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his article shows that the added mass due to fluid-structure in-
eraction significantly affects the vibrational dynamics of cilia-
ased (vibrating cantilever-type) devices for handling microscale
uid flows. Commonly, the hydrodynamic interaction between the
ilia-based actuators and fluid is modeled as a drag force that
esults in damping of the cilia motion. Our main contribution is to
how that such damping effects cannot explain the substantial
eduction in the resonant-vibrational frequency of the cilia actua-
or operating in liquid when compared with the natural frequency
f the cilia in air. It is shown that an added-mass approach (that
ccounts for the inertial loading of the fluid) can explain this
eduction in the resonant-vibrational frequency when operating
antilever-type devices in liquids. Additionally, it is shown that the
dded-mass effect can explain why the cilia-vibration amplitude is
ot substantially reduced in a liquid by the hydrodynamic drag
orce. Thus, this article shows the need to model the added-mass
ffect, both theoretically and by using experimental results.
DOI: 10.1115/1.4000766�

Introduction
This article reports on models for cilia-based devices

cantilever-type vibrating devices� for handling microscale fluid
ows. Inspired by biological systems, cilia-based microactuators
that are excited by external vibrations or acoustic excitations�
ave been proposed for mixing and manipulating liquids in
icro-/nanofluidic applications �1�. In such applications, models

f the cilia dynamics are needed for optimizing the geometric
esign, as well as controlling the cilia to maximize the flow and
inimize the required input energy. The challenge in modeling

uch cilia actuators is the coupling between the mechanical dy-
amics of the cilia and the fluid. Such coupling can lead to damp-
ng effects due to drag forces �2–4�, which change the amplitude
nd resonant-vibrational frequency of the cilia when operated in
iquid in contrast to operation in air or vacuum. However, the
xperimental results are presented in this article to show that the
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drag or damping effects are not sufficient to explain the substan-
tial reduction in the resonant-vibrational frequency when the cilia
actuators are operated in liquid �as opposed to the natural fre-
quency when the cilia actuators are operated in air�. The main
contribution of this article is the use of an added-mass effect to
account for this reduction in the natural frequency when
cantilever-type devices are operated in a liquid. Thus, this article
shows the need to include the added-mass effect �that accounts for
the inertial loading of the liquid� when modeling the vibration of
cantilever-type devices in a liquid medium.

Several works have modeled the vibrational dynamics of cilia-
type �cantilever-type� devices operated in air �2,3�, liquid �4,5�,
and vacuum �6–8�. The dynamics of these devices can be modeled
as a second-order linear dynamic system, as shown in Ref. �2�.
The drag force between the cilia actuators and the fluid affects the
dynamics. The damping caused by the drag force can change the
amplitude and resonant-vibrational frequency of the cilia actuators
when operated in liquid in contrast to operation in air or vacuum.
For example, the experimental results, presented in this article,
show that the resonant-vibrational frequency �r,w=109.54 Hz of
the cilia actuators in water is substantially smaller than the natural
frequency �n,a=338.68 Hz of the cilia in air. However, this sub-
stantial reduction in the observed resonant-vibrational frequency
is not predicted by standard second-order models for such canti-
lever structures, which yield a resonant-vibrational frequency ex-
pression of

�r,w = �n,a
�1 − 2�2 �1�

where � is the damping ratio �e.g., see Ref. �9�, Sec. 10.8�. For
example, the damping ratio � in a liquid tends to be in the range
0.05–0.5 �5�. For this range of the damping ratio, the anticipated
resonant-vibrational frequency �r,w in a liquid is expected to be
between 0.997�n,a=337.66 Hz and 0.707�n,a=239.45 Hz from
Eq. �1�. Note that this range �239.45–337.66 Hz� is much larger
than the observed experimental value for the resonant-vibrational
frequency in water of �r,w=109.54 Hz. Thus, the damping effects
are not sufficient to capture the change in the resonant-vibrational
frequency of the cilia actuators when operated in liquids.

