source/bin/rosetta_scripts.macosclangrelease \ 
  -database $ROSETTA3/database/ \ 
  -in::file::s 1isrA.pdb \ 
  -parser::protocol ex_B1_run_RS_relax_density.xml \ 
  -ignore_unrecognized_res \ 
  -edensity::mapreso 5.0 \ 
  -edensity::cryoem_scatterers \ 
  -crystal_refine \ 
  -out::suffix _relax \ 
  -beta 

Note:	We	do	not	have	to	specify	the	density	weight	or	the	map	file	on	the	command	line,	since	they	are	
handled	within	the	XML	file.	However,	other	density	options	must	be	specified	on	the	command	line.	When	
using	RosettaScripts,	the	density	weights	must	be	specified	in	the	XML,	the	input	map	may	be	
specified	either	way.	

Finally,	in	the	previous	XML	file,	the	tag	cartesian=1	appears,	which	refines	the	structure	in	Cartesian	space.	
Rosetta	also	allows	refinement	in	torsional	space,	which	may	be	better	for	capturing	domain	motion,	and	for	
further	reduction	in	model	parameters	against	low-resolution	data.	To	enable	torsional	refinement	
(1_rosetta_basics/C_relax_tors_density.xml),	we	make	three	small	changes	to	the	XML:	

<ROSETTASCRIPTS> 
   <SCOREFXNS> 
      <ScoreFunction name="dens" weights="beta"> 
         <Reweight scoretype="elec_dens_fast" weight="35.0"/> 
         <Set scale_sc_dens_byres="R:0.76,K:0.76,E:0.76,D:0.76,M:0.76, 
            C:0.81,Q:0.81,H:0.81,N:0.81,T:0.81,S:0.81,Y:0.88,W:0.88, 
            A:0.88,F:0.88,P:0.88,I:0.88,L:0.88,V:0.88"/> 
      </ScoreFunction> 
   </SCOREFXNS> 
   <MOVERS> 
       <SetupForDensityScoring name="setupdens"/> 
       <LoadDensityMap name="loaddens" mapfile="1issA_6A.mrc"/> 
       <FastRelax name="relaxcart" scorefxn="dens" repeats="5" cartesian="0"/> 
   </MOVERS> 
   <PROTOCOLS> 
      <Add mover="setupdens"/> 
      <Add mover="loaddens"/> 



      <Add mover="relaxcart"/> 
   </PROTOCOLS> 
   <OUTPUT scorefxn="dens"/> 
</ROSETTASCRIPTS> 



2)	Model	refinement	via	iterative	local	rebuilding	

In	this	section,	we	introduce	our	cryoEM	refinement	protocol,	which	uses	an	iterative	local	rebuilding	
procedure	to	escape	local	minima	during	refinement.		The	section	is	divided	into	two	parts,	in	the	first,	we	
introduce	the	method	for	non-symmetric	systems;	in	the	second,	we	describe	how	to	use	this	method	for	
symmetric	systems.	

As	a	running	example,	we	refine	models	of	the	transmembrane	region	of	the	TRPV1	ion	channel,	using	a	3.4	
Å	cryoEM	single	particle	reconstruction	(M.	Liao,	E.	Cao,	D.	Julius,	Y.	Cheng,	Nature,	2013),	and	the	deposited	
model	(id:	3j5p)	as	a	starting	model.	We	will	first	refine	this	asymmetrically,	and	then	introduce	symmetric	
refinement.	 	

Example	2A:	Asymmetric	refinement	into	cryoEM	density	 	

A	summary	of	the	XML	used	for	refinement	(2_cryoem_refinement/A_asymm_refine.xml)	is	shown	below.	
Following,	a	brief	description	of	the	movers	and	options	available	is	provided.		

<ROSETTASCRIPTS> 
   <SCOREFXNS> 
      <ScoreFunction name="cen" weights="score4_smooth_cart"> 
         <Reweight scoretype="elec_dens_fast" weight="20"/> 
      </ScoreFunction> 
      <ScoreFunction name="dens_soft" weights="beta_soft"> 
         <Reweight scoretype="cart_bonded" weight="0.5"/> 
         <Reweight scoretype="pro_close" weight="0.0"/> 
         <Reweight scoretype="elec_dens_fast" weight="%%denswt%%"/> 
      </ScoreFunction> 
      <ScoreFunction name="dens" weights="beta_cart"> 
         <Reweight scoretype="elec_dens_fast" weight="%%denswt%%"/> 
         <Set scale_sc_dens_byres="R:0.76,K:0.76,E:0.76,D:0.76,M:0.76, 
            C:0.81,Q:0.81,H:0.81,N:0.81,T:0.81,S:0.81,Y:0.88,W:0.88, 
            A:0.88,F:0.88,P:0.88,I:0.88,L:0.88,V:0.88"/> 
      </ScoreFunction> 
   </SCOREFXNS> 
   <MOVERS> 
      <SetupForDensityScoring name="setupdens"/> 
      <LoadDensityMap name="loaddens" mapfile="%%map%%"/> 
 
      <SwitchResidueTypeSetMover name="tocen" set="centroid"/> 
 
      <MinMover name="cenmin" scorefxn="cen" type="lbfgs_armijo_nonmonotone" 
         max_iter="200" tolerance="0.00001" bb="1" chi="1" jump="ALL"/> 
 
      <CartesianSampler name="cen5_50" automode_scorecut="-0.5" scorefxn="cen" 
         mcscorefxn="cen" fascorefxn="dens_soft" strategy="auto" fragbias="density" 
         rms="%%rms%%" ncycles="200" fullatom="0" bbmove="1" nminsteps="25" temp="4"  
         fraglens="7" nfrags="25"/> 
      <CartesianSampler name="cen5_60" automode_scorecut="-0.3" scorefxn="cen" 
         mcscorefxn="cen" fascorefxn="dens_soft" strategy="auto" fragbias="density" 
         rms="%%rms%%" ncycles="200" fullatom="0" bbmove="1" nminsteps="25" temp="4"  
         fraglens="7" nfrags="25"/> 
      <CartesianSampler name="cen5_70" automode_scorecut="-0.1" scorefxn="cen" 
         mcscorefxn="cen" fascorefxn="dens_soft" strategy="auto" fragbias="density" 
         rms="%%rms%%" ncycles="200" fullatom="0" bbmove="1" nminsteps="25" temp="4"  
         fraglens="7" nfrags="25"/> 
      <CartesianSampler name="cen5_80" automode_scorecut="0.0" scorefxn="cen" 
         mcscorefxn="cen" fascorefxn="dens_soft" strategy="auto" fragbias="density" 
         rms="%%rms%%" ncycles="200" fullatom="0" bbmove="1" nminsteps="25" temp="4"  
         fraglens="7" nfrags="25"/> 
 
      <ReportFSC name="report" testmap="%%testmap%%" res_low="10.0" res_high="%%reso%%"/> 



 
      <BfactorFitting name="fit_bs" max_iter="50" wt_adp="0.0005" init="1" exact="1"/> 
 
      <FastRelax name="relaxcart" scorefxn="dens" repeats="1" cartesian="1"/> 
   </MOVERS> 
 
 
   <PROTOCOLS> 
      <Add mover="setupdens"/> 
      <Add mover="loaddens"/> 
      <Add mover="tocen"/> 
      <Add mover="cenmin"/> 
      <Add mover="relaxcart"/> 
      <Add mover="cen5_50"/> 
      <Add mover="relaxcart"/> 
      <Add mover="cen5_60"/> 
      <Add mover="relaxcart"/> 
      <Add mover="cen5_70"/> 
      <Add mover="relaxcart"/> 
      <Add mover="cen5_80"/> 
      <Add mover="relaxcart"/> 
      <Add mover="relaxcart"/> 
      <Add mover="report"/> 
   </PROTOCOLS> 
   <OUTPUT scorefxn="dens"/> 
 
</ROSETTASCRIPTS> 

The	protocol	is	a	bit	involved,	but	is	described	in	the	following.		The	first	thing	to	note	is	the	use	of	macros	
like	"%%denswt%%".		These	are	command	arguments	that	may	be	specified	from	the	command	line	through	
the	flag	–parser::script_vars	denswt=25.0.		The	protocol	above	uses	these	macros	in	place	of	parameters	that	
users	would	most	like	to	change;	other	parameters	should	be	left	as	is	except	for	advanced	users.	

The	main	addition	is	the	CartesianSampler	mover.	This	mover	iteratively	locally	rebuilds	the	structure	in	
user-specified	or	automatically	determined	regions.		A	brief	description	of	the	arguments	to	this	mover:	

name="cen5_70":	the	name	of	the	mover,	referred	to	in	the	<PROTOCOLS>	block	(this	can	be	anything)	
strategy="auto":	the	strategy	to	use	in	selecting	what	to	rebuild.		One	of:	

• auto:	select	regions	automatically	based	on	density	fit	&	local	strain	(using	the	cutoff	in	
automode_scorecut,	e.g.,	automode_scorecut="-0.1")	

• user:	manually	specify	residues	(using	the	flag	residues,	e.g.,	residues="32A-48A")	
• rama:	select	regions	automatically	based	on	rama	score	only	

	
rms="1.5":	the	cutoff	on	similarity	when	locally	rebuilding.		Increasing	this	value	will	increase	model	

diversity	(allowing	worse	starting	models	to	be	refined	but	requiring	additional	sampling)	
ncycles="200":	the	number	of	rebuilding	cycles	to	consider.		Increasing	this	will	increase	runtime	and	

slightly	increase	model	diversity.	
fraglens="7":	the	segment	length	to	replace.		This	must	be	an	odd	number	from	5-13,	and	increasing	this	

value	will	increase	model	diversity	significantly.	
	

The	remaining	options	should	never	be	changed.	

