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Output Tracking for Actuator
De� cient/Redundant Systems:

Multiple Piezoactuator Example
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I. Introduction

T HIS Note presentsan optimal-inversion-basedapproachto out-
put tracking in linear, nonminimum phase systems with ac-

tuator redundancy or de� ciency. Current inversion-based methods
are applicable to square systems, i.e., systems with the same num-
ber of tracked outputs as the number of inputs.1,2 In this Note we
describe the extension of the inversion-basedmethodology to non-
squaresystems, i.e., to systemswith actuatorredundancyor actuator
de� ciency; presently available inversion techniquesare not applica-
ble if the systemhas actuatorredundancyor actuatorde� ciency.The
proposed method can be used to allocate the output-tracking task
betweendifferentactuatorsand can also be used to achievetradeoffs
between output tracking and other requirements such as avoiding
actuator saturations. The problem is posed as the minimization of
a quadratic cost functional, and the solution is developed for linear
systems.The technique is illustratedby applyingit to an experimen-
tal multiple-piezoactuator system.

Actuatorredundancyoccurs,forexample,whena low-bandwidth,
large-rangeactuator is supplementedwith a high-bandwidth(poten-
tially low-range) actuator to achievelarge-rangehigh-bandwidthac-
tuation.For example,micromanipulatorshavebeen added to the tips
of large (macro) � exible manipulators to provide additional high-
bandwidth manipulation capability (see, for example, Ref. 3). For
such actuator-redundantsystems a systematicapproach is needed to
allocatea givenoutput-trackingtask between thedifferentactuators.
Such a distributionof trackingeffortsis also neededfor outputtrack-
ing in actuator-de�cient systems where exact tracking of all of the
output trajectoriesmay not possible when the number of outputs is
more than the number of inputs. Actuator de� ciency occurs in � ex-
ible manipulators and aerospace applications where requirements
like vibration reduction are added to typical goals like endpoint
tracking (see, for example, Ref. 4). For such actuator-de�cient and
actuator-redundant systems there is a need to develop systematic
approaches to specify and achieve tradeoffs in output tracking.

An inversion-based approach for actuator-redundant (macro-
micro actuation) systems has been proposed in Ref. 3 in which a
feedbackcontrolleris used for the macropartand an inversion-based
controller is designed for the micropart. A similar methodology
has been proposed by Yim and Singh,5 who investigate the design
of a predictive controller, which steers the endpoint of the macro-
manipulator with minimal vibrations, and then uses an inversion-
based controller for the micropart to achieve precise end-effector
control. Inversion-based approaches have also been developed for
the nonlinear actuator redundant case using pseudoinversion ap-
proaches (see, for example, Ref. 6). Such inversion-based ap-
proaches attempt to exploit the known dynamics of the system to
achieve precision output tracking. When the microactuator is colo-
cated at the controlled-outputpoint (usually, the tip of the manipu-
lator), the dynamics between the microactuator input and the con-
trolled output is minimum phase, and standard inversion techniques
can be applied. However, inversion for general actuator-redundant
systems (with potentially nonminimum phase dynamics) is chal-
lenging because standard approaches to inversion can lead to un-
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bounded inputs.Recently developedstable-inversiontechniquesre-
solve this problem of unbounded inverse inputs by � nding bounded
(but possibly noncausal) input-state trajectories.1,2 The noncausal-
ity of the inputs found by inversion can be accommodatedby using
preview-based controllers,7 which enables the online speci� cation
of the desiredoutputs.Currently available inversion-basedmethods
are, however, applicable to square systems. In this Note, the output
trackingproblemfornonsquaresystems is posedas the optimization
of a general quadratic cost functional and is solved in the context of
linear systems. The resulting design procedure can also be used to
obtain tradeoffs between the output-trackingrequirement and other
requirementssuch as reductionsin inputmagnitudes.This extension
of currently available inversion methodologies to nonsquare linear
systems is described in the current Note. In Sec. II, the optimal-
inversion problem is posed, and a solution is given for a general
multi-input multi-output (MIMO) system. In Sec. III, the approach
is applied to a multiple piezoactuator system, and experimental re-
sults are presented.

II. Problem Formulation and Solution
In this section we pose the optimal-inverse problem as the min-

imization of a quadratic cost functional and solve it in the context
of linear time-invariant systems. We begin with the inversion prob-
lem for square systems and then pose the optimal output tracking
problem for nonsquare systems.