The main contribution of this article is to show that an added-
mass effect is needed to account for the substantial reduction in
the resonant-vibrational frequency of cantilever-type devices in
liquids. It is noted that the added-mass effect is important in mod-
els of underwater vehicles, such as submarines �10�, and was
modeled in early works on pendulum oscillations initiated by
Dubuat; the history of the added mass is provided by Stokes in
Ref. �11�. Such an added-mass model is proposed to account for
the substantial decrease in the vibrational natural frequency for
cilia-type devices. The proposed added-mass model affects the
natural frequency �n,w of the system in liquid, which in turn
changes the resonant-vibrational frequency �r,w. Such changes in
the natural frequency �n,w are shown to occur in experimentally
obtained models. Additionally, it is shown that the added-mass
effect can explain why the cilia-vibration amplitude is not sub-
stantially reduced in a liquid by the hydrodynamic drag force.
Thus, this article shows the need to capture the added-mass effect
to model the vibration of cantilever-type devices in liquid media.

2 Dynamics of Cilium in Fluid

2.1 System Description. The displacement along the length
�x� of a cilium is excited by the motion �u�t�� of the cilia base by
using a piezostage �Burleigh PZS200�, as shown in Fig. 1. The
cilia are fabricated from polydimethylsiloxane �PDMS� using a
silicon mold. Detailed information on cilia fabrication and mate-
rial properties can be found in Ref. �1�. The nominal dimensions
of the silicon mold used to fabricate the cilia used in the experi-
ments are length �L=800 �m�, height �H=45 �m�, and depth

�D=10 �m�. The input to the system is the motion
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u�t� = A sin��t�
f the base of the cilia �actuated by the piezostage� and the output
f the system is the motion

y�t� = ŷ�L,t�

f the cilia tip, i.e., at the free end with x=L, as shown in Fig. 1.
he input �cilia-base motion u�t�� and the output �cilia-tip motion
�t�� are observed by using an optical microscope �Bausch &
omb MicroZoom II High Performance Microscope with an at-

ached Sony Color Video Camera 3CCD� and the displacement of
he vibrating cilia is measured using captured still images �PIN-

ACLE STUDIO Version 9.4.3�. Two cases are studied: �a� cilia vi-
rating in air and �b� cilia vibrating when immersed in water—the
uid container �see Fig. 1� is stationary. An example image of
ilia vibrating in fluid is shown in Fig. 1.

2.2 Experimental Frequency Response. The experimentally
easured, input-to-output responses of the cilia �of nominal

ength L=800 �m� are shown in Fig. 2 for two cases: �case a�
ilia in air and �case b� cilia in de-ionized �DI� water. The input-
o-output frequency responses in Fig. 2 show a sharp increase in
he output to input ratio near the resonant-vibrational frequencies.
ote that the resonant-vibrational frequency �r,w=109.54 Hz of

he cilia actuators in water is substantially smaller than the
esonant-vibrational frequency �r,a=336.05 Hz of the cilia in air.

Color Video Camera

Microscope

Cilium

Fluid Container

Piezo Stage

Input

Output

L

D

H

Input u(t)

Output y(t)
x

(a)

(b)

(c)

ig. 1 „a… Experimental setup for testing the resonant-
ibrational frequency of cilia. „b… Image of a cilium excited by
iezostage. „c… Nominal cilium dimensions are length L
800 �m, depth D=10 �m, and height H=45 �m.
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Fig. 2 Frequency response of cilia with nomina
and „b… DI water. The dots represent the experim
represent the standard deviation ±�. The lines rep

fitted parameters in Tables 1 and 2.
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2.3 Model of the Frequency Response. The experimental
frequency responses �in air and in water� can be captured using
simplified, second-order, linear models of the following form
�similar to Refs. �2,12��

G�s� =
Y�s�
U�s�

=
− K�s2 + 2�1�ns�
s2 + 2�2�ns + �n

2 + 1 �2�

where G�s� is the transfer function in the Laplace domain, K is a
constant related to the transfer function’s gain, �n is the natural
frequency, and �1 ,�2 are the damping ratios. It is noted that at
small input frequencies �i.e., when s→0�, the transfer function in
Eq. �2� approaches 1 �G�s�→1�, which implies that the tip dis-
placement is similar to the base displacement. The parameters of
the model, found by minimizing the least-squares-error between
the predicted and measured frequency responses, are presented in
Tables 1 and 2. The fitted model captures the experimental fre-
quency response, as shown in Fig. 2.

