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Last lecture

Typically, proteins fold by 
progressive formation of native-
like structures.

Folding energy surface is highly 
connected with many different 
routes to final folded state.



Structure Prediction
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Prediction Strategies

Homology Modeling

•Proteins that share similar 
sequences share similar folds.

•Use known structures as the 
starting point for model building.

•Can not be used to predict 
structure of new folds.

De Novo Structure Prediction

• Do not rely on global similarity 
with proteins of known structure

•Folds the protein from the 
unfolded state.

• Very difficult problem, search 
space is gigantic



Similar Sequences Share Similar Structures

Wilson, Kreychman, Gerstein (2000)



BLAST (Basic Local Alignment Search Tool)

BLAST is a fast sequence alignment algorithm that identifies high-scoring local 
alignments by finding short exact matches (seeds) and extending outward. BLAST 
uses the BLOSUM62 aa substitution matrix by default.



PSI-BLAST

• Position-Specific Iterated BLAST

• Allows more distantly related sequences to be identified

• Steps

1. Use BLAST to identify related sequences

2. Create a profile from related sequences

3. Search for related sequences using this profile



Sequence Profile

• For each column in a MSA 
count how often each amino 
acid occurs

• Combine with prior 
information about 
substitution frequencies (ie. 
BLOSUM62)

• Convert counts to log odds 
scores.  End product is a 
Position-Specific Scoring 
Matrix (PSSM)



Homology Modeling

• Identify homologous 
protein sequences

• Build model by

1. “Threading” residues in 
corresponding positions of 
homologous structure

2. Sampling conformations of 
unaligned residues

3. All-atom refinement
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Thermodynamic hypothesis: 
The native state is the lowest-energy conformation.

De novo protein 
structure prediction



Structure Prediction Protocol

• Large-scale search of conformational space using 

a low-resolution potential

• Refinement of candidate models in a physically 

realistic, all-atom potential; selection by energy



Insights from Folding Studies

1. Local (sequence-specific) interactions strongly bias 

conformational sampling. 

2. Folding is guided by hydrophobic burial, assembly of secondary 

structure, excluded volume.

3. Native interactions on average stronger / more consistent than 

non-native interactions => native minima broader than non-

native  minima.



Fragment-based Methods (Rosetta)

• Hypothesis: the PDB database contains all the possible 

conformations that a short region of a protein chain might 

adopt

• How do we choose fragments that are most likely to 

correctly represent the query sequence? 

Query Sequence

• Sequence profile
• Predicted secondary 

structure
• Hydrophobic 

patterning

• Sequence profile
• Known secondary 

structure
• Known hydrophobic 

patterning

All known structures

Exhaustive 
comparison of all 
9-residue 
windows



Fragment Libraries

• A unique library of fragments is 

generated for each 9-residue 

window in the query sequence.

• Assume that the distributions of 

conformations in each window 

reflects conformations this segment 

would sample.

• Regions with very strong local 

preferences will not have a lot of 

diversity in the library.  Regions with 

weak local preferences will have 

more diversity in the library.



• Low resolution energy function used 
in initial search through 
conformational space

• Side chains represented by single 
“centroid” pseudoatom

• Major contributions from
– Hydrophobic burial
– Beta-strand pairing
– Steric overlap
– Specific residue pair interactions

Generating Structures from Fragments



High-resolution model refinement

• Rosetta “relax” structure refinement:

– Discrete sidechain optimization via 

Simulated Annealing Monte Carlo

– Gradient-based minimization of energy with 

respect to torsion angles

• Potential function: Rosetta all-atom energy

– Lennard-Jones, 

– LK implicit solvation, 

– Coloumb electrostatics

– orientation-dependent hydrogen bonding, 

– PDB derived torsional potential

sidechain rotamers

START

optimize 
sidechains

minimize

FINISH

Rosetta
energy



Correlated mutations carry information about distance 
relationships in protein structure.