A. Optimal Output Tracking Problem
Considera linear time-invariantMIMO system,with its dynamics

described by

Çx(t ) = Ax (t ) + Bu(t ), y(t ) = Cx(t) (1)

where x 2 Rk is the states, the number of inputs is n(u 2 Rn ), and the
number of outputs is m(y 2 Rm ). The assumption is made that this
system is stable or has been stabilized with feedback (i.e., matrix
A is Hurwitz). The output y(¢ ) can be written in the frequency
domain as y( j x ) = C( j x I ¡ A) ¡ 1 Bu( j x )

4
= G( j x )u( j x ), where

G( j x ) 2 Cm £ n represents the system’s transfer-functionmatrix. If
the systemhas the samenumberof inputsas outputs(squaresystem),
then we can � nd the control inputs (u f f ) that exactly track a desired
output trajectory yd from system inversion as in Ref. 1

u f f ( j x ) = G( j x ) ¡ 1 yd ( j x )

This input u f f leads to a bounded,exact-tracking,input trajectory if
the desiredoutput [yd (¢ )] and a certainnumberof its time derivatives
are bounded and if the system’s internal dynamics is hyperbolic.2

This methodis, however,applicableto squaresystems.If thenumber
of inputsis more than thenumberof outputs(n > m), then the system
is actuator redundant, and the exact-tracking inputs are not unique.
If the number of inputs is less than the number of outputs (n < m ),
then the system is actuator de� cient, and exact-output tracking of
all of the outputs cannot be achieved for general output trajectories.
For actuator-redundant and actuator-de�cient systems the goal is
to � nd an optimal input uopt that achieves the best allocation of
control inputs to achieve tracking of the desired output trajectories.
We pose this problemas the minimizationof the followingquadratic
performance index:

J (u) = * 1

¡ 1
{u ¤ ( j x )R( j x )u( j x )

+ [y( j x ) ¡ yd ( j x )]¤ Q( j x )[y( j x ) ¡ yd ( j x )]} d x (2)

where ¤ denotes the conjugate transpose of matrices with complex
elements, R( j x ) and Q( j x ) represent the weightson the input- and
the output-tracking error respectively, and yd is the desired output
trajectoryspeci� edby the user. If the weight R on the input is chosen
as zero, then the minimization of the performance index will lead
to the exact-tracking inputs found by inverting the system (if the
output trajectoriesare suf� ciently smooth, the system is square,and
the internal dynamics is hyperbolic.2) Thus, the performance index
is a generalizationof the inversionproblemto nonsquaresystems.A
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similar frequency-dependentquadraticperformanceindex has been
used in thepast(e.g.,Ref.8) for systemregulation(yd = 0); however,
such approaches were aimed at � nding causal control laws. In con-
trast, we allow, in the following,noncausalsolutions to the optimal-
inversion problem—these noncausal solutions can be implemented
using preview-based approaches.7 In summary, given a Fourier-
transformabledesiredoutput trajectory, the optimal inversion-based
output tracking problem is stated as the minimization of the cost
functional J over all Fourier-transformableinputs, minu J (u).

The focus of this Note is to solve this minimization problem
for a general cost functional and leave the choice of the weight-
ing matrices, Q and R in Eq. (2), to the designer (as in current
linear-quadratic-optimal-control literature). For example, tradeoffs
between tracking different output trajectories (in actuator de� cient
systems) can be designed by choosing different output-trackinger-
ror weightings Q in Eq. (2). Similarly, the cost function can be
used to account for different actuator bandwidths and ranges in
actuator-redundant systems by choosing different control weight-
ings, R. Thus, the output-trackingrequirements can be speci� ed by
varying the matrices Q and R. These choices in weightings will be
illustrated in Sec. III.

B. Solution to the Optimal Output Tracking Problem
The optimal output-trackingcontrol law, found by the minimiza-

tion of the performance index (2), is given by the following lemma.
Lemma: Let Q and R in the performance index (2) be sym-

metric, positive-semide�nite, real matrices, and let K ( j x )
4
=

R( j x ) + G ¤ ( j x )Q( j x )G( j x ). Then, the optimal input trajectory
uopt that minimizes the performance index(2) is given by

uopt( j x ) = K + ( j x )G ¤ ( j x )Q( j x )yd ( j x ) (3)

K + ( j x ) is the pseudo (generalized) inverse9 of K ( j x ) and U ; R
(invertible) and V de� ne the singular value decompositionof K as
K = U [diag( R 0)]V ¤ . We also de� ne K + ( j x ) = 0 if K ( j x ) = 0
and note that K + ( j x ) = K ¡ 1( j x ) if K ( j x ) is invertible.

