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Experimental energy measurements tend to be smaller than the predicted values in (i) the absorp-
tion of high-energy particles (in cloud chambers) and (ii) the average energy determination of the
classical β -ray spectrum of radium E (using magnetic fields). To address these differences in energy
measurements, we reconsider relative-velocity-dependent models in electromagnetism proposed ini-
tially by Weber before data from cathode-ray-tube (CRT) experiments was available. It is shown that
identifying the nonlinear, relative-velocity terms using CRT data results in a model, which (i) cap-
tures relativity effects in optics and high-energy particles, and (ii) explains the apparent discrepancies
in experimental energy measurements.
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1. Introduction

Relative-velocity-dependent models in electromag-
netism were proposed initially by Weber [1, 2] before
data from cathode-ray-tube (CRT) experiments was
available. In contrast, a nonlinear relative-velocity-
dependent model is developed in the present article,
that is based on data from CRT experiments. This arti-
cle addresses two challenges in the use of such relative-
velocity-dependent models: (i) to capture both low-
velocity and high-velocity effects in electromagnetism;
and (ii) to maintain model invariance between inertial
reference frames. The first challenge is addressed by
using the nonlinearity of the proposed model to cap-
ture: (a) low-velocity effects such as the force between
two current-carrying wires; and (b) high-velocity ef-
fects such as the mass increase seen in CRT experi-
ments. The second challenge, to maintain model invari-
ance between different inertial frames, is addressed by
accounting for the relative-velocity effects in Lorentz
and Maxwell’s equations. The resulting model not
only captures relativity effects in optics and high-
energy particles but also explains apparent discrepan-
cies between predicted and measured energy in: (i) the
absorption of high-energy particles in cloud cham-
bers [3]; and (ii) the average energy determination of
the β -ray spectrum using magnetic fields [4 – 7].

Measurements of the energy lost by high-energy
electrons due to absorption in lead, by Crane and
co-workers, tend to be more than 50% of the ex-
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pected value [3]. Studies of possible electron scat-
tering and potential increase in path length (through
the lead) could not explain this discrepancy [8]. The
inability to resolve this discrepancy led Richardson
and Kurie [9] to conclude that the cloud-chamber-
absorption method is not reliable for energy measure-
ments “even when applied by careful investigators”.
However, the discrepancy in the measured energy can
be accounted for by the model presented in the present
article. The proposed model also explains apparent dis-
crepancies between predicted and measured energies
in classical β -ray-spectrum experiments [4 – 7]. Ellis
and Wooster [4] found the average disintegration en-
ergy of radium E (Ra E) to be 0.344 MeV using tem-
perature measurements while reporting that the aver-
age energy found by Madgwick from the β -ray spec-
trum was 0.395 MeV. Moreover, Madgwick’s data (in-
cluding the location of the spectrum’s peak) was con-
firmed independently by Ho and Wang [7]. The differ-
ence in the average energy between these two different
approaches led to the development of several correc-
tion factors for potential errors in measurements at the
lower end of the β -ray spectrum for reconciling the dif-
ference [10, 11]. In contrast, the predicted average en-
ergy of the β -ray spectrum using the proposed relative-
velocity approach matches the value from temperature
measurements by Ellis and Wooster [4], without the
need for correction factors.

The proposed relative-velocity model has the fol-
lowing general form for the Lorentz force FE on a par-
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ticle of charge q due to an electric field E:

FE = [N⊥(vrel)]qE⊥ +[N‖(vrel)]qE‖, (1)

where E⊥ and E‖ are the components of the field per-
pendicular and parallel to the velocity vrel between
the field and the particle. It has to be noted that ad-
hoc choices of the nonlinearities [N⊥,N‖ in (1)] are
not acceptable. For example, instead of a velocity-

dependent increase in mass, m = m0/
√

1− |vrel|2
c2 ,

a reduction of the Lorentz force, such as N⊥ =√
1− |vrel|2

c2 , might be considered to match the relativis-
tic, velocity-dependent increase in mass in CRT exper-
iments (where c is the speed of light and m0 is the rest
mass). However, it is shown that such a nonlinearity is
not consistent with low-speed effects such as Ampere’s
law for the force between two current-carrying wires.