Another	option	is	passed	to	the	density	scoring	via	the	<Set	scale_sc_dens_byres=.../>	tag.	In	the	refinement	
protocol,	this	sets	a	per-amino-acid	sidechain	reweighing.		The	weights	shown	in	this	example	were	
determined	by	fitting	these	parameters	into	refined	structures	into	several	3-5Å	cryoEM	density	maps;	the	
end	result	is	a	slight	downweighing	of	sidechain	density,	particularly	for	charged	sidechains.		This	should	not	
be	changed	except	by	advanced	users.	



The	MinMover	first	minimizes	the	structure	using	a	low-resolution	energy	function	(cen).	We	have	found	this	
step	is	most	useful	for	improving	protein	backbone	geometry,	particularly	with	hand-traced	models.	This	
low-resolution	scorefunction	uses	the	centroid	representation,	which	is	enabled	by	the	SwitchResidueTypeSet	
mover.	

The	FitBFactors	mover	fits	real-space	atomic	B	factors	to	maximize	model-map	correlation.	A	constraint	
enforcing	nearby	atoms	to	take	the	same	B	factors	is	also	employed,	and	the	weight	on	this	term	is	controlled	
with	the	wt_adp	term	(0.0005	is	generally	well-behaved).	Finally,	init=1	means	to	do	a	quick	scan	of	overall	B	
factors	before	beginning	refinement;	if	there	is	more	than	one	call	to	this	mover	in	a	single	trajectory,	then	
only	the	first	needs	to	have	init=1.	Exact=1	should	always	be	used.	

Finally,	the	ReportFSC	mover	assesses	model	agreement	to	the	map	used	for	fitting	as	well	as	an	independent	
map	using	the	integrated	FSC	over	high-resolution	shells.		We	have	found	integrating	from	10Å	to	the	
resolution	of	the	data	is	best	for	model	discrimination.	

Finally,	this	command	is	executed	using	the	following	(scenario2_cryoem_refinement/A_asymm_refine.sh):	

$ROSETTA3/source/bin/rosetta_scripts.macosclangrelease \ 
  -database $ROSETTA3/database/ \ 
  -in::file::s 3j5p_transmem_A.pdb \ 
  -parser::protocol A_asymm_refine.xml \ 
  -parser::script_vars denswt=35 rms=1.5 reso=3.4 map=half1_34A.mrc testmap=half2_34A.mrc \ 
  -ignore_unrecognized_res \ 
  -edensity::mapreso 3.4 \ 
  -default_max_cycles 200 \ 
  -edensity::cryoem_scatterers \ 
  -beta \ 
  -out::suffix _asymm \ 
  -crystal_refine 

 
In	bold	are	the	parameters	that	should	be	changed	in	adapting	this	run	for	other	systems.		The	first	is	the	
input	structure,	which	should	be	specified	with	the	argument	–in::file::s.		The	second	are	the	parameters	to	
be	passed	through	to	the	script	(using	the	macro	replacement	machinery	of	RosettaScripts).		Three	of	these	
describe	the	input	maps:	

map=half1_34A.mrc	–	the	map	to	refine	against	
testmap=half2_34A.mrc	–	an	independent	map	for	validation		

(if	not	using	split	maps,	just	provide	the	same	map	as	the	previous	argument)	
reso=3.4	–	the	resolution	of	the	data		

(note	that	this	needs	to	be	provided	twice	in	the	command	line,	once	for	scoring	and	once	for	
reporting)	

The	other	two	are	parameters	to	the	algorithm:	
denswt=35	–	the	weight	on	the	experimental	density	data	
rms=1.5	–	the	amount	of	deviation	to	allow	in	fragment	insertion	moves	

(larger	values	will	lead	to	more	model	deviation)	

The	density	weight	of	25	works	reasonably	well	as	a	starting	point,	but	one	might	want	to	explore	several	
different	values	using	an	independent	reconstruction.		Manual	inspection	of	output	models	for	molprobity	
score,	free	FSC,	and	(free	FSC	–	work	FSC)	should	provide	clues	as	to	which	weight	works	best.	

A	description	of	much	of	the	work	in	this	section	is	described	in	the	reference:	

Wang	RY,	Song	Y,	Barad	BA,	Cheng	Y,	Fraser	JS,	DiMaio	F.		Automated	structure	refinement	of	
macromolecular	assemblies	from	cryo-EM	maps	using	Rosetta.	Elife.	2016	Sep	26;5.	pii:	e17219.	



	

Job	distribution	
It	is	generally	useful	to	sample	~100	models	from	each	starting	point.		For	this	purpose,	it	may	be	useful	to	
run	multiple	jobs	in	parallel.		To	prevent	output	structures	from	clobbering	one	another,	the	flag	–out::suffix	
may	be	useful,	where	each	separate	job	is	given	a	different	suffix.	

For	example,	on	a	16-core	machine,	we	may	specify	-out::suffix	_$1,	then	(using	GNU	parallel)	run	the	
following:	

parallel –j16 ./	A_asymm_refine.sh {} ::: {1..16} 

Finally, GNU parallel allows launching of jobs remotely if SSH keys have been set up for passwordless login.  To 
run: 

parallel –S 16/node1,16/node2,16/node3,16/node4 –-workdir . ./	B1_rosettaCM_singletarget.sh {} 
::: {1..48} 

This	will	launch	instead	48	jobs	spread	across	four	machines.		See	the	GNU	parallel	documentation	
(https://www.gnu.org/software/parallel/)	for	more	information.	

Analyzing	results	and	model	selection	
While	this	is	an	active	topic	of	research,	generally	–	once	a	density	weight	has	been	chosen	–	to	select	the	
best	models	from	among	the	full	set,	we	want	to	select	models	optimizing	both	model	geometry	and	free	FSC	
values.		Model	geometry	may	be	evaluated	using	either:	a)	Molprobity,	or	b)	Rosetta	energies	after	
subtracting	density	energies.		The	latter	may	be	done	by	inspecting	the	score*.sc	files	produced	as	output.	

Using	the	above	script,	the	free	FSC	value	may	be	determined	from	the	output	PDB	files.		The	header	contains	
a	line	like:	

REMARK   1 FSC[mask=4.45657](10:3) = 0.590966 / 0.591017                         

The	two	numbers	at	the	end	of	the	line	indicate	the	"work"	and	"free"	integrated	FSC	values.	

Generally,	we	select	the	best	20%	of	models	by	geometry,	and	selecting	the	best	overall	by	free	FSC.		
The	top	5	models	should	be	inspected	for	model	convergence	as	well	as	visually	inspected	for	density	
map	agreement.	

Example	2B:	Symmetric	refinement	into	cryoEM	density	 	

As	this	is	a	symmetric	system,	to	correctly	evaluate	the	energetics	of	the	system,	we	need	to	model	with	
symmetry-related	copies	present.	This	may	be	done	through	a	two-step	process:	first,	we	run	the	
make_symmdef_file.pl	script	to	prepare	a	description	of	the	symmetry	of	the	system	in	a	Rosetta-readable	
format.	Next,	we	enable	symmetric	scoring	and	optimization	within	the	XML	file.	

The	information	that	Rosetta	needs	to	know	about	a	symmetric	system	is	encoded	in	the	symmetry	definition	
file.	It	tells	Rosetta:	(a)	how	to	score	a	structure	symmetrically	from	only	asymmetric	unit	interactions,	and	
(b)	how	the	rigid-body	degrees	of	freedom	are	allowed	to	move	to	maintain	the	symmetry	of	the	system.	

To	aid	in	creating	a	symmetry	definition	file	from	a	symmetric	(or	near-symmetric)	PDB,	an	application,	



make_symmdef_file.pl,	has	been	included	in	src/apps/public/symmetry.	To	generate	the	
symmetry definition	file	for	TRPV1,	we	run	the	command	in	2_cryoem_refinement/B1_make_symmdef.sh.	

$ROSETTA3/source/src/apps/public/symmetry/make_symmdef_file.pl \ 
   -m NCS -a A -i B \ 
   -p 3j5p_transmem.pdb –r 1000 > TRPV1.symm  

This	script	needs	a	few	pieces	of	information:	with	–m,	the	type	of	symmetry	to	generate	(here	NCS),	with	–a,	
the	primary	chain	(here	A),	and	with	–i,	an	adjacent	chain	in	each	symmetry	group,	separated	by	spaces	(here	
just	B).	For	Cn	symmetries,	only	one	adjacent	chain	is	given;	for	Dn,	two	are	given.	Finally,	with	–r,	we	give	
the	contact	distance	between	a	neighbor	chain	and	the	primary	chain	necessary	to	include	that	subunit	
explicitly	(here,	1000,	to	ensure	every	symmetrically	related	copy	is	included).	If	the	input	system	is	
asymmetric,	the	script	will	make	a	symmetrical	version	of	it	(sometimes	significantly	perturbing	it	in	the	
process).	There	are	a	lot	of	other	options,	including	forcing	symmetrical	order	and	helical	and	higher-order	
symmetries,	see	the	documentation!	

In	addition	to	the	definition	file	written	to	STDOUT,	the	script	will	also	write	a	file	
3j5p_transmem_symm.pdb,	containing	the	symmetrized	version	of	the	input	file,	and	a	file	
3j5p_transmem_INPUT.pdb,	that	contains	only	the	mainchain,	to	be	used	as	input	(in	addition	to	the	
symmetry	definition	file).	

The	symmetry	definition	file	looks	something	like	this:	

symmetry_name TRPV1__4 
E = 4*VRT0_base + 4*(VRT0_base:VRT3_base) + 2*(VRT0_base:VRT2_base) anchor_residue CoM 
... 
set_dof JUMP0_to_com x(11.7023996817515) 
set_dof JUMP0_to_subunit angle_x angle_y angle_z 
... 

The	omitted	sections	describe	a	system	of	virtual	residues	that	maintain	the	symmetry	of	the	system,	and	
they	generally	should	remain	unedited.	