Proof: The performance index (2) is minimized with respect to
u if the quadratic term inside the integral is minimized at each j x :
this nonnegative term can be rewritten as

I [u( j x )]
4
= u( j x ) ¤ K ( j x )u( j x ) ¡ 2y ¤

d ( j x )Q( j x )G( j x )u( j x )

+ y ¤
d ( j x )Q( j x )yd ( j x ) (4)

The result follows the optimization of quadratic, matrix functions
because I [u( j x )] is nonnegative (see Ref. 9, Chapter 4, Theorem
4.2.1, for a detailed proof).

In the preceding lemma the requirements on the weighting ma-
trices Q and R can be changed from real-symmetric matrices to
Hermitian matrices.9 When the optimal input uopt is applied to the
system, the resulting output trajectory yopt can be found as

yopt( j x ) = G( j x )uopt( j x )

= G( j x ) K + ( j x )G ¤ ( j x )Q( j x )yd ( j x )
4
= G f ( j x )yd ( j x )

(5)

Thus, G f ( j x ) representsa � lter that modi� es the desiredoutput tra-
jectory yd ( j x ). The tracking error e caused by output modi� cation
can be quanti� ed using the output � lter as

k e(¢ ) k 2 = k 1 ¡ G f (¢ ) k 1 k yd (¢ ) k 2

where k ¢ k 2 is the standard L2 norm and k ¢ k 1 is the L2-inducednorm
(see, e.g., Ref. 10, Sec. 4.5). The approach � nds the optimal control
law uopt, which exactly tracks the modi� ed output trajectory yopt.
This control law can be noncausal, but can be implemented using a
preview-based approach.7

III. Multiple Piezoactuator Example
An experimental system designed to emulate dual-actuator re-

dundant systems studied in the past (e.g., Ref. 3) is shown in Fig. 1.
It has a large-rangeactuator that provides the main actuation with a

Fig. 1 Experimental piezoactuator system.

short-rangeactuator attached to the end of the large-range actuator.
The two inputs to the system are the voltages applied to these two
piezoactuators. The large-range actuator is used to achieve most
of the low-frequency actuation; it is called the low-frequency ac-
tuator (LFA). Similarly, the short-range piezo at the tip is mainly
used for high-frequency actuation; it is called the high-frequency
actuator (HFA). In the following, two outputs of the system will be
considered. One output is the displacement at the endpoint of the
dual-piezo system ye, and the other output is the displacement of
the midpoint ym , as shown in Fig. 1; the outputs are measured using
an inductivesensor.These measurementsare not used for feedback-
based control in the current article because our goal is to illustrate
the optimal-inversion-based output-tracking approach. Therefore,
only the inputs found from the optimal-inversionapproach are used
as feedforward control, and feedback control is not used. Feed-
back control can, however, be added (to the feedforward approach)
to reject errors caused by external disturbances and modeling
discrepancies.

Models for two cases were obtained: an actuator-redundantcase
and an actuator-de�cient case. For the actuator-de�cient case, the
voltage ul applied to the LFA is considered as the input, and the
displacements (ym and ye ) are the outputs. The actuator-de�cient
system equation can be expressed as

[ ym( j x )

ye( j x ) ] = [ glm( j x )

gle( j x ) ] ul ( j x ) (6)

For the actuator-redundantcase the inputs are the voltages applied
to the piezoactuators (uh , ul ), and the output is the displacement at
the endpoint ye. The actuator-redundantsystem can be expressedas

ye( j x ) = ghe( j x )uh ( j x ) + gle( j x )ul ( j x ) (7)

The transfer functions(glm , gle, and ghe) givenby gi ( j x ) = ni ( j x ) /
d( j x ) for i belonging to the set {lm, le, he} were obtained experi-
mentally using a dynamic signal analyzer and can be representedas

d( j x ) = ( j x + 126 § j4.42k)( j x + 1.3k § j12.57k)

£ ( j x + 1.9k § j24.82k)( j x + 970 § j30.28k)

£ ( j x + 21.5k § j63.58k)

n (le)( j x ) = ¡ 184e6( j x + 62.83k)( j x ¡ 21.34k)

£ ( j x + 886 § j11.97k)( j x + 1.13k § j21.26k)

£ ( j x ¡ 741 § j30k)

n (lm)( j x ) = ¡ 294e6( j x ¡ 6.283k)( j x + 11.31k)

£ ( j x + 1.59k § j13.09k)( j x ¡ 9.42k § j33.3k)

