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Last lecture

Typically, proteins fold by
progressive formation of native-
like structures.

Folding energy surface is highly
connected with many different
routes to final folded state.




Structure Prediction
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Prediction Strategies

Homology Modeling

e Proteins that share similar
sequences share similar folds.

e Use known structures as the

starting point for model building.

e Can not be used to predict
structure of new folds.

De Novo Structure Prediction

e Do not rely on global similarity
with proteins of known structure

eFolds the protein from the
unfolded state.

e Very difficult problem, search
space is gigantic




Similar Sequences Share Similar Structures
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Tool)

Search

Alignment

Basic Local

BLAST (

BLAST is a fast sequence alignment algorithm that identifies high-scoring local

alignments by finding short exact matches (seeds) and extending outward. BLAST

uses the BLOSUMG62 aa substitution matrix by default.

2
3
3
4
3

4

-3

-3
-3

11

Y | W
-2
-2
-2

-3
-2

-2

i

2
2
2

-2

-3
-3
-3
-3
-1
-3
-3

V

-1
-2
-2
-2
-2

-3
-3
-3
-2

-3
-3

L

-1
-2
-2
-3
-1

3
4
3
2
3

|

-2
-2

4
3
-3
3
-3
3
3
-3

-1

-1
-1

-3
-2
-3
-2

-1
-1

-1

0

-2

-2
0

-2

-2

-1

Q|H R [K[M

-2

-2

-2

-3

2
3

-1

4

-3
4

-3

2
4

-1

-2

4

3
2

A |G |N |D|E

-2

-2

-1
-1

2
2
3

P

-1

-2

3
-3
2
4
-3

0

-2
-2
-2
-2
-2

-1

-2
-2
-2
-2
-2

-3

-1
-1
-1
-2
-2




PSI-BLAST

e Position-Specific Iterated BLAST
e Allows more distantly related sequences to be identified
o Steps
1. Use BLAST to identify related sequences
C 2. Create a profile from related sequences
3. Search for related sequences using this profile
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Sequence Profile

For each column in a MSA
count how often each amino
acid occurs

Combine with prior
information about
substitution frequencies (ie.
BLOSUMG62)

Convert counts to log odds
scores. End productis a
Position-Specific Scoring
Matrix (PSSM)



Homology Modeling
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De novo protein
structure prediction

MOIFVKTLTGKTIT
LEVEPSDTIENVKA
KIQDKEGIPPDOOR
LIFAGKQLEDGRTL
SDYNIQKESTLHLV
LRLRGG

Thermodynamic hypothesis:
The native state is the lowest-energy conformation.



Structure Prediction Protocol

« Large-scale search of conformational space using
a low-resolution potential

* Refinement of candidate models in a physically
realistic, all-atom potential; selection by energy
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Insights from Folding Studies

1. Local (sequence-specific) interactions strongly bias
conformational sampling.

2. Folding is guided by hydrophobic burial, assembly of secondary
structure, excluded volume.

3. Native interactions on average stronger / more consistent than
non-native interactions => native minima broader than non-

native minima.



Fragment-based Methods (Rosetta)

* Hypothesis: the PDB database contains all the possible
conformations that a short region of a protein chain might

adopt

« How do we choose fragments that are most likely to
correctly represent the query sequence”?

Query Sequence

l

* Sequence profile

* Predicted secondary
structure

* Hydrophobic
patterning

All known structures

l

N

Exhaustive
comparison of all
9-residue
windows

* Sequence profile

* Known secondary
structure

* Known hydrophobic
patterning
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Fragment Libraries

* Aunique library of fragments is
generated for each 9-residue
window in the query sequence.

Assume that the distributions of
conformations in each window
reflects conformations this segment
would sample.

Regions with very strong local
preferences will not have a lot of
diversity in the library. Regions with
weak local preferences will have
more diversity in the library.



Generating Structures from Fragments

e Low resolution energy function used
in initial search through
conformational space

e Side chains represented by single
“centroid” pseudoatom ‘

e Major contributions from
— Hydrophobic burial
— Beta-strand pairing
— Steric overlap
— Specific residue pair interactions




High-resolution model refinement
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sidechains

Rosetta
energy
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Rosetta “relax” structure refinement:

Discrete sidechain optimization via
Simulated Annealing Monte Carlo

Gradient-based minimization of energy with
respect to torsion angles

Potential function: Rosetta all-atom energy

Lennard-Jones,

LK implicit solvation,

Coloumb electrostatics
orientation-dependent hydrogen bonding,
PDB derived torsional potential