2.4 Reduction in Natural Frequency. There is a substantial
reduction in the resonant-vibrational frequency and the natural
frequency when the cilia are actuated in water in comparison to
the case when the cilia are actuated in air, as seen in Tables 1 and
2. For example, the resonant-vibrational frequency drops from
336.05 Hz to 109.54 Hz and the natural frequency drops from
338.68. Hz to 116.70 Hz. The considerable decrease in the natural
frequency �and the associated resonance frequency� cannot be ex-
plained by a standard model that predicts the natural frequency �n
for a cantilever beam to be �13�
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(b) In DI water
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1.7

mensions LÃHÃD=800Ã45Ã10 �m3 in „a… air
tal data „mean value of six cilia…, and the bars
ent the response of the model in Eq. „2… with the

Table 1 Experimental fit of the parameters in Eq. „2… for six
cilia actuated in air „L=800 �m…, where � represents the stan-
dard deviation and K=1.566

�1 �2

�n,a
�Hz�

�r,a
�Hz�

Cilium 1 0.143 0.166 340.2 337.56
Cilium 2 0.145 0.167 340.8 338.12
Cilium 3 0.142 0.165 336.4 333.82
Cilium 4 0.145 0.167 336.9 334.25
Cilium 5 0.144 0.166 341.1 338.45
Cilium 6 0.145 0.166 336.7 334.09
Mean 0.1440 0.1662 338.68 336.05
� 0.0013 0.0008 2.23 2.21
l di
en
res
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�n = �n,a = �n,w = �1.8752

L2 �� EI

�bAb
= �2� EI

�bAb
�3�

here �b is the mass density, Ab=DH is the cross-sectional area,
=HD3 /12 is the area moment of inertia, and E is Young’s modu-
us. Note that the natural frequency expression �in Eq. �3�� does
ot depend on the fluid properties nor on damping effects. There-
ore, there is a need to reformulate the model to include fluid
ffects to capture the reduction in natural frequency when operat-
ng in fluids, in particular, to include the effect of inertial loading
f the fluid on the cantilever. The modeling of this added-mass
ffect is discussed in Sec. 3.

Theoretical Modeling
To predict the experimental second-order response in Eq. �2�, a
odel can be developed by using the Euler–Bernoulli beam ap-

roach �2,3,13�, as shown next.

3.1 Standard Beam Model Without Added-Mass Effect.
he standard Euler–Bernoulli beam approach �12,13� to describe

he net motion ŷ�x , t� of a vibrating cilium �beam� is

�bAb

�2ŷ�x,t�
�t2 + EI

�4ŷ�x,t�
�x4 = f�x,t� �4�

here the subscript b represents a property of the beam, the sub-
cript w represents a property of the water �liquid�, and the net
otion ŷ�x , t� is composed of the base motion, i.e., the input

�t�=A sin��t� and the elastic deflection, ŵ�x , t� of the cilium
beam�:

ŷ�x,t� = ŵ�x,t� + u�t� �5�
he first term on the left hand side of Eq. �4� represents the

nertial effects, the second term on the left hand side of Eq. �4�
epresents the elastic effects, and f�x , t� represents the external
orces �per unit length�, which is composed of two damping
erms:

f�x,t� = f f�x,t� + f i�x,t� �6�

n the above equation, f f is the distributed drag force due to hy-
rodynamic interaction that depends on the relative velocity be-
ween the structure and the fluid; it is approximated as �similar to
efs. �2,3��

f f�x,t� = − Bf� � ŷ�x,t�
�t

− Vf	 = − Bf� � ŷ�x,t�
�t

	 �7�

here Bf is the fluid damping parameter that depends on the flow
onditions, and Vf is the fluid velocity, which is zero in the current
xperimental setup. The internal damping force f i per unit length
in Eq. �6�� that depends on the rate of change of the beam’s

able 2 Experimental fit of the parameters in Eq. „2… for cilia
ctuated in DI water „L=800 �m…, where � represents the stan-
ard deviation and K=1.566

�1 �2

�n,w
�Hz�

�r,w
�Hz�

ilium 1 0.43 0.45 116.4 109.19
ilium 2 0.45 0.46 114.5 107.15
ilium 3 0.44 0.45 117.6 110.40
ilium 4 0.43 0.44 118.2 111.31
ilium 5 0.44 0.45 114.1 107.12
ilium 6 0.44 0.45 119.4 112.09
ean 0.438 0.450 116.70 109.54