The	two	set_dof	lines	should	be	edited.	There	are	two	possibilities	when	refining	symmetric	structures	into	
density:	

A)	we	don’t	want	to	refine	the	rigid	body	orientation	of	the	entire	system;		
we	know	the	symmetry	axes	and	we	don’t	want	them	to	move	

B)	we	do	want	to	refine	the	orientation	of	the	entire	system,	including	symmetry	axes	

Generally,	in	cryoEM,	where	the	maps	are	symmetrically	averaged,	and	the	symmetry	is	known,	we	want	to	
use	strategy	A.	However,	in	some	cases	(for	example,	if	our	starting	model	was	not	perfectly	symmetric)	we	
want	to	use	strategy	B.	In	both	cases,	a	minor	edit	to	the	set_dof	lines	in	the	symmdef	file	is	necessary.	

For	strategy	A,	because	we	are	using	density,	we	need	to	change	the	first	set_dof	line	to	the	following:		

set_dof JUMP0_to_com x y z 

For	strategy	B,	we	leave	the	two	lines	unchanged	and	instead	add	a	third	line:		

set_dof JUMP0 x y z angle_x angle_y angle_z 

For	Dn	symmetries,	the	changes	are	similar,	except	in	A	the	jump	name	is	JUMP0_0_to_com.		The	rest	of	this	
section	uses	strategy	A;	the	edited	symmetry	definition	file	is	in	scenario1_cryoem_refinement/C4_edit.symm	



Once	a	symmetry	definition	file	has	been	generated,	then	refining	structures	in	Rosetta	symmetrically	is	
straightforward.	The	changes	to	the	previous	XML	file	are	indicated	below	(see	
2_cryoem_refinement/B2_symm_refine.xml):	

... 
<ScoreFunction name="cen" weights="score4_smooth_cart" symmetric="1"> 
<ScoreFunction name="dens_soft" weights="eta_soft" symmetric="1"> 
<ScoreFunction name="dens" weights="talaris2013_cart" symmetric="1"> 
... 
<SetupForSymmetry name="setupsymm" definition="%%symmdef%%"/> 
... 
<SymMinMover name="cenmin" scorefxn="cen" type="lbfgs_armijo_nonmonotone" 
         max_iter="200" tolerance="0.00001" bb="1" chi="1" jump="ALL"/> 

In	all	three	declared	scorefunctions,	symmetric=1	must	be	given.	Additionally,	the	SetupForDensityScoring	
mover	must	be	replaced	with	the	SetupForSymmetry	mover.	Finally,	the	MinMover	must	be	replaced	with	its	
symmetric	counterpart,	SymMinMover.	

The	command	for	running	this	script	is	largely	the	same	as	before,	with	a	few	additions: 

$ROSETTA3/source/bin/rosetta_scripts.macosclangrelease \ 
  -database $ROSETTA3/database/ \ 
  -in::file::s 3j5p_transmem_A.pdb \ 
  -parser::protocol A_asymm_refine.xml \ 
  -parser::script_vars \ 
    denswt=25 rms=1.5 reso=3.4 map=half1_34A.mrc \ 
    testmap=half2_34A.mrc symmdef=TRPV1_edit.symm \ 
  -ignore_unrecognized_res \ 
  -score_symm_complex false \ 
  -edensity::mapreso 3.4 \ 
  -default_max_cycles 200 \ 
  -edensity::cryoem_scatterers \ 
  -beta \ 
  -out::suffix _symm \ 
  -crystal_refine 
 
The	command	symmdef=TRPV1_edit.symm	passes	the	symmetry	definition	file	to	Rosetta.		The	flag		
-score_symm_complex	false	depends	on	whether	strategy	(a)	or	(b)	was	employed	above.		If	(a),	then	false	
should	be	used;	if	(b),	then	true	should	be	used.	
	
Note:	The	input	PDB	(-in::file::s)	is	of	the	monomer	(that	is,	the	asymmetric	unit).	 	



3)	Model	rebuilding	guided	by	experimental	density	data	

In	this	scenario,	we	introduce	a	tool,	RosettaCM,	for	building	missing	portions	of	a	model	guided	by	density	
data.	While	primarily	geared	towards	comparative	modeling,	it	may	also	be	useful	for	building	portions	of	a	
protein	that	are	disordered	when	crystallized	or	difficult	regions	in	hand-built	models.	In	this	scenario,	we	
introduce	the	basic	rebuilding	protocol,	then	show	how	the	tool	may	also	be	used	to:	

• Combine	pieces	from	multiple	template	models	guided	by	density		
• Rebuild	with	user-defined	restraints		
• Iteratively	rebuild	models	in	difficult	cases	difficult	cases	 	

As	a	running	example,	we	use	the	20S	proteasome	(Xueming	Li	et	al.,	Nature	Methods,	2013),	where	only	a	
subset	of	particles	were	used,	resulting	in	a	4.1Å	reconstruction.	We	are	building	models	starting	from	a	
homologous	structure	(pdb	id:	1iru)	as	the	starting	model	(25%/32%	sequence	identity	to	chains	A/B).	 	

Example	3A:	Preparing	templates	for	use	in	RosettaCM		

In	many	cases,	much	of	the	setup	work	is	handled	by	a	script,	setup_RosettaCM.py	in	RosettaTools	(a	separate	
repository	available	from	rosettacommons.org).	This	script	takes	an	input	alignment	in	a	variety	of	formats,	
and	prepares	the	inputs	automatically.	It	is	executed	by	running	the	command:	 	

setup_RosettaCM.py \ 
-–fasta t20s.fasta \ 
--alignment tmpl.fasta \  
--alignment_format fasta \ 
--templates tmpl.pdb \ 
--rosetta_bin ~/Rosetta/main/source/bin \  
--verbose 

Inputs	include	the	full-length	fasta,	an	alignment	file	–	in	either	fasta,	ClustalW,	or	HHSearch	format	–	and	the	
corresponding	template	PDB	files.	This	script	will	prepare	all	the	necessary	inputs	in	order	to	run	
RosettaCM.		

Alternately,	the	setup	may	be	performed	manually.	In	this	case,	since	we	are	using	some	nonstandard	
features	(symmetry	and	density),	and	we	have	two	chains	in	the	asymmetric	unit	we	will	do	this;	alternately,	
the	inputs	from	the	previous	step	may	be	used	as	a	starting	point	and	subsequently	modified.		In	this	case,	
we	first	convert	our	alignment	to	Rosetta	format	(scenario2_model_rebuilding/20S_1iru.ali):	 	

## 1XXX_ 1iruAH_thread 
# hhsearch 
scores_from_program: 0 1.00 
0 TVFSPDGRLFQVEYAREAVKK-GSTALGMKFANGVLLISDKKVRSRLIEQNSIEKIQLIDDYVAAVTSGLVADAR...  
0 TIFSPEGRLYQVEYAFKAINQGGLTSVAVRGKDCAVIVTQKKVPDKLLDSSTVTHLFKITENIGCVMTGMTADSR...  
--  

In	this	format,	the	first	line	is	'##'	followed	by	a	code	for	the	target	and	one	for	the	template.	The	second	line	
identifies	the	source	of	the	alignment;	the	third	just	keep	as	it	is.	The	fourth	line	is	the	target	sequence	and	
the	fifth	is	the	template;	the	number	is	an	'offset',	identifying	where	the	sequence	starts.	However,	the	
number	doesn't	use	the	PDB	resid	but	just	counts	residues	starting	at	0.	The	sixth	line	is	'--'.	Multiple	
alignments	may	be	concatenated	in	a	single	file,	with	the	template	code	identifying	the	template	
corresponding	to	each	alignment.		

RosettaCM	takes	as	inputs	partially	threaded	models,	that	is	models	where	aligned	positions	have	their	



residue	identities	remapped,	and	unaligned	residues	are	not	present.	To	generate	these	models	from	an	
alignment	file	and	template,	we	can	run	the	Rosetta	command	(3_model_rebuilding/A_partialthread.sh):	

$ROSETTA3/source/bin/ partial_thread.macosclangrelease \ 
  -database $ROSETTA3/database/ \ 
  -in::file::fasta t20s.fasta \ 
  -in::file::alignment 20S_1iru.ali \ 
  -in::file::template_pdb 1iruAH_aln.pdb 

This	will	output	a	partially	threaded	model	in	1iruA_thread.pdb	that	is	correctly	numbered	for	input	into	
RosettaCM.	

Next,	we	need	to	set	up	symmetric	modeling	with	RosettaCM.	As	in	Scenario	1,	we	use	the	
make_symmdef_file.pl	script	in	order	to	generate	a	symmetry	definition	file	for	use	in	Rosetta.	A	
straightforward	way	to	do	so	is	to	use	Chimera	to	dock	the	necessary	chains	into	density.	We	need	a	single	
"primary	chain"	and	a	couple	of	an	adjacent	chain	in	each	point	group;	since	the	proteasome	features	D7	
symmetry,	that	means	we	need	an	adjacent	chain	in	the	7-fold	complex,	as	well	as	a	chain	in	the	opposite	
ring.	An	example	has	been	created	in	scenario2_model_rebuilding/setup_symm.pdb	where	three	copies	of	the	
threaded	model	have	been	docked	into	density	with	Chimera.	To	generate	our	D7	symmetry	file	from	this	
input,	we	then	simply	have	to	run	the	command	(3_model_rebuilding/B_make_symmdef.sh):	

~/rosetta_source/src/apps/public/symmetry/make_symmdef_file.pl \ 
  -m NCS -a A -i B C \ 
  -p setup_symm.pdb –r 1000 > D7.symm 

Since	we	have	already	created	the	input	templates	using	the	partial_thread	application,	we	can	ignore	the	
setup_symm_INPUT.pdb	file	and	use	the	output	of	partial	thread	as	the	input.	However,	we	still	need	to	align	
all	the	threaded	models	to	this	input	structure.	This	can	either	be	done	with	the	program	TMalign	(external	
to	Rosetta)	or	by	using	Chimera	to	dock	the	individual	threaded	models	into	density.	In	this	case,	where	we	
have	just	one	template,	it	has	already	been	aligned	to	the	template	in	
scenario2_model_rebuilding/tmpl_thread_aln.pdb.	