In the present article, the form of the perpendicular
nonlinearityN⊥ [in (1)] is identified using: (i) the rela-
tivistic mass increase in CRT experiments; and (ii) con-
servation of the field’s energy density at low speeds.
It is shown that the resulting form of the perpendic-
ular nonlinearity N⊥ also uniquely identifies: (i) the
kinetic energy of a particle; and (ii) the parallel nonlin-
earity N‖. In addition to matching the relativistic mass
increase in CRT experiments (as expected, since the
nonlinearity N⊥ is identified using CRT observations),
the resulting nonlinearity expression also matches the
low-speed Ampere’s law for the force between two
current-carrying wires. Furthermore, the resulting en-
ergy expression explains the apparent discrepancies in
the measured energy in high-energy electron absorp-
tion [3] and Ra E disintegration [5].

The second difficulty, to find appropriate trans-
formations to relate observations in different inertial
frames, can be addressed by the proposed relative-
velocity-based approach where spatial velocity distri-
butions (VE , VB) are assigned to the electrical field E
and magnetic field B. It is shown that Maxwell’s equa-
tions, if adapted to include these relative-velocity dis-
tributions, are still co-ordinate invariant. The effects of
the proposed approach on the propagation of light and
the explanation of optical phenomena are considered in
this article. Most importantly, the relative-velocity ap-
proach models relativistic effects such as the transverse
Doppler effect and the convection of light by mov-
ing media (Fresnel drag). Thus, the article presents a
Weber-type relative-velocity-dependent modeling ap-
proach that: (i) captures relativistic effects in optics and

high-energy particles; and (ii) explains apparent dis-
crepancies in experimental energy measurements.

2. Relative-Velocity Approach

In this section, the nonlinearities N⊥, N‖ [in (1)]
are identified. Low-speed effects (energy density in-
variance) and high-speed (CRT) effects are considered
in the first two subsections to identify the perpendic-
ular nonlinearity N⊥, which is then used in the third
subsection to identify expressions for the kinetic en-
ergy and the parallel nonlinearity N‖.

2.1. Energy Density Conservation at Low Speeds

In an inertial frame O, let velocity fields VE and VB
be associated with the electric field E and magnetic
field B, respectively. These are the velocities of the
electric and magnetic fields relative to the inertial
frame O. Then, the Lorentz force between a charged
particle q, moving with velocity V relative to the iner-
tial frame O, and the fields is modeled as a function of
the relative velocity between the particle and the field
as proposed by Weber [1, 2], and generalized in the
present article. The main idea is that a moving elec-
tric field introduces an apparent magnetic field (and
vice versa); the model maintains a constant total energy
density (electric and magnetic) that is independent of
the relative velocity. This subsection begins with the
relative-velocity-dependent modeling of the magnetic
field.

Low-Speed, Relative-Velocity Modeling of the
Magnetic Field

The Lorentz force on an electrical charge q due to
the magnetic field in terms of the relative velocity (V −
VB) of the particle with respect to the field is

FB = q(V −VB)×B. (2)

Thus, the magnetic field B appears to have an effective
electric field EB, perpendicular to the relative velocity
(V −VB), given by

EB = (V −VB)×B. (3)

This apparent electric field implies that the field energy
would vary with the relative velocity of the charged
particle in the same reference frame. To avoid such
variation, a reduction of the apparent magnetic field BB
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in the perpendicular direction is considered so that the
net energy of the apparent fields is independent of the
relative velocity. In particular, it is assumed that the
effective magnetic field (acting on an ideal magnetic
particle that is moving with velocity V according to
observer O) is given by

BB = B‖ + γBB⊥, (4)

where γBB⊥ is the vector component of the magnetic
field perpendicular to the relative velocity (V −VB),
and B‖ is the vector component of the magnetic field
parallel to the relative velocity (V −VB). In the nominal
case, when the relative velocity is zero, i. e., V =VB, we
have no change in the perpendicular component and
therefore γB = 1 for this case. When the relative ve-
locity is nonzero, the factor γB is chosen such that the
net energy density of BB and EB (due to the magnetic
field B) is independent of the relative velocity (V −VB).
Moreover, the only variations in the fields are in the
perpendicular components. Therefore, by matching the
energy density in the field’s perpendicular component
for the case that the relative velocity is nonzero to the
case if the relative velocity is zero, one obtains