0.008 0.006 2.10 2.10
lastic deflection is
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f i�x,t� = − Bi� �ŵ�x,t�
�t

� �8�

where Bi is the internal damping parameter that depends on the
beam properties. Applying the distributed fluid drag force, f f, in
Eq. �7� and the distributed internal damping force, f i, in Eq. �8� as
external forces, the Euler–Bernoulli equation �Eq. �4�� becomes,
in the terms of the beam deflection ŵ and base motion u �in Eq.
�5��,

�bAb

�2ŵ�x,t�
�t2 + �Bf + Bi�

�ŵ�x,t�
�t

+ EI
�4ŵ�x,t�

�x4 = − Bfu̇�t�

− �bAbü�t� �9�

with the standard cantilever boundary conditions:

ŵ�0,t� = 0,
�ŵ�0,t�

�x
= 0,

�2ŵ�L,t�
�x2 = 0,

�3ŵ�L,t�
�x3 = 0

�10�

3.2 Modeling the Added-Mass Effect. The added-mass ef-
fect arises because of the need to accelerate the fluid around an
object when it is accelerated through a fluid �11,14–16�. The in-
ertia of the fluid exerts a resistive force on the body; this resistive
force is termed as the added-mass effect because the body re-
sponds as if its mass has increased. This added-mass of the body
depends on the medium in which the body �cilia actuator� is mov-
ing. This added-mass effect can be modeled with an additional
inertial forcing term �fm� to the external force f in Eq. �6�, which
becomes

f�x,t� = f f�x,t� + f i�x,t� + fm�x,t� �11�

with

fm�x,t� = − �wAw

�2ŷ�x,t�
�t2 = − Cm�bAb

�2ŷ�x,t�
�t2 =

− Cm�bAb� �2ŵ�x,t�
�t2 + ü�t�� �12�

where Aw is the effective hydrodynamic area of the fluid that
affects the inertial force fm �per unit length�, �b is the beam den-
sity, and

Cm =
�wAw

�bAb
�13�

is the added-mass coefficient, which is zero if the added mass is
zero. The beam equation �9�, after dividing all terms with
�bAb�1+Cm�, becomes

�2ŵ�x,t�
�t2 +

�Bf + Bi�
�bAb�1 + Cm�

�ŵ�x,t�
�t

+
EI

�bAb�1 + Cm�
�4ŵ�x,t�

�x4 = r�t�

�14�

with the forcing term r�t� given by

r�t� = − ü�t� −
Bf

�bAb�1 + Cm�
u̇�t� �15�

3.3 Transfer Function for First Vibrational Mode. The par-
tial differential equation �14� is solved by substituting the follow-
ing separation of variables:

ŵ�x,t� = 

n=1

�

Xn�x�Tn�t� �16�

ˆ
for w into Eq. �14� to obtain

APRIL 2010, Vol. 132 / 024501-3
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n=1

�

Xn�x�T̈n�t� +
�Bf + Bi�

�bAb�1 + Cm�
n=1

�

Xn�x�Ṫn�t�

+
EI

�bAb�1 + Cm�
n=1

�

Xn��x�Tn�t� = r�t� . �17�

ote that Xn�x� represents the shape of the nth vibrational mode,
hich is obtained by considering the homogeneous equation with

�t�=0 in Eq. �17�. The homogeneous equation is satisfied if each
ode satisfies

Xn�x�T̈n�t� +
�Bf + Bi�

�bAb�1 + Cm�
Xn�x�Ṫn�t� +

EI

�bAb�1 + Cm�
Xn��x�Tn�t�

= 0 �18�

hich can be rewritten as a function of x on one hand and a
unction of t on the other hand that are both constant �−z2�, i.e.,

T̈n�t�
Tn�t�

+
�Bf + Bi�

�bAb�1 + Cm�
Ṫn�t�
Tn�t�

= −
EI

�bAb�1 + Cm�
Xn��x�
Xn�x�

= − z2.