Correlated mutations carry information about distance
relationships in protein structure.
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Marks DS, Colwell LJ, Sheridan R, Hopf TA, Pagnani A, et al. (2011) Protein 3D Structure
Computed from Evolutionary Sequence Variation. PLOS ONE 6(12): e28766.
https://doi.org/10.1371/journal.pone.0028766
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0028766



http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0028766

Learning the DCA (direct coupling analysis) matrix

The essence of DCA is then to assume that the rows, i.e. our aligned homologous proteins, are independent events drawn
from a Potts-model probability distribution,

1 A 1 o
P(o) = ZEXD(Zhi(Cﬁ') +3 > ]ij(Gi,Gj)), (1)
i=1

i,j=1

and to use the interaction parameters J;; as predictions of spatial proximity among amino-acid pairs in the protein structure.

Problem: Z cannot be tractably computed

Solutions:

 Mean-field approach (mfDCA)
(https://www.pnas.org/content/108/49/E1293)

* Pseudo-likelihood (pImDCA)
(https://journals.aps.org/pre/abstract/10.1103/PhysRevE.87.012707)



https://www.pnas.org/content/108/49/E1293
https://journals.aps.org/pre/abstract/10.1103/PhysRevE.87.012707

Predicted 3D structures for three representative proteins.

predicted observed
blind top ranked crystal structure
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Marks DS, Colwell LJ, Sheridan R, Hopf TA, Pagnani A, et al. (2011) Protein 3D Structure
Computed from Evolutionary Sequence Variation. PLOS ONE 6(12): e28766.
https://doi.org/10.1371/journal.pone.0028766
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0028766



http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0028766

Correlated mutations carry information about distance
relationships in protein structure.
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Coevolution guided modeling

GREMLIN predictions

Native contact map  on shallow MSAs
(Nseqg=36, Nf=2.3)

constraint

inference
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Contact maps = Computer Images?

Covariances Contacts
| e -
] 4 s
} -
: e &
.‘. < . -
) .l'... .
P‘. Pl N . 'd o - . . N H =
- ,,Cpis , Contact prediction e
- - '
K 7LE KWV TKEV G T P
| AA ] X < k‘ - ‘
Protein length N AC L : . w . ‘.o
AD 5 1388
DK N
cov, (D.K)=Prob(D at i & K at ) -
Prob(D at i)*Prob(K at j)
INPUT OUTPUT

Al-based
Image processing




Convolutional neural networks
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Accurate De Novo Prediction of Protein
Contact Map by Ultra-Deep Learning Model

Sheng Wang®, Siqi Sun®, Zhen Li, Renyu Zhang, Jinbo Xu*

Toyota Technological Institute at Chicago, Chicago, lllinois, United States of America

@ These authors contributed equally to this work.
* jinboxu @ gmail.com

Abstract

Motivation

Protein contacts contain key information for the understanding of protein structure and func-
tion and thus, contact prediction from sequence is an important problem. Recently exciting
progress has been made on this problem, but the predicted contacts for proteins without
many sequence homologs is still of low quality and not very useful for de novo structure
prediction.



Learning a contact map from co-evolving residues

sequence profile and coevolution info, LxIL X (3 + 3?1)
predicted structures pairwise potential
Merge
~ i
1d conv LXLX3n
1d conv pairwise feature
1d derived from 2d
; convoluted
Residual Ny ee e Residual
Network e Network
feature
conversion of
sequential to
pairwise feature #
v v
LXn

convoluted sequential
features
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Inferring better contact maps (l)
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Fig 6. Overlap between top L/2 predicted contacts (in red or green) and the native contact map (in grey) for CAMEO target 2nc8A.
Red (green) dots indicate correct {incorrect) prediction. (A) The comparison between our prediction (in upper-left triangle) and CCMpred (in
lower-right triangle). (B) The comparison between our prediction (in upper-left triangle) and MetaPSICOV (in lower-right triangle).