γ2
B

2µ
|B⊥|2 +

ε
2
|EB|2 =

1
2µ

|B⊥|2, (5)

where | · | represents the magnitude of a vector, ε is the
permittivity, and µ is the permeability. Substituting the
apparent electric field EB from (3), i. e.,

EB = (V −VB)×B = (V −VB)×B⊥, (6)

into (5), yields

γ2
B

2µ
|B⊥|2 +

ε|V −VB|2
2

|B⊥|2 =
1

2µ
|B⊥|2 (7)

and

γB =

√
1− |V −VB|2

c2 =
√

1−β 2
B, (8)

where c =
√

1/εµ is the speed of light and βB is the
normalized relative speed:

βB = |V −VB|/c. (9)

Thus, an electric particle moving with the velocity V
is affected by the electric field EB; a magnetic particle
moving with the velocity V is affected by the magnetic

field BB and the electric field EB moving with veloc-
ity VB.

Low-Speed, Relative-Velocity Modeling of the
Electric Field

Similar to the last subsection, an electric field E ap-
pears to have an effective magnetic field BE , perpen-
dicular to the relative velocity (V −VE), given by

BE = −εµ(V −VE)×E, (10)

where the term −εµ is used to match the magnetic
field produced by a current-carrying wire (Ampere’s
law). In particular, if ρ (charge per unit length) is flow-
ing with velocity v through a wire (which is stationary
in the reference frame O), then the electric field Eρ as-
sociated with this charge, at a distance rr̂ from the wire,
is given by Eρ = [ρ/(2πεr)]r̂, where r̂ represents a unit
direction vector. Note that the velocity associated with
this electric field is the velocity v of the charge flowing
through the wire. Therefore, from (10), the magnetic
field Bρ at a distance rr̂ from the wire is

Bρ = −(εµ)(0− v)×Eρ = (εµ)v×Eρ

= εµ [ρ/(2πεr)]|v| v̂× r̂

= [µI/(2πr)] v̂× r̂,

(11)

where I is the current in the wire; this is the expression
for a magnetic field produced by a current-carrying
wire.

To keep the net energy independent of the relative
velocity (V −VE), the following reduction γE in the per-
pendicular direction of the apparent electric field EE is
considered:

EE = E‖ + γEE⊥, (12)

where γE E⊥ is the vector component of the electric
field perpendicular to the relative velocity (V −VE),
E‖ is the vector component of the electric field parallel
to the relative velocity (V −VE), and the scaling fac-
tor γE = 1, if the relative velocity is zero, i. e., V = VE .
The scaling factor γE is obtained by equating the total
energy density to the energy density of the electric field
alone, if the relative velocity is zero, as

εγ2
E

2
|E⊥|2 +

1
2µ

|BE |2 =
ε
2
|E⊥|2. (13)

Substituting the apparent magnetic field BE from (10),
i. e.,

BE =−εµ(V −VE)×E =−εµ(V −VE)×E⊥, (14)
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into (13), yields

εγ2
E

2
|E⊥|2 +

ε2µ2|V −VE |2
2µ

|E⊥|2 =
ε
2
|E⊥|2 (15)

and a scaling factor

γE =

√
1− |V −VE|2

c2 . (16)

This expression is similar to the one for the scaling fac-
tor for a magnetic field in (8). Thus, a magnetic particle
moving with the velocity V is affected by the magnetic
field BE ; an electric particle moving with the velocity V
is affected by the electric field EE and the magnetic
field BE moving with the velocity VE . In particular, the
net force on an electric particle (of charge q) is given
by [from (2), (10) and (12)]

FE = q (V −VE)×BE + qE‖+ qγEE⊥
= q(V −VE)×{−εµ(V −VE)×E}+ qE‖+ qγEE⊥

= q
|V −VE|2

c2 E⊥ + qE‖+ qE⊥

√
1− |V −VE|2

c2

= q
[

β 2
E +

√
1−β 2

E

]
E⊥ + qE‖

= qαE⊥ + qE‖, (17)

where the normalized relative speed βE and the scaling
factor α are given by

βE = |V −VE |/c and α = β 2
E +

√
1−β 2

E. (18)

If the relative velocity is small, i. e., βE is small, the
scaling factor α in the perpendicular force component
of (17)