his yields two equations

T̈n�t� +
�Bf + Bi�

�bAb�1 + Cm�
Ṫn�t� + z2Tn�t� = 0 �19�

Xn��x� −
�bAb�1 + Cm�

EI
z2Xn�x� = 0 �20�

ach mode shape Xn can be obtained from Eq. �20� as �13�

Xn�x� = cosh��nx� − cos��nx� − �n�sinh��nx� − sin��nx��
�21�

here

Xn��x� = �n
4Xn�x� �22�

�n = ��bAb�1 + Cm�
EI

z2	1/4

�23�

or the first mode of vibration X1�x�,

�1L = 1.875, �1 = 0.7341 �24�

ultiplying the nonhomogeneous equation �17� with the first
ode X1�x�dx and integrating with respect to the length after us-

ng the mode shape property in Eq. �22� result in



n=1

� �
0

L

X1�x�Xn�x�dxT̈n�t�

+
�Bf + Bi�

�bAb�1 + Cm�
n=1

� �
0

L

X1�x�Xn�x�dxṪn�t�

+
EI

�bAb�1 + Cm�
n=1

� �
0

L

�n
4X1�x�Xn�x�dxTn�t�

= r�t��
0

L

X1�x�dx

he orthogonality of the mode shapes results in only the first
ode remaining after the integration in the above equation to

ield

T̈1�t� +
�Bf + Bi�

�bAb�1 + Cm�
Ṫ1�t� +

EI

�bAb�1 + Cm�
�1

4T1�t� = r�t�K1
�25�

24501-4 / Vol. 132, APRIL 2010

aded 12 Feb 2010 to 69.91.136.102. Redistribution subject to ASME
K1 =
�0

LX1�x�dx

�0
LX1�x�X1�x�dx

=
0.783L

L
= 0.783 �26�

which can be rewritten �using r from Eq. �15�� as

T̈1�t� + 2�� f + �i��nṪ1�t� + �n
2T1�t� = − K1�ü�t� + 2� f�nu̇�t��

�27�

where the natural frequency �n, the fluid damping ratio � f, and the
internal damping ratio �i are given by

�n = ��1
2� EI

�bAb
� 1

��1 + Cm�
=

�n
�

��1 + Cm�
�28�

� f =
1

2�n
� Bf

�bAb�1 + Cm�� =
Bf

2�1
2�EI�bAb

1
��1 + Cm�

=
� f

�

��1 + Cm�
�29�

�i =
1

2�n
� Bi

�bAb�1 + Cm�� =
Bi

2�1
2�EI�bAb

1
��1 + Cm�

=
�i

�

��1 + Cm�
�30�

where �n
�, � f

�, and �i
� are the natural frequency, the fluid damping

ratio, and the internal damping ratio, respectively, without the
added-mass effect. The total tip displacement, due to the first vi-
brational mode X1 and the base motion u�t�, is

y�t� = X1�L�T1�t� + u�t� = 2T1�t� + u�t� �31�

since �from Eq. �21�� X1�L�=2. Taking the Laplace transform on
both sides of Eq. �27� to find T�s�, substituting this expression for
T�s� into Eq. �31� �after taking the Laplace transform on both
sides of Eq. �31��, and dividing Eq. �31� by U�s� yield

G�s� =
Y�s�
U�s�

=
− 2K1�s2 + 2� f�ns�

s2 + 2�� f + �i��ns + �n
2 + 1 �32�

which is the same as the experimental model �in Eq. �2�� with

K = 2K1 = 1.566, �1 = � f, �2 = � f + �i �33�

where the value of K1 is from Eq. �26�.

4 Discussion of Added-Mass Effect
This section begins with a discussion of the effective fluid area

that influences the inertial loading to quantify the added-mass ef-
fect. This is followed by a comparative evaluation of models with
and without the added-mass effect. In particular, it is shown that
the added-mass effect �when compared with the case without the
added mass� �i� lowers the resonant-vibrational frequency and �ii�
increases the vibrational amplitude at resonance in liquid.

