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The major biopolymers

Amino acid residues
A
& N\

Proteins **+ —{ Alanine (—{ Tyrosine — Leucine —{ Serine [—| Proline [— =«

Nucleotides

fr s N\
Nucleic Acids -« - - AQdenineD{Guanine Thymine oo

Sugar residues
A

(Fustose)
Building blocks:

* Proteins: Amino Acids
* Nucleic Acids: Nucleotides
* Polysaccharides: Sugars




DNA structure

e B-form DNA

— right-handed anti-parallel
double helix

— ~10 base pairs per turn
— 3.4 A rise per base pair
— C2’ endo sugar pucker
— A:T and G:C base pairs

— wide major groove, harrow
minor groove




DNA structure: a single nucleotide




DNA structure: sugar pucker

B-form: C2’-endo pucker A-form: C3’-endo pucker

The ribose ring is not planar



DNA structure: Watson-Crick base-pairing

mor groove
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major groove




DNA structure

e A-form DNA

— right-handed anti-parallel
double helix

— ~11 base pairs per turn
— 2.56 A rise per base pair
— C3’ endo sugar pucker
— A:T and G:C base pairs

— narrow and deep major
groove, wide and shallow
minor groove




DNA structure

e 7Z-form DNA

— |left-handed anti-parallel
double helix

— alternating C:G and G:C base
pairs

— found under high salt
conditions

— rare in nature




Factors Stabilizing the DNA
Duplex

1. “Hydrophobic interactions,” base stacking

 vertical base stacking interactions make
duplex formation enthalpically favored
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2. lonic interactions
* duplex becomes more stable as ionic strength increases

« presence of positive counterions partially neutralizes negative
charges of backbone phosphates

3. Hydrogen bonding between base pairs



 B-form DNA
three major

— major kinki

DNA bending

bends in
modes:

ing (CAP)

— writhe (TBP)

— smooth continuous bending
(Mat al/alpha2
homeodomain)

* Different base steps have
different intrinsic bending

propensities

— pyrimidine-

purine base

steps can form sharp kinks
(e.g. T-A steps)
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DNA bending: kinking in CAP:DNA

Kink at C-A step (pyrimidine-purine)
1CGP



DNA bending: writhing in TBP:DNA

1YTB



DNA bending: smooth bending in
MAT al-alpha2:DNA

1YRN



DNA hydration

* DNA is highly hydrated under
physiological conditions

e Specific ordered water
locations have been identified

through analysis of high-
resolution DNA crystal
structures

— major groove base waters

— minor groove spine of hydration




DNA hydration: major groove waters
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DNA hydration: minor groove waters

1BNA



DNA recognition

 Direct readout

— protein recognizes specific pattern of hydrogen bond
donors/acceptors, packing sites

— major groove usually targeted due to uniqueness of hbond pattern

 Indirect readout

— protein recognizes DNA shape
— sequence-specific DNA bending
— phosphate backbone contacts often important



DNA recognition: direct readout

Arg-Gua hbonds Asn-Ade hbonds



DNA recognition: indirect readout

Kink at pyrimidine-purine base step

1CGP



DNA recognition: major families

*Helix-turn-helix (1cgp)
*Homeodomain (1b72)

Zinc finger (1aay)

*bZIP (1ysa)

*bHLH (1mdy)



C2H2 zinc finger: Zif268
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Water-mediated interactions:
Trp repressor

P =

1TRO



DNA is wrapped around nucleosomes

DNA bending
leads to sequence
preferences for
nucleosome
positioning
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Protein-DNA interfaces require new sampling moves

Double-helical
DNA fragment
insertions
preserve base-
pairing outside the
region of fragment
insertion

Protein fragment
insertions sample
backbone
conformation
without perturbing
DNA or binding
mode

Interface moves
sample the
protein-DNA rigid
body orientation
using homologous
structures as
templates

Kinematic
structure for DNA
allows torsion-
space (internal
coordinate)
sampling while
maintaining the
DNA duplex



RNA structures are highly diverse

hammerhead
ribozyme

RNA duplex transfer RNA

6TNA,1HMH



Examples of RNA structural motifs
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Figure 6-94. Molecular Biology of the Cell, 4th Edition.
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Figure 6-95. Molecular Biology of the Cell, 4th Edition.