As	in	Scenario	1,	we	need	to	make	a	small	edit	to	the	symmetry	definition	file	for	density	refinement.	Change	
the	following	lines:	

set_dof JUMP0_0_to_com x(35.3434689631743) 
set_dof JUMP0_0_to_subunit angle_x angle_y angle_z  
set_dof JUMP0_0 x(39.2905097135684) angle_x 

To	(3_model_rebuilding/D7_edit.symm):	

set_dof JUMP0_0_to_com x y z 
set_dof JUMP0_0_to_subunit angle_x angle_y angle_z 

Note:	The	20S	proteasome	case	we	are	using	contains	two	chains	in	the	asymmetric	unit.	To	specify	this	as	
inputs	to	RosettaCM,	we	need	to	list	the	fasta	file,	separating	the	chains	by	the	slash	character	‘/’.	This	is	
really	only	necessary	in	the	fasta	provided	as	input	to	RosettaCM	(next	step)	however,	there	is	no	harm	is	
doing	this	in	every	step.	

Example	3B:	Running	RosettaCM	using	a	single	template	model	as	input.	

Like	the	methods	introduced	in	Scenario	1,	RosettaCM	is	controlled	through	an	XML	script	using	
RosettaScripts.	The	XML	is	as	follows	(3_model_rebuilding/C_rosettaCM_singletarget.xml):	



<ROSETTASCRIPTS> 
    <TASKOPERATIONS> 
    </TASKOPERATIONS> 
    <SCOREFXNS> 
        <ScoreFunction name="stage1" weights="score3" symmetric="1"> 
            <Reweight scoretype="atom_pair_constraint" weight="0.1"/> 
            <Reweight scoretype="elec_dens_fast" weight="10"/> 
        </ScoreFunction> 
        <ScoreFunction name="stage2" weights="score4_smooth_cart" symmetric="1"> 
            <Reweight scoretype="atom_pair_constraint" weight="0.1"/> 
            <Reweight scoretype="elec_dens_fast" weight="10"/> 
        </ScoreFunction> 
        <ScoreFunction name="fullatom" weights="beta_cart" symmetric="1"> 
            <Reweight scoretype="atom_pair_constraint" weight="0.1"/> 
            <Reweight scoretype="elec_dens_fast" weight="35"/> 
                <Set scale_sc_dens_byres="R:0.76,K:0.76,E:0.76,D:0.76,M:0.76, 
                    C:0.81,Q:0.81,H:0.81,N:0.81,T:0.81,S:0.81,Y:0.88,W:0.88, 
                    A:0.88,F:0.88,P:0.88,I:0.88,L:0.88,V:0.88"/> 
        </ScoreFunction> 
    </SCOREFXNS> 
    <FILTERS> 
    </FILTERS> 
    <MOVERS> 
        <Hybridize name="hybridize" stage1_scorefxn="stage1" stage2_scorefxn="stage2"  
                   fa_scorefxn="fullatom"  batch="1" stage1_increase_cycles="1.0"  
                   stage2_increase_cycles="1.0" linmin_only="0" realign_domains="0"> 
            <Template pdb="1iruA_thread.pdb" weight="1.0"  
                      cst_file="AUTO" symmdef="D7_edit.symm"/> 
        </Hybridize> 
    </MOVERS> 
    <PROTOCOLS> 
        <Add mover="hybridize"/> 
    </PROTOCOLS> 
</ROSETTASCRIPTS> 

The	main	work	is	done	through	a	single	mover,	Hybridize	which	handles	all	stages	of	model-building.	Input	
structures	are	specified	via	Template	lines	(in	this	case	there	is	only	one).	For	each	template	line,	we	specify	
the	pdb	input,	as	well	as	a	couple	of	other	parameters:	a	weight	(the	relative	frequency	we	sample	each	
template	with);	a	constraint	file	(setting	this	to	"auto"	sets	up	automatic	constraints	to	the	template,	while	
setting	this	to	"none"	turns	off	all	constraints,	user-defined	constraints	are	described	later);	and	an	
(optional)	symmetry	definition	file.	

Note:	Be	sure	that	your	templates	are	aligned	to	the	density!	

Given	this	XML,	RosettaCM	is	then	run	with	the	following	command	line	(3_model_rebuilding/	
B1_rosettaCM_singletarget.sh):	

$ROSETTA3/source/bin/rosetta_scripts.macosclangrelease \ 
 -database $ROSETTA3/database/ \ 
 -in:file:fasta t20s.fasta \ 
 -parser:protocol C_rosettaCM_singletarget.xml \ 
 -nstruct 50 \ 
 -relax:jump_move true \ 
 -relax:dualspace \ 
 -out::suffix _singletgt \ 
 -edensity::mapfile t20S_41A_half1.mrc \ 
 -edensity::mapreso 5.0 \ 
 -edensity::cryoem_scatterers \ 
 -beta \ 
 -default_max_cycles 200 

The	input	command	is	similar	to	those	seen	before,	but	with	a	few	key	differences.	First,	the	input	to	Rosetta	



is	specified	with	-in:file:fasta	rather	than	-in:file:s.		Also	note	that	the	input	argument	–nstruct	50	is	given,	
telling	Rosetta	to	generate	50	models	for	each	process.		Generally,	hundreds	to	thousands	of	models	are	
necessary	to	sufficiently	sample	conformational	space;	more	and	longer	regions	to	rebuild	require	more	
models.	

Running	without	symmetry	

Running	without	symmetry	requires	only	two	small	changes	to	the	XML	file:	
• Remove	the	tag:		symmdef="D7_edit.symm"	
• Remove	the	three	tags	symmetric=1	

Job	distribution	
As	with	section	2,	a	combination	of		-out::suffix	and	GNU	parallel	is	useful	for	distributing	jobs.		For	example,	
one	may	replace	the	–out::suffix	line	above	with	–out::suffix	_$1,	then	launch	jobs	with:	

parallel –j16 ./	B1_rosettaCM_singletarget.sh {} ::: {1..16} 

The	total	number	of	structures	generated	is	the	number	of	structures	specified	with	–nstruct	times	the	
number	of	jobs	launched	(in	this	instance,	50	structure	times	16	jobs	=	800	structures).		Depending	on	the	
runtime	per	structure	(variable	depending	on	structure	size)	and	the	number	of	CPUs	available,	both	of	these	
numbers	may	be	adjusted.	

Finally,	GNU	parallel	allows	launching	of	jobs	remotely	if	SSH	keys	have	been	set	up	for	passwordless	login.		
To	run:	

parallel –S 16/node1,16/node2,16/node3,16/node4 -–workdir . ./	B1_rosettaCM_singletarget.sh {} 
::: {1..48} 

This	will	launch	instead	48	jobs	spread	across	four	machines.		See	the	GNU	parallel	documentation	for	more	
information.r	

Example	3C:	Running	RosettaCM	using	multiple	template	models	as	input.	

One	of	the	strengths	of	RosettaCM	is	its	ability	to	make	use	of	multiple	template	structures,	and	to	recombine	
portions	of	these	models	during	conformational	sampling.	This	is	particularly	useful	when	multiple	
homologous	structures	are	available,	some	with	closer	sequence	identity,	and	some	with	more	complete	
coverage.	The	protocol	allows	the	combination	of	features	of	both	models.	

To	make	use	of	this	feature,	we	simply	add	additional	template	lines	in	the	input	XML.	In	this	case,	we	add	
the	template	1ryp	(scenario3_model_rebuilding/	C1_rosettaCM_multitarget.xml):	

	... 
      <Hybridize name="hybridize" stage1_scorefxn="stage1" stage2_scorefxn="stage2"  
                 fa_scorefxn="fullatom"  batch="1" stage1_increase_cycles="1.0"  
                 stage2_increase_cycles="1.0" linmin_only="0" realign_domains="0"> 
         <Template pdb="1iruA_thread.pdb" weight="1.0" 
                cst_file="auto" symmdef="D7_edit.symm"/> 
         <Template pdb="1rypA_thread.pdb" weight="1.0" 
                cst_file="auto" symmdef="D7_edit.symm"/> 
      </Hybridize>  
... 

The	rest	is	handled	automatically	by	the	protocol.	However,	there	are	a	few	caveats	when	using	multiple	



input	structures:	

• With	density,	we	need	to	ensure	that	all	input	models	are	aligned	to	the	density.	This	can	be	done	
using	either	TMalign	or	Chimera’s	alignment	tools.		

• In	each	trajectory,	a	starting	model	is	chosen	at	random;	the	constraints	and	symmetry	from	this	
selected	model	are	chosen	at	the	start	of	each	run.	If	we	wish	to	use	a	portion	of	a	model,	but	do	
not	want	to	use	its	symmetry	or	constraints,	we	can	assign	it	a	weight	of	0:	backbone	
conformations	from	this	model	will	be	used	in	conformational	sampling,	but	the	symmetry	and	
constraints	will	never	be	used.		

• Similarly,	gaps	in	the	selected	starting	model	are	rebuilt	before	recombination	occurs.	If	one	of	the	
templates	has	poor	coverage,	but	provides	valuable	structural	features,	it	should	be	used,	but	
with	weight	0.		

 

Example	3D:	Running	RosettaCM	with	user	specified	constraints.	

Another	strength	of	RosettaCM	is	the	ability	to	make	use	of	additional	experimental	information	that	
provides	restraints	over	conformational	space.	While	previously,	we	have	used	cst_file=auto	to	automatically	
generate	constraints	from	template	structures,	if	experiments	provide	distance	constraints	(or	some	other	
positional	restraint,	we	may	make	use	of	them	in	model	rebuilding	as	well.	

The	Rosetta	documentation	provides	a	good	overview	of	the	types	of	constraints	that	may	be	used,	with	a	
number	of	different	constraint	types	and	functional	forms	possible.	For	this	demo,	we	will	assume	we	have	
knowledge	on	the	distance	between	residues	107	and	143	that	we	want	to	use	during	rebuilding.	