4.1 Quantifying the Added-Mass Effect. The added-mass
coefficient Cm �in Eq. �13�� quantifies the added mass �wAw �per
unit length of the beam� in terms of the displaced mass �bAb. The
value of the added-mass coefficient Cm, in water, is obtained by
using Eq. �28� and Tables 1 and 2 as

Cm = � �n
�2

�n,w
2 − 1� 
 ��n,a

2

�n,w
2 − 1� = �338.682

116.702 − 1� = 7.42

�34�

where the natural frequency �n
� without the added-mass effect �as

in Eq. �28��

�n
� = �1

2� EI

�bAb
�35�

which is the same in water as in air, is approximated by the natural

frequency in air �n,a because the added-mass effect is expected to

Transactions of the ASME

 license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



b
c

T
m
t

T
9
w
f
a

t

t
a

i
m

w

T

a

T

J

Downlo
e relatively negligible in air due to the low density of air when
ompared with water, i.e.,

�n
� 
 �n,a �36�

he effective hydrodynamic area Aw that contributes to the added-
ass effect as the beam oscillates in water can be quantified in

erms of the height H of the beam as �using Eq. �13��

Aw = �H2 = Cm��bAb

�w
� �37�

he density of the PDMS cilia �which ranges from
40–1000 kg /m3 is similar to the density 1000 kg /m3 of DI
ater. Therefore, the coefficient � �in Eq. �37�� can be estimated

rom the value of Cm in Eq. �34� and the cilia depth D=10 �m
nd height H=45 �m,

� = Cm� �bD

�wH
� = 7.42�10/45�� �b

�w
� = 1.65� �b

�w
� �38�

o lie in the range

1.55 	 � 	 1.65 �39�

4.1.1 Comparison With Added-Mass Effect on Cylinder. Note
hat for a cylinder with cross section diameter H, the area Acyl

ssociated with added-mass term is �17� �Chap. 4�,

he normalized resonant-vibrational frequency �r in Eq. �44� is
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Acyl = �
/4�H2 = 0.785H2 = �cylH
2

with �cyl=0.785. Thus, the effective area ��H2� influencing the
added mass is about two times larger for cilia �� in Eq. �39�� when
compared with a cylinder with 2�cyl=1.57. This increase in the
effective area for the cilia is anticipated since a thin rectangle of
height H �with sharp edges� is expected to influence a larger fluid
area when compared with a relatively smoother cylinder of cross-
sectional diameter H.

4.1.2 Beam Density and the Added-Mass Effect. The added-
mass effect captured by the added-mass coefficient Cm=7.42 �in
Eq. �34�� depends on the relative density of the fluid and the beam
material as in Eq. �13�. In the current experimental setup, the
density of the PDMS cilia is close to the density of the liquid
�water�. In contrast if the density of the beam is substantially
larger �e.g., for metal or silicon-nitride cilia�, then the added-mass
effect would be much smaller. Thus, the significant added-mass
effect in reducing the natural frequency of the cilia arises because,
in addition to the geometry effect �i.e., the rectangular cross sec-
tion�, the density of the cilia is low.

4.2 Added Mass Reduces Resonance Frequency. It is
shown that the added-mass effect substantially reduces the natural
frequency �and thereby the resonant-vibrational frequency� in liq-
uid. Moreover, it is shown that this substantial reduction in
resonant-vibrational frequency cannot be due to the damping ef-
fect alone. The resonant-vibrational frequency is the frequency �

at which the magnitude of the transfer function in Eq. �2�
�G�j��� = � �K − 1�2�4 + 2�K − 1��2�n
2 + �n

4 + 4��2 − �1K�2�2�n
2

�4 + �4�2
2 − 2��2�n

2 + �n
4 	1/2

= � �K − 1�2� �

�n
�4

+ 2�2�1
2K2 + �1 − 4�1�2�K + 2�2

2 − 1�� �

�n
�2

+ 1

� �

�n
�4

+ �4�2
2 − 2�� �

�n
�2

+ 1 �
1/2

�40�
s maximum. The magnitude is maximized when its square is
aximized, or rather at the normalized frequency �̄ that satisfies

d�G��̄��2

d�̄
= 2�G��̄��

d�G��̄��
d�̄

=
d

d�̄
�P�̄2 + Q�̄ + 1

�̄2 + R�̄ + 1
� = 0 �41�

here

�̄ = � �

�n
�2

P = �K − 1�2

Q = 2�2�1
2K2 + �1 − 4�1�2�K + 2�2

2 − 1�

R = 4�2
2 − 2 �42�

he optimization condition in Eq. �41� is equivalent to

�PR − Q��̄2 + 2�P − 1��̄ + Q − R = 0 �43�

nd the resonant-vibrational frequency is given by

�̄r =
�r

�n
=��P − 1� + ��P − 1�2 − �Q − R��PR − Q�

Q − PR
�44�

¯

shown in Fig. 3. Note from this figure that the maximum reduc-
tion in the resonant-vibrational frequency is about 10% of the
natural frequency for damping ratios �1 and �2 less than 0.5 �5�
because
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Fig. 3 Contour plot for normalized resonant-vibrational fre-
¯
quency �r in Eq. „44…
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�̄r =
�r