FE,⊥ = qαE⊥

can be simplified to

α = β 2
E +

√
1−β 2

E ≈ 1 +
1
2

β 2
E . (19)

Therefore, the simplified force on an electric particle
in (17) becomes

FE ≈ q
(

1 +
1
2

β 2
E

)
E⊥ + qE‖. (20)

Saturation Effect

The discussion in the present article is limited to the
case that the magnitude of the relative velocity is less

than the speed of light c, i. e., βE ≤ 1 and βB ≤ 1. The
approach can be extended to higher relative speeds by
fixing (saturating) the scaling factors to the values for
the case if the relative speed equals the speed of light.
For example, α in (18) is held constant for higher rel-
ative speeds βE > 1 as

α = 1 ∀ βE > 1. (21)

Although not stated explicitly, equations are presented
only for the case if βE ≤ 1 and βB ≤ 1 in the rest of the
article.

2.2. High-Speed Effects in the Relative-Velocity
Model

The relativistic mass dependence on speed is mod-
eled as a slip effect, where the force on the particle
reduces as the relative velocity increases. In particular,
consider the augmentation of the Lorentz force on an
electric particle, in (2) and (17), with relative-velocity
terms s⊥ and s‖ as

FB = [s⊥(βB)]q(V −VB)×B⊥, (22)

FE = [s⊥(βE)]qαE⊥+[s‖(βE)]qE‖ = FE,⊥+FE,‖. (23)

The perpendicular and parallel slip terms s⊥ and s‖ are
identified in this subsection.

Matching Cathode-Ray-Tube Observations

Consider the forces on a charge, moving with the ve-
locity V perpendicular to a stationary magnetic field B
and electric field E , as in cathode-ray-tube (CRT) ex-
periments [12]. These forces can be written, from (22)
and (23), as

FB = s⊥(β )qV ×B, (24)

FE = s⊥(β )α(β )qE, (25)

where β = |V |
c . If the fields act on the charged CRT

particle over some length L, then the change in velocity
of the CRT particle along the application of the force
during the time interval ∆t = L/|V | is given by

FB L
m|V | and

FE L
m|V | ,

where m is the mass of the particle (electron). There-
fore, the change in angles (θB and θE ) of the CRT par-
ticle’s path along the action of the fields B and E , re-
spectively, can be approximated by using (24) and (25)
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as [12]

θB =
∣∣∣∣ FB L
m|V |2

∣∣∣∣ =
s⊥(β )q|V ||B|L

m|V |2 =
s⊥(β )|B|L

m
q |V | , (26)

θE =
∣∣∣∣ FE L
m|V |2

∣∣∣∣ =
s⊥(β )α(β )|E|L

m
q |V |2 . (27)

In the absence of the relative velocity terms [i. e.,
s⊥(β ) = 1 and α(β ) = 1], a velocity-dependent mass
variation can be used to explain the CRT data. In par-
ticular, the estimated velocity VCRT and the estimated
mass-to-charge ratio

m(βCRT)
q

=
m
q

Ψ (βCRT),

with

βCRT =
|VCRT|

c
, (28)

from the CRT experiments would be related by

θB =
|B|L

m
q Ψ(βCRT)|VCRT| , (29)

θE =
|E|L

m
q Ψ (βCRT)|VCRT|2 , (30)

whereΨ(βCRT) represents the CRT-predicted variation
of mass with velocity. Dividing (26) and (27) by (29)
and (30), respectively, yields

s⊥(β ) =
|V |

|VCRT|
1

Ψ (βCRT)
, (31)

s⊥(β )α(β ) =
|V |2

|VCRT|2
1

Ψ(βCRT)
. (32)

The velocity VCRT predicted by the CRT experiments
can be obtained by dividing (31) by (32) to obtain

|VCRT| = |V |
α(β )

or βCRT =
β

α(β )
. (33)

Furthermore, the perpendicular slip term s⊥(β ) can be
found by dividing the square of (31) by (32) and then
substituting βCRT from (33) to obtain

s⊥(β ) =
α(β )