This	information	can	be	encoded	in	a	constraint	file	(scenario3_model_rebuilding/D1_constraints.cst):		

AtomPair CA 107 CA 143 HARMONIC 5.0 1.0 

Note:	The	numbering	of	residues	is	based	upon	the	order	in	the	input	fasta	file	(and	does	not	reset	between	
chains!).	

We	then	replace	the	cst_file=auto	lines	in	the	XML	with	our	own	constraint	file	
(scenario3_model_rebuilding/D1_constraints.xml):	

... 
   <Template pdb="tmpl_thread_aln.pdb" weight="1.0" 
         cst_file="D1_constraints.cst" symmdef="D7_edit.symm"/> 
... 

We	can	then	rebuild	and	refine	as	before.	

Example	3E:	Model	selection	and	running	RosettaCM	iteratively	

With	possibly	hundreds	of	generated	models,	there	are	a	few	strategies	to	identify	the	best-sampled	models.	
Generally,	models	should	be	filtered	on	two	different	criteria	–	the	total	score	and	the	density	score	–	in	some	
way.	We	often	select	the	best	10-20%	of	models	based	on	total	score,	and	the	sort	these	models	by	density	
score,	but	visual	inspection	of	the	best	by	both	criteria	can	often	be	beneficial	in	difficult	cases.	

Finally,	one	strategy	for	solving	difficult	structures	is	to	apply	RosettaCM	iteratively.	Using	the	above	criteria,	
we	can	select	the	best	5-10	models	from	the	first	round	of	refinement,	and	feed	them	as	inputs	into	the	next	
round.		Models	can	be	selected	by	energy	by	looking	at	the	score	column	in	the	output	.sc	files.	



This	is	very	briefly	illustrated	in	the	following	XML	(scenario3_model_rebuilding/E1_rosettaCM_iter.xml):	

 ... 
      <Hybridize name="hybridize" stage1_scorefxn="stage1" stage2_scorefxn="stage2" 
             fa_scorefxn="fullatom" batch="1"> 
         <Template pdb="expected_outputs/S_multitgt_0001_A.pdb" weight="1.0" 
                cst_file="NONE" symmdef="D7_edit.symm"/> 
         <Template pdb="expected_outputs/S_multitgt_0002_A.pdb" weight="1.0" 
                cst_file="NONE" symmdef="D7_edit.symm"/> 
         <Template pdb="expected_outputs/S_multitgt_0003_A.pdb" weight="1.0" 
                cst_file="NONE" symmdef="D7_edit.symm"/> 
      </Hybridize> 
... 

There	is	also	some	manipulation	of	input	models	that	can	prove	beneficial.	If	one	wants	to	force	rebuilding	
some	segment	of	backbone,	they	can	simply	delete	those	residues	in	all	input	models.	Similarly	if	one	wants	
to	force	some	region	to	adopt	a	conformation	taking	in	one	input	model,	they	can	delete	all	other	
conformations	from	all	models.	

Example	3F:	Running	with	Ligands	and/or	Nucleic	Acids	

RosettaCM	can	be	run	with	ligands	as	well	as	nucleic	acids.		While	nucleic	acids	are	read	by	Rosetta	natively,	
ligands	require	an	additional	input	to	Rosetta,	a	params	file.	

For	ligands,	a	mol2	file	of	the	ligand	which	contains	hydrogen	atoms	is	required.		The	program	OpenBabel	
(http://openbabel.org/wiki/Main_Page)	is	capable	of	both	converting	from	PDB	to	mol2	as	well	as	adding	
hydrogens	to	a	molecule	given	a	PDB	file	of	the	ligand.	

Given	a	mol2	file,	molfile_to_params.py,	included	in	Rosetta,	at	$ROSETTA3/source/scripts/python/public/	
will	generate	a	params	file.		To	use:	

python $ROSETTA3/source/scripts/python/apps/public/molfile_to_params.py \ 
--keep-names --clobber –centroid XXX.mol2 -p XXX -n XXX 

 

Replace	"XXX"	with	the	ligands	three	letter	code.		This	script	will	create	an	XXX.params	file	as	well	as	several	
other	files.		This	file	can	be	passed	into	Rosetta	using	the	flag:	
	
-extra_res_fa XXX.fa.params 
-extra_res_cen XXX.cen.params 

	
If	there	is	more	than	one	unique	ligand,	run	the	script	on	each	unique	ligand,	and	pass	a	list	of	params	files	
using	each	of	the	flags.	
	
When	modelling	with	ligands	or	nucleic	acids	in	RosettaCM,	two	additional	things	are	needed:	
1.	The	ligand	or	nucleic	acids	must	be	added	to	the	END	of	each	template	file	with	a	weight	>	0	
2.	An	additional	flag	needs	to	get	added	to	Hybridize:	
<Hybridize name="hybridize" stage1_scorefxn="stage1" stage2_scorefxn="stage2" 
             fa_scorefxn="fullatom" batch="1" add_hetatm="1"> 

	
	 	



4)	De	novo	model-building	guided	by	experimental	density	data	

In	this	scenario,	we	introduce	a	tool,	denovo_density,	aimed	at	automatically	building	backbone	and	placing	
sequence	in	3-4.5	Å	cryoEM	density	maps.		This	tool	is	primarily	intended	for	cases	where	a	model	is	to	be	
built	with	no	known	structural	homologues.		It	is	relatively	expensive	computationally,	and	consists	of	four	
basic	steps:	

• Search	for	local	backbone	"fragments"	in	the	density	map	
• Score	the	"compatability"	of	sets	of	placed	fragments	
• Monte	Carlo	sampling	for	the	"maximally	compatable"	fragment	set	
• Consensus	assignment	from	the	best-scoring	Monte	Carlo	trajectories	

The	input	of	the	method	is	a	segmented	density	map,	and	the	sequence	contained	in	this	region.		The	output	
of	the	method	is	a	"partial	model"	that	–	ideally	–	places	70-80%	of	the	sequence	into	the	density	map.		This	
partial	model	can	then	be	used	as	input	for	RosettaCM	(see	section	3	of	the	tutorial).	

This	method	is	under	constant	development.		Current	limitations	of	the	approach	–	hopefully	to	be	addressed	
in	future	revisions	–	include:	

• The	code	assumes	segmented	density	maps.		It	cannot	handle	symmetry,	and	poorly	handles	
unsegmented	density	maps.		Results	are	best	when	the	map	is	segments	to	only	contain	one	copy	of	
the	residues	getting	built.	

• It	has	only	been	tested	building	proteins	~600	residues	or	less.		While	it	should	conceptually	scale	to	
larger	proteins,	this	is	untested.		Furthermore,	with	larger	proteins,	the	memory	usage	of	steps	2	and	
3	increases	significantly,	so	care	must	be	taken.	

• It	currently	does	not	identify	and	build	ligands	or	nucleic	acids	

This	section	of	the	tutorial	walks	through	these	four	steps	of	the	protocol.		As	a	running	example,	we	again	
use	the	20S	proteasome	(Xueming	Li	et	al.,	Nature	Methods,	2013),	in	this	case	using	a	4.8Å	reconstruction	
determined	without	using	motion	correction.	We	will	pretend	that	known	homologous	structures	are	not	
available,	and	instead	will	build	models	into	density	denovo.	

Input	file	preparation:		download	fragment	files	from	Robetta	

Before	running	the	method,	a	user	must	first	create	a	"fragment	file"	that	predicts	local	backbone	
conformations	given	the	amino-acid	sequence.		The	easiest	way	to	do	so	is	to	submit	your	sequence	at	
http://robetta.bakerlab.org/.	

Alternately,	the	Rosetta	users	guide	describes	how	fragment	files	may	be	builtlocally	:	
(https://www.rosettacommons.org/manuals/archive/rosetta3.5_user_guide/dc/d10/app_fragment_picker.
html)	

Step	4A.		Local	fragment	search	

In	the	first	part	of	the	procedure,	we	search	the	density	map	for	each	sequence-predicted	backbone	
fragment.		This	part,	like	all	the	steps	in	this	section,	uses	a	Rosetta	application	denovo_density.	

The	command	to	run	fragment	searching	for	a	single	residue	(4_denovo_demo/A_search.sh):	



$ROSETTA3/source/bin/denovo_density.macosclangrelease \ 
 -in::file::fasta t20sA.fasta \ 
 -fragfile ./t001_.25.9mers \ 
 -mapfile ./T20S_48A_alpha_chainA.mrc \ 
 -n_to_search 500 -n_filtered 2500 -n_output 100 \ 
 -bw 16 \ 
 -atom_mask_min 2 \ 
 -atom_mask 3 \ 
 -clust_radius 3 \ 
 -clust_oversample 4 \ 

-point_radius 3 \ 
 -movestep 1 \ 
 -delR 2 \ 
 -frag_dens 0.8 \ 
 -ncyc 3 \ 
 -min_bb false \ 
 -pos $1 \ 
 -out:file:silent round1/t20s.$1.silent  

Most	of	the	arguments	shown	here	should	be	left	as-is.		However,	there	are	a	few	–	highlighted	above	in	
boldface	–	that	you	might	want	to	change:	
-n_to_search 500 -n_filtered 2500 

These	flags	control	the	number	of	translations	to	search,	and	the	number	of	intermediate	solutions	to	keep.		
As	a	rule	of	thumb,	these	should	be	about	2	and	10	times	the	number	of	residues	in	the	map,	
respectively.	

Make	note	of	the	following	flag:	
-pos $1 

This	flag	tells	the	code	to	only	search	for	fragments	at	the	assigned	positions.		This	allows	for	parallelization	
of	the	script,	by	running	separate	jobs	for	each	position	in	the	protein.		($1	means	the	script	takes	the	
position	as	an	input	argument).	

For	this	step,	you	need	to	run	the	script	once	for	each	position	in	the	protein.		This	can	be	done	very	simply	
with	the	bash	command	(for	this	case,	the	221	indicates	there	are	221	residues	in	the	protein):	
for i in `seq 1 221`; do ./A_search.sh $i; done 

The	output	of	this	script	is	a	single	file	for	each	position	in	the	protein,	that	identifies	the	placement	
and	configuration	of	each	docked	fragment.		These	files	are	used	as	input	for	the	next	step	of	the	
process.	