Inferring better contact maps (ll)
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Fig 9. Overlap between top L/2 predicted contacts (in red or green) and the native contact map (in grey) for CAMEO target 5dcjA. Red
(green) dots indicate correct (incorrect) prediction. (A) The comparison between our prediction (in upper-left triangle) and CCMpred (in lower-
right triangle). (B) The comparison between our prediction (in upper-left triangle) and MetaPSICOV (in lower-right triangle).




trRosetta
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coevolutionary
couplings and scores

sequence, PSSM,
entropy
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‘ Energy minimization
(MinMover)

Coarse-grained models

¥

Full-atom relaxation ’
(FastRelax)

Final model

Improved protein structure prediction using
predicted interresidue orientations

@ Jianyi Yang, © Ivan Anishchenko, Hahnbeom Park, Zhenling Peng, Sergey Ovchinnikov,
and © David Baker

PMNAS January 21, 2020 117 (3) 1496-1503; first published January 2, 2020 https://doi-
org.offcampus.lib.washington.eduw/10.1073/pnas. 1914677117



Discovering hidden patterns with a learned model

trRosetta
Gremlin predictions predictions
on shallow MSAs on shallow MSAs Native contact map
(Nseq=36, Nf=2.3) (Nseq=36, Nf=2.3)
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Improving protein structure prediction

Free modeling accuracy in CASP

AlphaFold 2
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Figure from Callaway E. Nature, 2020



A differentiable end-to-end structure predictor

trRosetta
: Fold by
Input MSA minimization &
RHLLE T AR relax
PyRosetta ]
trRosetta
D ee p M In d Attention-based SE3-invariant transformer layers

\/l
= > il
e S N = &\
~ S8 \
WRRE S
P [
. —T
[ \

All-atom model +
predicted errors




Trunk

sequence-residue edges

Embedding
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MSA picture inspired by: Riesselman, A.J.,
Nature Methods (2018) doi:10.1038/541592-818-8138-4
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residue-residue edges

Iterative feature extraction
(attention instead of convolution)

Ingraham, J.B. & Marks, D.S.,

Heads

© 2020 DeepMind Technologies Limited
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What would be a proper inductive bias
for protein structure prediction?

%’4

Convolutional Networks
(e.g. computer vision)

e data in regular grid
e information flow to local neighbours

.

OO

Attention Module (e.g. language)

0—. e data in unordered set
‘_. e information flow dynamically controlled
: . by the network (via keys and queries)




Embedding
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MSA picture inspired by: Riesselman, A.J.,
Nature Methods (2018) doi:10.10838/541592-818-8138-4
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Component 1: MSA updates via self-attention

AR L Attention over L —> AttentionoverM |—=| MSA (M, L, K)
e (Transformer w/ softly tied attention) (w/ Performer)

A A XX
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Last 3 blocks




Component 2: Update pair features via self-attention

Pair features
LayerNorm
Attention over row
LayerNorm
Attention over column
LayerNorm
Feed forward
Pair features

Axial Attention (attention over rows then columns)
to reduce memory requirements & computation time



Component 3: Extract pair features from MSA

Outer product
i II
Seq 1 Average
.. pooling Il Flatten C.0|.'1cat to. ( .'eIS'f’“,eS!
— HHll — original pair .
II — |%=
Seq N X — B & ResNet |5
L] L
RJ Joint features
pair_ij
Non-interacting pairs - Broader distribution
Interacting pairs (co-mutating) - Sharper distribution Outer product &

aggregate

Ju, Fusong, et al. "CopulaNet: Learning residue co-evolution directly from multiple sequence alignment for protein structure prediction.” bioRxiv (2020).



Component 4: Update MSA based on pair features

Pair features MSA features
|
symmetrize
Layer‘lr\lorm Layerlr\lorm
' '
Linear & Softmax Linear
Attention Values

<
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LayerNorm
: )
Attention from ST
structure

<
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information encoded

. . MSA features
in pair features

Last 2 blocks
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Component 5: SE(3)-Transformer for structure refinement

MSA feat /

Graph
H Transformer SE3 transformer
—
w0y oo <%

Clebsch- Radial Neural Spherical
Gordon Coeff Network Harmon

ik tk | . z )
» Qi ey (lzll)  v=(5) - /
Matrix W comsists of bloc:n mapping between degrees
(z) =W }‘ Srlizl, Y =

Pair feat

Fully connected
graph /

* Predicted offset vectors
* Predicted per-residue errors

* Initial backbone Cartesian coordinates
* Node + edge information from trunk
* Graph connecting nearby residues
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RosettaFold 2-track model:
Reproduce Alphafold 2 based on underlying principles

AN

1D track

MSA

Predicted
distances

Templates 2D track

12 two-track blocks (orange box) + SE(3)-Transformer at the end
Trained on protein structures in PDB (clustered w/ seqlD cutoff
30%) "



What happens during iteration?




What questions still remain?

Predicting proteins without MSA information
Predicting conformational states
Predicting effects of mutation

Predicting complex structures
(particularly pathogen/host interactions)

Predicting protein/nucleic acid complexes and RNA structures
(Thursday!)

Predicting protein/ligand complexes