Marks DS, Colwell LJ, Sheridan R, Hopf TA, Pagnani A, et al. (2011) Protein 3D Structure 
Computed from Evolutionary Sequence Variation. PLOS ONE 6(12): e28766. 
https://doi.org/10.1371/journal.pone.0028766
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0028766

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0028766


Learning the DCA (direct coupling analysis) matrix

Problem:  Z cannot be tractably computed

Solutions:

• Mean-field approach (mfDCA)
(https://www.pnas.org/content/108/49/E1293)

• Pseudo-likelihood (plmDCA)
(https://journals.aps.org/pre/abstract/10.1103/PhysRevE.87.012707)

https://www.pnas.org/content/108/49/E1293
https://journals.aps.org/pre/abstract/10.1103/PhysRevE.87.012707


Predicted 3D structures for three representative proteins.

Marks DS, Colwell LJ, Sheridan R, Hopf TA, Pagnani A, et al. (2011) Protein 3D Structure 
Computed from Evolutionary Sequence Variation. PLOS ONE 6(12): e28766. 
https://doi.org/10.1371/journal.pone.0028766
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0028766

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0028766


Correlated mutations carry information about distance 
relationships in protein structure.



Coevolution guided modeling

GREMLIN predictions
on shallow MSAs

(Nseq=36, Nf=2.3)
Native contact map



Contact maps = Computer Images?

AI-based
image processing

MSA

Covariances

Contact prediction

Contacts



Convolutional neural networks





Learning a contact map from co-evolving residues



Inferring better contact maps (I)



Inferring better contact maps (II)



trRosetta



Discovering hidden patterns with a learned model

Gremlin predictions
on shallow MSAs

(Nseq=36, Nf=2.3)

trRosetta 
predictions

on shallow MSAs
(Nseq=36, Nf=2.3)

Native contact map
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Figure from Callaway E. Nature, 2020

Improving protein structure prediction

Free modeling accuracy in CASP



A differentiable end-to-end structure predictor

trRosetta

DeepMind

trRosetta

d
⍵

θ
φ

input MSA

PyRosetta

Fold by 
minimization & 

relax

input MSA

d
⍵

θ
φ

SE3-invariant transformer layersAttention-based

“trunk”

All-atom model + 
predicted errors



Iterative feature extraction
(attention instead of convolution)

End-to-end
training

On-the-fly structure 
generation & 
refinement
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What would be a proper inductive bias
for protein structure prediction?
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Component 1: MSA updates via self-attention
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Component 2: Update pair features via self-attention
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Axial Attention (attention over rows then columns) 
to reduce memory requirements & computation time



Component 3: Extract pair features from MSA

Non-interacting pairs → Broader distribution
Interacting pairs (co-mutating) → Sharper distribution

Seq 1

Seq N

pair_ij

Ju, Fusong, et al. "CopulaNet: Learning residue co-evolution directly from multiple sequence alignment for protein structure prediction." bioRxiv (2020).

Outer product & 
aggregate

Concat to 
original pair

& ResNet



Component 4: Update MSA based on pair features

Pair features MSA features

symmetrize

LayerNorm LayerNorm

Linear & Softmax

Attention

Linear

Values

LayerNorm

Feed forward

MSA features

Attention from
structure 

information encoded 
in pair features

Attention heads
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Component 5: SE(3)-Transformer for structure refinement
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Graph
Transformer

MSA feat

Pair feat

Fully connected 
graph



RosettaFold 2-track model:
Reproduce Alphafold 2 based on underlying principles
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1D track

Attention

2D track

Attention
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Templates

Predicted 
distances

SE(3)-
Transformers

SE(3) iterative refinement

BB-only model

12 two-track blocks (orange box) + SE(3)-Transformer at the end
Trained on protein structures in PDB (clustered w/ seqID cutoff 

30%)



What happens during iteration?



What questions still remain?

• Predicting proteins without MSA information

• Predicting conformational states

• Predicting effects of mutation

• Predicting complex structures
(particularly pathogen/host interactions)

• Predicting protein/nucleic acid complexes and RNA structures 
(Thursday!)

• Predicting protein/ligand complexes