£ ( j x ¡ 443 § j26.39k)

n (he) ( j x ) = 84.68e6( j x + 132 § j4.84k)( j x + 767 § j11.75k)

£ ( j x + 2.56k § j27k)( j x + 823 § j30.85k)

A. Actuator-Redundant and Actuator-De� cient Cases
Next, we describe the application of the optimal inversion

methodology to two cases: an actuator-redundant case and an



372 J. GUIDANCE, VOL. 23, NO. 2: ENGINEERING NOTES

Fig. 2 Experimental results for redundant-actuator case: tracking a 250-Hz triangular output.

actuator-de�cient case. For the two-input (ul and uh ) one-output
(ye ) actuator-redundant system, which is described by Eq. (7),
the form of the weighting matrices were chosen as Q( j x ) =
qe( j x ) the weighting on the output-tracking error, and R( j x ) =
diag[rl ( j x ) rh ( j x )], where rl is the weighting on the input to the
LFA and rh is the weighting on the input to the HFA. The optimal
inputsulopt and uhopt can be found explicitlyas (when the matrix K in
the lemma is invertibleand thereforepseudoinversionis not needed)

ulopt =
qerh g ¤

le

rlrh + qerl g ¤
heghe + qerhg ¤

legle
yed

uhopt =
qerl g ¤

he

rlrh + qerl g ¤
heghe + qerh g ¤

legle
yed (8)

where yed is the desired output displacementat the endpoint and the
explicit dependence on j x is not written for ease in notation.

For the one-input (ul ) two-output (ye and ym ) actuator-de�cient
system described by Eq. (6), the weighting matrices were chosen
to be of the form Q( j x ) = diag[qlm( j x ) qle( j x )] and R( j x ) =
r ( j x ). It is not possible to track the two outputs at the endpoint
and the midpoint with a single input. Thus, some of the desired
output tracking of the endpoint displacement ye must be traded
to achieve reductions in the midpoint displacement ym . However,
such a tradeoff is not necessarily just a scaling down of the desired
endpoint trajectory, and the methodology provides a design tool to
specify and achieve a desired tradeoff. In the performanceindex qlm

is the weighting on the midpoint displacements,qle is the weighting
on the endpoint tracking error, and r is the weighting on the input
to the piezoactuator(LFA). If the invertibilitycondition on K in the
lemma is satis� ed (e.g., if r is nonzero), then the control law can be
written as

uopt =
qleg ¤

le

r + qlmg ¤
lmglm + qleg ¤

legle
yde +

qlmg ¤
lm

r + qlmg ¤
lmglm + qleg ¤

legle
ydm

(9)

where ydm and yde are the desiredoutput trajectoriesat the midpoint
and at the endpoint of the LFA piezoactuator.

B. Experimental Results and Discussion
For brevity, we only present experimental results for the actuator

redundantcase.Detailed simulationand experimentalresultscan be
found in Ref. 11. For the actuator-redundantcase the LFA was used
for tracking low-frequency components of a desired output (shown
in Fig. 2); the LFA-input’s weighting rl was, therefore, set to zero

on the interval 0–300 Hz. The HFA was used to track the high-
frequency components; thus, the HFA-input’s weighting rh was set
to a relatively small value of 10 ¡ 4 (compared to the weighting rl on
the LFA input) for frequenciesbetween 500 Hz and 2.2 kHz. In the
experiments the weight on the output-trackingerror qe was set to a
large number (103 , which was large relative to the weights on the
inputs) on the interval 0–2.2 kHz to achieve high-precision output
tracking in this frequency range. After 2.25 kHz the system model
was less accurate,11 and, therefore,the weighton theoutput-tracking
error qe was set to zero beyond 2.25 kHz (with rl and rh nonzero).
These choices of weights illustrate the use of the methodology to
designtheallocationof the trackingtaskbetweendifferentactuators.
For example, the relatively low weights for the HFA inputs in the
high-frequencyrange resulted in the HFA being used, primarily, to
control the high-frequency components in the output trajectory as
shown in Fig. 2. Similarly, the magnitude of the input weights (rl

and rh ) can also be increased, relative to the weight on the output-
tracking error qe, to avoid actuator saturation.