However,	as	each	position	runs	independently,	and	each	position	might	take	30	minutes	to	an	hour	
for	the	search,	you	will	probably	want	to	parallelize	this	over	many	processors.	

Job	distribution	

As	this	is	the	most	computationally	intensive	step,	it	makes	sense	to	parallelize	this	step,	by	run	this	
procedure	separately	for	each	position	in	the	protein.		Using	GNU	parallel.	
parallel –j16 ./A_search.sh {} ::: {1..221} 

GNU	parallel	allows	launching	of	jobs	remotely	if	SSH	keys	have	been	set	up	for	passwordless	login.		To	run:	



parallel –S 16/node1,16/node2,16/node3,16/node4 -–workdir . ./A_search.sh {} ::: {1..221} 

This	will	launch	instead	48	jobs	spread	across	four	machines.		See	the	GNU	parallel	documentation	for	more	
information.	

Other	useful	options	

There	are	two	options	controlling	fragment	placement	that	may	also	be	useful	in	cases	where	there	is	some	
previous	knowledge	about	the	structure	in	question.		The	first	of	these	deals	with	the	case	where	the	
backbone	structure	is	known	(or	at	least	somewhat	known)	but	registration	of	the	sequence	with	the	
backbone	model	is	ambiguous.		In	this	case,	a	known	backbone	model	can	be	provided	with	the	flag:	

-ca_positions backbone.pdb 

In	this	case,	the	code	will	only	consider	fragments	centered	on	the	C	alpha	positions	from	the	input	model.		
This	offers	a	significant	speedup	as	well	as	reduced	search	space.	

Alternately,	if	part	of	the	structure	is	known	in	advance,	it	may	be	provided	with	the	flag:	

-startmodel start.pdb 

In	this	case,	the	matching	routine	will	match	only	the	native	fragments	covered	by	start	model,	ensuring	that	
these	positions	will	be	maintained	throughout	the	refinement.		When	using	this	options	there	are	two	
important	things	to	keep	in	mind:	

• The	numbering	in	the	PDB	file	must	match	the	numbering	of	the	input	fasta	
• Any	continuous	segments	shorter	than	9	amino	acids	in	the	input	file	will	get	ignored	

	

Step	4B.		Placed	fragment	scoring	

In	this	step,	we	want	to	take	the	placements	from	the	previous	step	and	score	them	for	compatability.		The	
outputs	from	step	A	are	used	as	inputs	in	this	step	(4_denovo_demo/B_score.sh):	

$ROSETTA3/source/bin/denovo_density.macosclangrelease \ 
 -mode score \ 
 -in::file::silent round1/t20s*silent \ 
 -scorefile round1/scores1 \ 
 -n_matches 50 

	
Highlighted	in	bold	are	the	input	files	(-in::file::silent)	–	the	outputs	from	the	previous	step	–	and	the	score	
file	to	be	written	(-scorefile),	the	output	of	this	step.		If	the	output	is	written	to	a	separate	folder,	you	will	
need	to	point	the	command	line	to	this	alternate	location.	
	
This	step	is	relatively	fast	(less	than	5	minutes)	and	can	be	run	on	a	single	processor.	

Step	4C.		Monte	Carlo	fragment	assembly	

In	the	third	step,	we	use	the	outputs	from	the	previous	two	steps,	and	try	to	generate	a	"maximally	



consistent"	fragment	assignment.		It	uses	Monte	Carlo	sampling	and	a	scorefunction	assessing	fragment	
compatibility	to	identify	this	fragment	set.		The	command	line	(4_denovo_demo/C_assemble.sh):	

$ROSETTA3/source/bin/denovo_density.macosclangrelease \ 
 -mode assemble \ 
 -nstruct 5 \ 
 -in::file::silent round1/t20s*silent \ 
 -scorefile round1/scores1 \ 
 -assembly_weights 4 20 6 \ 
 -null_weight -150 \ 
 -out:file:silent round1/assembled.$1 \ 
 -scale_cycles 1 \ 
 -mute core 

 
As	with	step	B,	the	outputs	of	the	previous	two	steps	need	to	be	provided	as	inputs:	
	
-in::file::silent round1/t20s*silent 
-scorefile round1/scores1 

	
The	script	then	writes	a	single	file	for	each	independent	trajectory:	
	
-out:file:silent round1/assembled.$1 

	
Finally,	each	job	will	generate	several	(in	this	case	5)	independent	trajectories:	
	
-nstruct 5 

	
It	is	recommended	to	generate	a	total	of	1000	independent	trajectories.		As	with	step	A,	this	can	be	
somewhat	time-consuming	(though	not	as	time-consuming	as	step	A).		Therefore	it	is	recommended	to	
parallelize	this	as	before:	
	
parallel –j16 ./C_assemble.sh {} ::: {1..200} 

Or	across	multiple	machines:	

parallel –S 16/node1,16/node2,16/node3,16/node4 -–workdir . ./C_assemble.sh {} ::: {1..200} 

	

Step	4D.		Consensus	assignment	

The	final	step	of	the	protocol	is	to	identify	the	consensus	assignment	from	the	lowest-scoring	Monte	Carlo	
trajectories.		This	is	done	using	the	following	command	(4_denovo_demo/D_consensus.sh):	

$ROSETTA3/source/bin/denovo_density.macosclangrelease \ 
 -mode consensus \ 
 -in::file::silent round1/assembled.*silent \ 
 -consensus_frac 1.0 -energy_cut 0.05 \ 
 -mute core 

The	output	trajectories	of	the	previous	step	are	provided	as	input	to	this	script	with	–in::file::silent.		This	
script	looks	for	a	consensus	assignment	in	the	best-scoring	trajectories,	and	will	output	a	PDB	file,	
S_0001.pdb.	



This	PDB	file	contains	sequence	placed	into	density.		Ideally,	the	model	at	this	point	is	more	than	70%	
complete,	and	this	file	can	then	be	used	as	input	to	RosettaCM	(see	section	3).		If	instead	this	structure	
contains	a	reasonable	partial	model,	but	with	less	than	70%	coverage,	the	iterative	approach	of	the	next	
section	can	further	improve	the	coverage	of	the	partial	model.	

Step	4E.		Iterative	assembly	to	increase	model	coverage	

In	some	cases,	it	may	be	necessary	to	iterate	refinement,	as	subsequent	rounds	of	denovo	building	may	trace	
portions	of	the	model	unable	to	be	placed	in	previous	rounds.		The	following	command	line	illustrates	how	
assembly	may	be	iterated	(4_denovo_demo/E_search_iter.sh):	

$ROSETTA3/source/bin/denovo_density.macosclangrelease \ 
 -in::file::fasta t20sA.fasta \ 
 -fragfile ./t001_.25.9mers \ 
 -startmodel round1_model.pdb \ 
 -mapfile ./T20S_48A_alpha_chainA.mrc \ 
 -n_to_search 250 -n_filtered 1250 -n_output 50 \ 
 -bw 16 \ 
 -atom_mask_min 2 \ 
 -atom_mask 3 \ 
 -clust_radius 3 \ 
 -clust_oversample 4 \ 

-point_radius 3 \ 
 -movestep 1 \ 
 -delR 2 \ 
 -frag_dens 0.8 \ 
 -ncyc 3 \ 
 -min_bb false \ 
 -pos $1 \ 
 -out:file:silent round2/t20s.$1.silent 

 
This	step	is	nearly	identical	to	step	A,	with	two	key	chages	highlighted	in	bold.			The	first	change	indicates	
that		the	output	of	the	previous	step	is	to	be	used	as	an	initial	model:	
	
-startmodel round1_model.pdb 

	
Following	inspection,	this	model	may	also	be	manually	edited	as	well.	
	
The	second	change	makes	sure	the	outputs	don’t	clobber	the	outputs	from	the	previous	step:	
	
-out:file:silent t20s.rd2.$1.silent 

	
As	with	step	A,	this	should	be	parallelized	over	many	processors,	e.g,	using	GNU	parallel:	
	
parallel –S 16/node1,16/node2,16/node3,16/node4 -–workdir . ./	E_search_iter.sh {} ::: {1..221} 
	
Once	complete,	steps	B,C,	and	D	may	be	then	followed	in	order,	making	sure	that	the	input	and	output	files	
are	updated	to	indicate	the	round	2	models.	
	
NOTE:	At	each	step,	be	certain	that	your	outputs	are	not	overwriting	one	another.		Once	the	partial	model	
has	been	calculated,	it	is	safe	to	delete	the	intermediate	files	created	as	part	of	the	construction	process.		In	
this	case,	the	same	output	file	names	may	be	reused	(thus,	the	same	scripts	can	be	used	for	each	iteration	
aside	from	the	first).	
	
	
	



	

5)	Completing	partial	models	guided	by	experimental	density	data 

While	the	previous	workflows	have	address	model	building	and	model	refinement,	none	of	the	
aforementioned	tools	deal	with	completion	of	large	segments	of	protein.		These	may	arise	in	several	cases: 

1. Homology	models	(particularly	distant	ones)	may	have	large	insertions,	or	even	entire	domains	that	
are	lacking.	

2. The	models	produced	from	denovo_density	may	be	missing	significant	fractions	of	the	backbone	
3. It	may	be	difficult	to	manually	trace	long	stretches	of	low	local	resolution	into	density	

 
To	address	these	issues,	we	have	developed	a	tool	called	Rosetta	Enumerative	Sampling,	which	uses	a	
ensemble	search	algorithm	to	determine	a	large	number	of	conformations	that	are	both	consistent	with	the	
density	and	the	Rosetta	energy	function.	This	tool	can	be	used	on	a	partial	models	from	the	denovo_denisty	
application,	an	incomplete	homology	model,	or	any	other	starting	structure.	 
	