�n
� 0.9 �45�

ithout the added-mass effect, the natural frequency in water

n,w
� would be the same as the natural frequency in air �n,a

� , which
n turn would equal �n

� in Eq. �35�,

�n,w
� = �n,a

� = �n
� �46�

herefore, the reduction in the resonant-vibrational frequency �r,w
�

n water due to damping effect alone �without the added-mass
ffect� would not be significant; it would be less than 10% from
q. �45�, which predicts the resonant-vibrational frequency �with-
ut added mass� to be

�r,w
� � 0.9�n,w

� = 0.9�n
� 
 0.9�n,a = 0.9�338.68� = 304.81 Hz

�47�

rom the approximation in Eq. �46�. However, the observed natu-
al frequency in water ��n,w=116.7 Hz in Table 2� is substantially
ower than the observed natural frequency in air ��n,a
338.68 Hz in Table 1�. This substantial reduction cannot be pre-
icted by damping effects alone, without the added-mass effect. In
ontrast, the added-mass effect predicts a substantially lower natu-
al frequency in water �n,w in comparison to the natural frequency
n air �n,a by a factor of �:

� =
1

��1 + Cm�
= 0.345 �48�

s in Eq. �28� with Cm from Eq. �34�. The further relatively minor
eduction in the resonant-vibrational frequency in water ��r,w
109.54 Hz in Table 2� in comparison to the natural frequency in
ater ��n,w=116.7 Hz in Table 2� is the result of the damping

ffect as in Eq. �44�. Therefore, the added mass �and not the
amping� has the dominant influence on the reduction in the natu-
al frequency �n,w and, therefore, on the reduction in the resonant-
ibrational frequency �r,w in liquid when compared with the natu-
al frequency �n,a in air.

4.3 Added-Mass Effect on Cilia With Different Lengths.
o evaluate the model of the added-mass effect, predictions of the
esonant-vibrational frequency are comparatively evaluated
gainst experimental results for cilia with different lengths. Cilia
f different lengths were obtained by cutting the available, micro-
abricated 800 �m cilia. Since the cilia depth D and height H are
he same, the cut cilia have the same cross-sectional area and,
herefore, the added-mass coefficient Cm �in Eq. �13�� is expected
o remain the same. Therefore, from Eqs. �24� and �28�, the pre-
icted natural frequency in water �n,w�L� for length L �m is re-
ated to the natural frequency in water �116.7 Hz in Table 2� for

Table 3 Columns 2–5: experimental fit of th
lengths L actuated in DI water with K=1.566. C
and resonant-vibrational frequencies �r,w,p us
and prediction errors En,w ,Er,w as in Eq. „50….
800 �m case.

L
��m� �1 �2

�n,w
�Hz�

480 0.452 0.470 335.6 3
540 0.448 0.462 264.2 2
670 0.441 0.458 178.4 1
760 0.441 0.453 136.8 1
800 0.438 0.450 116.70 1
ength 800 �m by

24501-6 / Vol. 132, APRIL 2010
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�n,w,p�L� = 116.7�800

L
	2

Hz �49�

Moreover, the predicted resonant-vibrational frequency in water
�r,w,p�L� for length L �m is obtained using the damping ratios for
the 800 �m cilia �in Table 2� in Eq. �44� along with the predicted
natural frequency �n,w,p�L� from Eq. �49�. The parameters of the
experimentally obtained model �in Eq. �2��, found by minimizing
the least-squares-error between the predicted model response and
measured frequency responses, are presented in Table 3. More-
over, the predictions �based on the 800 �m cilia� and the experi-
mental values of the natural and resonant-vibrational frequencies
are compared in Table 3, which shows that the model parameters
from the 800 �m cilia can be used to predict the natural fre-
quency and resonant-vibrational frequencies of the cut cilia to
within 7.5% error, where the error is defined as