Secondary structure of yeast Phe tRNA
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Free energy computation predicts
RNA secondary structure (mfold)

+5.9 4nt loop ‘_A U UA
_ > -1.1 mismatch of hairpin
G-C » -2.9 stacking
GC
|+3.3 1nt bulge | * -2.9 stacking
G-C
U-A > -1.8 stacking
A-U > -0.9 stacking
: ) -1.8 stacking
‘5 dangllng‘ C-G > -2.1 stacking

A-U

AG = -4.6 kcal/mol



Mfold algorithm

(Zuker & Stiegler, NAR 1981 9(1):133)

W(i,j) — min free energy formed from subsequence [i...]
V(i,j) — min free energy from all substructures where | and j pair

o - hairpin
o , E,(FH(Z’])) o (1) stacking / bulge /
V(Z .7) — min M <k<m<j E(FL(Zaj; k) m)) + V(ka m) (2) - interior |oop
mini+1<k<j_2 W(Z + 1, k) + W(k + 1,j - 1) (3)

w._ closed bifurcation
(multiple loops)

( W(i+1,5) (4)a €= iorjunpaired
. . Wi(i,j—1) (4)b
W (i,5) = min { L i and j paired
) V(i, ) (1-3) & 2P
| minjcpe;j—1 (Wi, k) + W(k+1,5) (5) € open bifurcation
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COMMUNICATIONS

M) Check for updates

ARTICLE

RNA secondary structure prediction using deep
learning with thermodynamic integration

Kengo Sato® "™, Manato Akiyama' & Yasubumi Sakakibara'
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3D structure of yeast Phe tRNA fold
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Non-WC base pairs and base triples in yeast tRNA Phe

;: G4-U69 m'A58-T54 G18-W55 m2G26-A44

G15-C48 m2G10-C25 A23-U12 G22-C13




A9 intercalates between adjacent G45
and m’G46 in yeast tRNA Phe

G45

A9



Six backbone dihedral angles (a—()
per nucleotide

5' end

270°

180°




Prediction of RNA tertiary structure
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De Novo RNA Tertiary Structure Prediction at Atomic Resolution
Using Geometric Potentials from Deep Learning

Robin Pearce?, Gilbert S. Omenn®°, Yang Zhang®""

“Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI
48109 USA; "Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA;
‘Departments of Internal Medicine and Human Genetics and School of Public Health, University of
Michigan, Ann Arbor, MI 48109, USA.

*To whom correspondence should be addressed. E-mail: zhng@umich.edu

ABSTRACT

Experimental characterization of RNA structure remains difficult, especially for non-coding RNAs that are
critical to many cellular activities. We developed DeepFoldRNA to predict RNA structures from sequence
alone by coupling deep self-attention neural networks with gradient-based folding simulations. The method
was tested on two independent benchmark datasets from Rfam families and RNA-Puzzle experiments,
where DeepFoldRNA constructed models with an average RMSD=2.69 A and TM-score=0.743, which
outperformed state-of-the-art methods and the best models submitted from the RNA-Puzzles community
by a large margin. On average, DeepFoldRNA required ~1 minute to fold medium-sized RNAs, which was
~350-4000 times faster than the leading Monte Carlo simulation approaches. These results demonstrate the
major advantage of advanced deep learning techniques to learn more accurate information from
evolutionary profiles than knowledge-based potentials derived from simple statistics of the PDB library.
The high speed and accuracy of the developed method should enable large-scale atomic-level RNA
structure modeling applications.