RosettaES	runs	best	when	working	with	data	at	resolutions	5	Å	or	better	with	segments	to	rebuild	shorter	
than	50	residues.		However,	with	very	large	amounts	of	sampling	(e.g.,	ensemble	sizes	>	250),	reliable	
models	may	be	produced	with	segments	longer	than	100	residues.		At	resolutions	worse	than	5	Å,	this	tool	
may	be	unreliable.		The	method	can	be	used	on	both	segmented	and	unsegmented	density	maps,	however,	
removal	of	density	belonging	to	parts	of	the	structure	not	being	modeled	may	improve	results.	
 
RosettaES	model	building	consists	of	three	steps.		Initially,	a	preparation	step	builds	the	fragments	that	are	
to	be	used	in	conformational	sampling.		Then	a	rebuilding	step	will	identify	each	unassigned	segment	in	the	
initial	model	and	build	an	ensemble	of	possible	solutions	for	each.		Finally,	a	combination	step	finds	all	the	
consistent	subsets	of	interactions,	and	refines	all	such	models	(if	there	is	only	one	segment,	the	script	simply	
refines	all	structures	in	the	ensemble).		In	this	combination	step,	if	assembly	fails	to	find	a	consistent	set	of	
solutions,	an	additional	round	of	sampling	will	be	carried	out,	forcing	different	solutions	than	the	previous	
model.		
 
Compared	to	the	other	sections,	the	workflow	is	a	bit	more	complicated	when	extended	to	multiple	compute	
cores.		To	handle	job	distribution	we	have	included	a	python	script	RunRosettaES.py	that	manages	this	job	
distribution	among	available	CPUs	on	a	single	machine.	(The	script	is	included	as	part	of	Rosetta,	in	
/main/source/scripts/python/public/EnumerativeSampling,	as	well	as	in	this	tutorial).			For	dealing	with	
job	schedulers	or	clusters	incompatible	with	this	script,	section	5E	gives	an	overview	of	job	distribution	with	
RosettaES. 

Step	5A.		Fragment	Picking 

The	first	step	–	much	like	Scenario	4	–	involves	selection	of	"fragment	files,"	which	predict	backbone	
conformation	from	local	sequence.		Unlike	Scenario	4,	we	have	a	custom	algorithm	for	fragment	picking.	
These	fragments	will	need	to	be	generated	before	running	RosettaES;	the	following	command	will	generate	
these	files	(5_rosettaES/A_PickFragments.sh): 
	
$ROSETTA3/source/bin/grower_prep.default.macosclangrelease \ 
     -pdb input.pdb \  
     -in::file::fasta t20sA.fasta \ 
     -fragsizes 3 9 \ 
     -fragamounts 100 20 

	
This	will	generate	100	3	residue	fragments	and	20	9	residue	fragments,	named	100.3mers	and	20.9mers,	
that	are	then	used	in	subsequent	steps	of	the	rebuilding	process. 



Step	5B.	Generate	Possible	Conformations	For	Each	Segment 
	
The	grower	considers	assigning	positions	for	each	unassigned	segment	of	density	(that	is,	each	stretch	of	
amino	acids	present	in	the	fasta	file	but	missing	from	the	input	structure).		Each	segment	is	referred	to	using	
a	segment	id,	in	which	each	segment	is	numbered	from	N-	to	C-terminus	(with	multiple	chains	given	in	order	
in	the	input	fasta	file).		The	script	is	run	in	two	parts:	first,	the	script	is	run	once	for	each	segment	to	rebuild;	
then,	the	script	is	run	in	“assembly	mode”	given	the	outputs	produced	by	rebuilding	each	segment	
individually.		Thus,	for	rebuilding	the	two	segments	in	the	test	case,	the	script	is	called	three	times:	once	to	
build	each	segment,	and	once	to	assemble	the	results. 
	
In	the	first	step,	we	perform	conformational	sampling	of	each	of	the	two	segments,	generating	an	ensemble	
of	putative	solutions	for	each.	This	can	be	done	calling	the	command	(5_rosettaES/B1_SampleSegment1.sh):	
 
python RunRosettaES.py \ 
     -rs runES.sh \ 
     -x RosettaES.xml \ 
     -f t20sA.fasta \ 
     -p input.pdb \ 
     -d T20S_48A_alpha_chainA.mrc \ 
     -l 1 \ 
     -c 16 \ 
     -n loop_1 

 
The	arguments	to	this	program	are	as	follows: 

• -rs	runES.sh	-	the	script	that	is	launched	on	each	core	and	contains	Rosetta	flags	and	inputs 
• -x	RosettaES.xml	-	the	XML	script	describing	parameters	for	conformational	sampling	(see	below) 
• -f	t20sA.fasta	-	the	input	fasta	file	(with	chainbreaks	specified	by	‘/’) 
• -p	input.pdb	-	the	input	pdb	file.		This	needs	to	match	the	input	sequence,	and	all	residues	present	in	

the	fasta	but	absent	in	the	PDB	will	get	built. 
• -d	T20S_48A_alpha_chainA.mrc	-	the	input	density	map 
• -l	1	-	the	segment	id	of	the	segment	to	rebuild.		This	command	should	be	called	once	for	each	segment	

to	rebuild,	varying	this	argument	from	1	to	N 
• -c	16	-	the	number	of	compute	cores	to	use 
• -n	loop_1	-	the	output	tag	for	this	job	(results	will	be	placed	in	a	folder	with	this	name).		Tags	should	

be	unique	for	each	segment. 
 
The	input	XML	file	exposes	key	parameters	for	conformational	sampling.		In	the	tutorial,	this	file,	
5_rosettaES/RosettaES.xml,	contains	a	block: 
	
... 
<FragmentExtension name="ext" fasta="full.fasta" scorefxn="dens"  
    censcorefxn="cendens" beamwidth="32" dumpbeam="0" samplesheets="1" read_from_file="0" 
    continuous_weight="0.3" looporder="1" comparatorrounds=”100” windowdensweight=”30” 
    readbeams="%%readbeams%%" storedbeams="%%beams%%" 
    steps="%%steps%%" pcount="%%pcount%%" filterprevious="%%filterprevious%%" 
    filterbeams="%%filterbeams%%"> 
        <Fragments fragfile="100.3mers"/> 
        <Fragments fragfile="20.9mers"/> 
</FragmentExtension> 
... 

	
The	sampling	behavior	of	RosettaES	is	controlled	by	the	block	above.		Many	of	the	tags	in	this	block	–	fasta,	
dumpbeam,	read_from_file,	storedbeams,	steps,	pcount,	filterprevious,	comparitorrounds,	and	filterbeams	–	are	
used	by	the	job	distribution	script	to	pass	results	from	one	step	to	the	next,	and	they	should	be	left	as-is. 
	
	



Others	are	user-specified,	and	can	be	modified	based	on	the	size	of	the	loop	and	resolution	of	the	data: 
• beamwidth:	controls	the	maximum	number	of	solutions	to	be	held	at	each	step.		

Setting	the	value	higher	will	increase	run	time	but	may	improve	accuracy. 
• windowdensweight:	the	relative	contribution	of	density	in	model	selection 

 
For	many	cases,	the	default	parameters	are	sufficient.		However,	if	the	segment	to	grow	is	long	(50+	
residues),	you	may	need	to	increase	beamwidth;	if	the	density	is	low	resolution,	you	might	need	to	decrease	
windowdensweight	to	15	or	20. 
	
Several	options	should	rarely	be	modified,	but	may	need	to	be	in	specific	cases: 

• samplesheets:	Controls	whether	or	not	beta	sheet	sampling	should	be	performed.		
It	is	recommended	to	use	this	except	when	working	with	symmetric	systems. 

• continuous_weight:	Controls	the	penalty	on	discontinuous	density.		
Setting	this	value	to	1	will	completely	remove	any	penalty	on	discontinuous	density;		
setting	it	closer	to	0	will	increase	the	penalty.		You	may	wish	to	raise	this	value	to	0.7	(or	more)	if	you	
anticipate	the	segment	you	are	trying	to	model	does	not	follow	a	continuous	path	of	density. 

 
Finally,	the	option	comparitorrounds	is	used	in	multi-segment	assembly	(see	section	5C)	
	
After	running	the	script	with	this	XML,	there	are	two	important	intermediate	output	files,	placed	in	the	folder	
loop_1	(the	argument	to	-n): 

• .lps	(for	loop	partial	solution)	files,	which	are	then	combined	in	step	5C,	in	cases	where	there	are	
multiple	segments	to	model 

• taboo/beamX.txt	files,	where	X	corresponds	to	the	number	of	residues	added	to	the	segment.		These	
are	generated	as	the	search	adds	residues,	and	are	used	to	pass	information	from	one	step	to	the	next	
(as	additional	residues	are	added	in	a	single	segment). 
 

Note:	This	process	should	then	be	repeated	for	all	remaining	segments	to	rebuild	In	the	tutorial,	the	
command	5_rosettaES/B2_SampleSegment2.sh	builds	conformations	for	the	second	segment	in	this	file.	All	
segments	can	be	sampled	independently	of	one	another,	so	if	many	compute	nodes	are	available,	each	
segment	can	be	sampled	simultaneously	on	separate	nodes.	
	
Finally,	while	in	most	cases,	users	will	want	to	take	these	models	into	the	assembly	step	(part	5C),	if	there	is	
only	one	segment	to	rebuild,	or	if	the	sampling	results	want	to	be	inspected,	the	final	output	ensemble	can	be	
saved	as	PDB	files	with	the	command	(5_rosettaES/B1.2_InspectIntermediates.sh): 
 
python RunRosettaES.py \ 
     -rs runES.sh \ 
     -x RosettaES.xml \ 
     -f t20sA.fasta \ 
     -p input.pdb \ 
     -d T20S_48A_alpha_chainA.mrc \ 
     -l 1 \ 
     -db loop_1/taboo/beam17.txt 

	
Note,	the	number	of	the	beam	file	(17)	corresponds	to	the	total	number	of	residues	built.		Intermediate	
results	(after	growing	N	residues)	can	be	inspected	by	changing	this	to	a	lower	number	(e.g.,	beam14.txt	
shows	solutions	after	14	of	the	17	residues	have	been	rebuilt). 
	