En,w =
��n,w − �n,w,p�

�n,w

 100, Er,w =

��r,w − �r,w,p�
�r,w


 100

�50�

where the subscript p represents predicted values.
The fluid damping ratio � f =�1 �see Eq. �33�� is proportional to

the square of the length L since it is inversely proportional to �1
2

�see Eq. �29��, where �1 is inversely proportional to the length L
�Eq. �24��. However, the fluid damping ratio � f is also propor-
tional to the damping parameter Bf �in Eq. �29��, which depends
on the flow conditions such as flow velocities—flow velocities
tend to be lower at the lower vibrational frequencies investigated
with longer cilia. Hence the fluid damping ratio �1=� f is not ex-
pected to vary proportionally with the square of the cilia length L
in Table 3.

4.4 Added Mass Increases the Resonance Amplitude. In
addition to the reduction in the natural �and resonant-vibrational�
frequencies with the added-mass effect �as in Eq. �28��, from Eqs.
�29� and �30�, the fluid and internal damping ratios, � f and �i, are
also reduced by the same factor �=0.345 in Eq. �48�. Therefore,
the damping ratios � f and �i without the added-mass effect �de-
noted by the superscript “�”� tend to be about three times �1 /�
=2.898 times� larger when compared with the case with the
added-mass effect. In particular, for the 800 �m cilia, the damp-
ing ratios � f and �i without the added-mass effect are estimated to
be �from Eqs. �29�, �30�, and �33��

�1
� = � f

� =
� f

�
=

�1

�
=

0.438

0.345
= 1.27 �51�

�2
� = �i

� + � f
� =

��i + � f�
�

=
�2

�
=

0.45

0.345
= 1.3 �52�

The added-mass effect effectively decreases the damping ratio

parameters in Eq. „2… for cilia with different
mns 6–9: predicted natural frequencies �n,w,p
parameters for the 800 �m cilia „in Table 2…

e predictions are not applicable „N/A… for the

�
�n,w,p
�Hz�

En,w
�%�

�r,w,p
�Hz�

Er,w
�%�

5 324.14 3.5 304.23 2.7
8 256.11 3.2 240.38 2.7
4 166.37 7.2 156.15 6.5
8 129.30 5.8 121.36 5.4
4 N/A N/A N/A N/A
e
olu
ing
Th

�r,w
�Hz

12.7
46.9
66.9
28.2
09.5
�when compared with the model without the added mass� and
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hereby increases the vibrational response at the resonance. In
articular, without the added-mass effect, the system is over-
amped with damping ratio greater than 1 �i.e., �2

�=1.3�; the maxi-
um expected amplitude of vibration is then 1 �i.e., the same as

he applied base motion�. In contrast, with the added-mass effect,
he system is underdamped with damping ratio less than 1 �i.e.,
2=0.45�; the ensuing maximum amplitude at resonance is ex-
ected to be greater than 1. This increase in the amplitude at the
esonance frequency with the added-mass effect is seen in Fig. 4,
hich compares the models with and without the added-mass ef-

ect for different cilia lengths. Note that the model with the added-
ass effect captures the experimental data well as opposed to the
odel without the added mass �that predicts an overdamped sys-

em�. Thus, the added-mass effect is needed in the model to cap-
ure both �i� the substantial reduction in the resonant-vibrational
requency of the cilia in liquid when compared with air and �ii�
he relatively large amplitude at resonance even in the presence of
ubstantial fluid damping due to an effective reduction in the
amping ratio.

Conclusions
This article showed that the added mass due to fluid-structure

nteraction significantly affects the vibrational dynamics of cilia-
ased �vibrating cantilever-type� devices proposed for handling
he micro-/nanoscale fluid flows. Furthermore, it showed that the
amping effects of the hydrodynamic interaction between the
ilia-based actuators and fluid cannot fully explain the substantial
eduction �by about a third� in the resonant frequency of the cilia
ctuators in liquid when compared with the natural frequency in
ir. The article showed that an added-mass effect explains �i� this
eduction in the resonant frequency due to an increase in the ef-
ective inertia and �ii� the relatively large amplitude at resonance,
ven in the presence of substantial fluid damping, due to an effec-
ive reduction in the damping ratio.
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