IV. Conclusion
A technique to achieve output tracking for linear systems with

redundant/de� cient actuators was presented. This approach pro-
vides a systematic method to optimally allocate output-tracking
tasks between redundant actuators and to design tradeoffs in
output-trajectorytracking when the number of inputs is fewer than
thenumberof outputs(i.e., actuator-de�cientsystems). The method-
ologywas illustratedbyapplyingit to a multiplepiezoactuator-based
system, and experimental results were presented.
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I. Introduction

T HE National Aerospace Laboratory (NAL) and the National
AerospaceDevelopmentAgency (NASDA) in Japanhavebeen

developingan unmannedreentryspacevehicle,namedHOPE-X, for
a decade.1 An Automatic Landing Flight Experiment vehicle called
ALFLEX, which is a 37%-sized model of the HOPE-X, has been
studied to develop an automatic landing control system. To imple-
ment a reliable automatic control system on the HOPE-X, several
control design techniques have been proposed.2 ¡ 5 Sunazawa and
Ohta3 used the inverse dynamics transformation to compensate the
nonlinearity of the ALFLEX. Miyajima and Kuze4 applied neu-
ral networks to navigate the ALFLEX a reference trajectory. The
NAL/NASDA designed a guidance and control law using multiple
delay models and a multiple design points method.5

This Note presents an alternative � ight control design of the
ALFLEX using a fuzzy gain-scheduling(FGS) state-feedbacktech-
nique in the frame of a double-loop control system (DLCS). The
DLCS consists of the inner and the outer loops that are used for
stabilizingthe controlledsystemand trackingthe command, respec-
tively. In this Note, an inner-loopcontroller is designed by the FGS
state-feedback technique6 to guarantee the stability over the entire
operating range of the ALFLEX, whereas the outer-loop controller
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Fig. 1 Double loop control system.

is designed so as to improve the tracking property. The proposed
controldesign method is applied to a numerical simulationprogram
for an automatic landing test of the ALFLEX2 to evaluate control
performance of the designed control law.

II. Double-Loop Control System
Figure 1 shows a block diagram of a DLCS applying to the

ALFLEX. z is the controlled variable, zc is its command input,
y is the feedback variable, u is the control input, and v is the inner-
loop command input. P is a controlled plant, K in is an inner-loop
controller, and Kout is an outer-loop controller. The ALFLEX is an
unstable controlled plant, and contains nonlinear factors and un-
certainties. The control system for the ALFLEX therefore, should
be designed not only to stabilize, but also to compensate for track-
ing error e

D
= zc ¡ z due to the nonlinear factors and uncertainties.

Then, the inner loop is used for augmenting the stability of the
system, whereas the outer loop is used for reinforcing the tracking
property.

Now, let us discuss the outer loop of Fig. 1 using linear transfer
functions. Let Tzv be a transfer function from v to z. A transfer
function from zc to z, Tzzc is then written as

Tzzc = ( I + Tzv Kout)
¡ 1Tzv ( I + Kout) (1)

If K in is designed so as to stabilize the controlled plant and satisfy
Tzv (0) = I , the steady-state of z for a step command zc is given by

z( 1 ) = lim
s ! 0

sTzzc (s)(1/ s)zc = zc (2)

The servo condition, z( 1 ) = zc , is always satis� ed. Then, Kout is
designed so as to stabilize Tzv and improve the tracking property of
Tzzc .

III. Inner-Loop Design Using FGS State-Feedback
This section describes a design of the inner-loopcontrollerusing

a FGS state-feedback technique.6 A controlled plant considered in
this study is given by the following nonlinear system:

Çx(t ) = f [x(t), u(t)], z(t ) = g[x(t ), u(t )] (3)

where u(t ), z(t ), and x(t) are m-dimensional input, p-dimensional
controlledvariable,and n-dimensionalstate vectors, respectively.It
is assumed that x(t ) is available for feedback; that is, y(t) = x(t)
in Fig. 1.

Over the operating range of the system, let us select r linearized
points (xd

i , ud
i ) (i =1, . . . , r) and construct a linear time-invariant

(LTI) model for each linearizedpoint. Let g j ( j =1, . . . , g) be vari-
ables that recognize the linearized points, and N ji (i = 1, . . . , r)
be fuzzy sets of g j . Fuzzy rules representing a nonlinear system
[Eq. (3)] is given as follows:

If g 1 = N1i and ¢ ¢ ¢ and g g = Ngi , then the nonlinearsystemEq. (3)
is approximated by

[ Çx(t )

z(t )] = [ Ai Bi

Ci Di] [x(t ) ¡ xd
i

u(t ) ¡ ud
i
] + [ 0

zd] , (i = 1, . . . , r)

(4)
where

Ai
D
=

@ f (xd
i , ud

i )

@xT
, Bi

D
=

@ f (xd
i , ud

i )

@uT

Ci
D
=

@g(xd
i , ud

i )

@x T
, Di

D
=

@g(xd
i , ud

i )

@uT