	

	



Step	5C.	Find	a	set	of	consistent	conformations. 

In	cases	where	there	are	multiple	interacting	segments,	we	want	to	find	all	nonclashing	combinations.		This	
step	will	take	the	loop	partial	solution	(lps)	files	generated	in	step	B	and	use	a	Monte	Carlo	Assembly	(MCA)	
algorithm	in	order	to	identify	sets	of	solutions	that	are	self-consistent.		This	section	assumes	that	all	
missing	segments	have	been	built	in	step	B.		To	run	this	assembly,	we	perform	conformational	sampling	
using	the	script,	passing	the	.lps	files	generated	in	step	B	(5_rosettaES/C_AssembleResults.sh): 
	
python RunRosettaES.py \ 
     -rs runES.sh \ 
     -x RosettaES.xml \ 
     -f t20sA.fasta \ 
     -p input.pdb \ 
     -d T20S_48A_alpha_chainA.mrc \ 
     -lps loop_*/lps*.txt 

 
The	flag	-lps	points	to	the	outputs	of	the	individual	segment	jobs’	output.		As	before,	the	script	will	use	(and	
modify)	an	input	XML	file.		For	assembly,	only	a	single	parameter	is	important	to	modify:	
comparatorrounds="100”.		This	parameter	controls	the	number	of	Monte	Carlo	trajectories	(it	is	unlikely	you	
will	need	to	change	this	parameter).	 
	
The	output	of	this	step	is	PDB	files,	that	will	be	placed	in	the	working	directory	with	the	prefix	
aftercomparator_RRR_XXX.pdb,	where	RRR	is	the	trajectory	id,	and	XXX	is	the	energy.			A	text	file	
recommendation.txt	will	be	written	that	reports	the	clash	score	of	the	best	model.		 
	
If	the	number	in	recommendation.txt	is	above	+100	it	is	recommend	you	perform	additional	rounds	of	
sampling.			To	do	so,	additional	potential	solutions	should	be	sampled	by	repeating	step	B	and	providing	the	
same	directory	name	as	input,	without	deleting	the	intermediate	files.	The	script	will	then	enter	that	
directory	and	use	the	already-computed	solutions	(stored	in	the	folder	"taboo")	to	guide	sampling	toward	
previously	unexplored	regions.	See	section	D	for	more	details. 
	
If	the	number	in	recommendation.txt	is	below	+100,	then	models	should	be	run	through	Rosetta	
refinement	to	accurately	rank	them.		That	can	be	done	using	this	command	(5_rosettaES/D_RefineOutput): 
	
python RunRosettaES.py \ 
     -rlxs runrelax.sh \ 
     -x RosettaES.xml \ 
     -p input.pdb \ 
     -d T20S_48A_alpha_chainA.mrc \ 
     -c 16 \ 
     -rp aftercomparator_*.pdb 

 
Where	runrelax.sh	contains	a	command	for	relaxing	structures	in	Rosetta.	

Step	5D.	Interpreting	results 
	
RosettaES	will	produce	a	100	models	as	output	(or	whatever	is	specified	in		comparatorrounds),	with	scores	
in	the	file	score.sc.		When	first	looking	at	the	output	from	a	run,	it	is	good	to	visually	inspect	the	lowest-
energy	5-10	structures.		Ideally,	these	lowest-energy	models	will	be	very	tightly	converged,	but	the	lack	of	
convergence	does	not	indicate	failure	in	sampling,	and	the	presence	of	convergence	does	not	necessary	
indicate	the	solution	is	correct.		Instead,	the	lowest-scoring	models	should	be	examined	with	attention	to	the	
following: 
	



Insufficient	sampling.		Models	should	initially	be	inspected	for	clearly	incorrect	features	that	might	not	have	
been	properly	penalized	by	Rosetta.		These	include: 

• unexplained	density,	particularly	small	sidechains	placed	into	a	large	density	protrusions 
• regions	with	poor	fit	to	density 
• unresolved	clashes 

 
If	these	features	are	present	in	the	lowest-energy	models,	it	suggests	that	the	conformational	sampling	
performed	by	RosettaES	may	not	have	been	sufficient.		There	are	several	ways	to	address	this	issue.		The	first	
is	to	increase	conformational	sampling.		This	can	be	done	by	either:	a)	increased	the	beamwidth	parameter	
and	rerunning	anew,	b)	and/or	performing	additional	rounds	of	taboo	search	(taboo	sampling	occurs	
automatically	if	the	“taboo/”	folder	in	the	running	directory	is	populated	with	beam	files”),	or	c)	reducing	the	
search	space	by	eliminating	regions	of	density. 
	
The	latter	can	also	be	performed	by	manually	removing	parts	of	the	map	you	do	not	wish	to	sample	or	by	
including	additional	portions	of	the	model,	for	example	if	you	are	building	a	model	that	has	4	missing	regions	
and	you	believe	you	have	accurately	sampled	3	of	them	(they	do	not	posses	any	of	the	pathologies	listed	
above	and	fit	the	density	well),	you	can	combine	them	by	treating	them	as	templates	for	RosettaCM	(use	a	
fasta	file	with	the	missing	segment	removed)	and	use	the	result	as	input	for	RosettaES	to	build	the	last	
region. 
	
Unresolved	residues.	RosettaES	will	always	attempt	to	build	all	residues	present	in	the	fasta	file,	however,	in	
many	cases	not	all	residues	will	be	resolved	in	the	map	(particularly	at	termini).	Because	RosettaES	will	
heavily	penalize	models	that	do	not	fit	the	density,	you	will	often	find	models	that	are	"overly	compacted"	at	
termini	or	internal	loops,	to	try	to	squeeze	these	residues	into	density.		 
	
If	this	happens	at	termini	it	is	suggested	that	you	examine	intermediate	structures	that	have	yet	to	attempt	to	
assign	these	unresolved	residues	in	order	to	find	a	good	model.			If	this	happens	internally	(or	if	you	have	a	
good	idea	a	priori	what	residues	should	be	modeled),	these	regions	can	be	removed	from	the	input	fasta.		If	
internal	segments	are	deleted,	be	sure	to	treat	the	deletion	correctly,	by	putting	a	'/'	in	the	fasta	file.	 
	
Step	5E.	Customizing	job	distribution. 
	
Job	distribution	in	RosettaES	is	complicated,	since	each	"growing	step"	can	be	parallelized,	but	subsequent	
steps	need	all	the	information	from	the	previous	step.		Consequently,	the	script	provided	(RosettaES.py)	
manages	jobs,	by	calling	Rosetta	jobs	at	each	round,	collecting	and	combining	the	results	of	the	previous	
round,	then	splitting	input	files	for	the	next	round.		On	systems	where	it	is	not	possible	to	run	this	script,	this	
section	describes	in	some	detail	what	the	script	is	doing. 
	
To	manage	this	the	python	script	uses	the	provided	XML	file	as	input,	rewriting	several	parameters	
depending	on	the	protocol	step.		These	varying	parameters	include: 

• readbeams,	a	boolean	option	that	tells	Rosetta	whether	it	should	load	intermediate	solutions 
• beamfile,	the	name	of	the	beamfile	that	stores	the	intermediate	solutions 
• steps,	how	many	residues	to	add	(0	means	only	do	filtering,	otherwise	set	to	1,	setting	to	“-1”	will	

build	all	missing	residues) 
• pcount,	used	to	uniquely	tag	output	files	from	each	core 
• filterprevious,	a	boolean	option	that	controls	whether	intermediate	solutions	should	be	read	for	taboo	

search 
• filterbeams,	the	filename	of	the	intermediate	solutions	for	use	in	taboo. 

 
In	order	to	build	a	missing	segment	the	script	will	perform	the	following	steps: 
	



1. Launch	a	job	with		
readbeams="0",	beamfile="na",	steps="1",	pcount="1",	filterprevious="0",	filterbeams="na".		
This	will	produce	a	file	named	beam1.1.txt	from	Rosetta.	

2. Parse	the	beam1.1.txt	file	and	split	into	N	files	(where	N	is	the	number	of	parallel	jobs	to	run).		
New	files	are	labeled	beam_$r.$i.txt	where	$r	is	the	number	of	residues	added	so	far,		
and	$i	ranges	from	1	to	N.	

3. Submit	N	rosetta	jobs	with	pcount	set	as	the	job	number,	readbeams	set	to	"true",	and	beamfile	set	to	
the	corresponding	output	of	step	2.		

4. Output	files	are	parsed	by	the	script	and	compiled	into	a	single	file	with	the	name	beam$r.txt,	with	
$r	the	number	of	residues	grown.	

5. Rosetta	is	run	on	a	single	core	to	filter	the	aggregate	solution	set.	Here,	
readbeams=”1”,	beamfile=”beam$r.txt”,	and	steps="0".		
A	file	named	beam_0.txt	will	have	the	filtered	results.	

6. Repeat	steps	2-6	using	the	beam_0.txt	as	the	input	for	step	2.	This	is	done	until	the	segment	is	
complete	and	Rosetta	produces	an	empty	file	called	finished.txt.	The	presence	of	this	file	triggers	the	
program	to	perform	one	final	round	of	filtering	and	exit.	

 
The	last	step	of	RosettaES	will	additionally	produce	a	file	with	the	name	"lpsfile_$s.0.txt,"	used	for	assembly.	
To	run	assembly	with	these	files	first	combine	them	into	a	single	file,	described	below,	and	run	with	
readfromfile=”filename”.		This	new	file	should	start	with	the	a	number	corresponding	to	the	total	number	of	
missing	segments,	then	for	each	missing	segment	provide	a	number	for	the	total	solutions	in	that	segmented	
followed	by	the	solution	information	contained	in	the	lpsfile_$s.0.txt	described	above.	Segments	should	be	
arranged	to	match	the	order	in	which	they	occur	in	the	fasta.	 
	

	
	