Ψ(βCRT)
=

α(β )

Ψ( β
α(β ) )

. (34)

Case 1: Matching the Relativistic Mass-Velocity
Relation

The perpendicular term s⊥(β ) can be chosen, as
in (34), to exactly match the observed velocity-
dependent variation Ψ in mass. In particular, if the
CRT-predicted mass increase is given by the relativistic
expression

Ψ(βCRT) =
1√

1−β 2
CRT

, (35)

then the expression for the slip term s⊥ is obtained,
from (33) and (34), as

s⊥(β ) = α(β )




√
1−

[
β

α(β )

]2



=
√

[α(β )]2 −β 2.

(36)

Case 2: Simplified Perpendicular Slip Term

Consider the following, simplified expression s̄⊥ for
the slip term s⊥(β ):

s̄⊥(β ) = [1−β 8]1/4. (37)

This term does not lead to an exact match of the rela-
tivistic mass increase; however, it closely approximates
the expression for the relativistic mass increase. In par-
ticular, assuming this form s̄⊥(β ) for the slip term,
the velocity β̄CRT estimated in the CRT experiment, as
in (33), is given by

β̄CRT =
β

α(β )
=

β
β 2 +

√
1−β 2

. (38)

Moreover, the apparent mass variation Ψ̄ in the CRT
experiment, as in (34), is given by

Ψ̄(β̄CRT) =
α(β )
s(β )

=
β 2 +

√
1−β 2

[1−β 8]1/4 . (39)

It has to be noted that the variation of Ψ̄(β̄CRT) with
velocity β̄CRT in (38) and (39), which would be ob-
tained from a CRT experiment, is similar to the rela-
tivistic variation

Ψ(β̄CRT) =
1√

1− β̄ 2
CRT

, (40)

as shown in Figure 1.
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(a) (b)

Fig. 1. Proposed model matching the apparent velocity dependence of mass in CRT experiments. (a) Comparison of apparent
mass variations Ψ (β̄CRT) (relativistic mass model) and Ψ̄ (β̄CRT) (simplified model) as in (39), and (40) with normalized
relative speed β̄CRT in (38). (b) The difference Ψerror in predicted mass variation is less than 1% with the simplified model as
in (41). There would be no error with the exact relative-velocity model in (36).

Moreover, the percentage difference Ψerror between
the two expressions (39) and (40) given by

Ψerror =
Ψ(β̄CRT)−Ψ̄(β̄CRT)

Ψ(β̄CRT)
·100 (41)

is less than 1% as shown in Figure 1. Thus, the
relativistic velocity dependency of mass in CRT ex-
periments can be modeled using the relative-velocity
approach with the perpendicular nonlinearity (N⊥ =
s⊥α) in the Lorentz force expression and a constant
mass. The simplified expression for the perpendicular
slip [s⊥ = s̄⊥ with s̄⊥ defined in (37)] is used in the rest
of the article.

2.3. Kinetic Energy and Parallel Slip

The expressions for the kinetic energy EKE and the
parallel slip term s‖ are identified in this subsection by
using the perpendicular slip term s⊥.

2.4. Relationship between Parallel Slip and Kinetic
Energy

Consider a charged particle q moving along a
straight line away from a stationary charged particle Q
at a distance rr̂ as shown in Fig. 2 (case 1).

Taking the dot product with a small displace-
ment drr̂ with Newton’s law on the charge q yields

s‖(β )
Qq

4πεr2 dr = m
dv
dt

dr =
m
2

dv2 =
mc2

2
dβ 2. (42)

Dividing both sides by the parallel slip term s‖(β ) and

dr
qQ

v

(Case 1)

rr r
r

δr
qQ

(Case 2)

v||||

| |

δv | |

rr
r r

Fig. 2. Two cases: Case 1 forces parallel and case 2 forces
perpendicular to the velocity.

integrating results in

∫ r2

r1

Qq
4πεr2 dr =

∫ β 2
2

β 2
1

mc2

2s‖(β )
dβ 2 =

∫ EKE,2

EKE,1

dEKE

dβ 2 dβ 2,

(43)

where EKE is considered as the relative-velocity-
dependent kinetic energy of the system since the above
expression leads to the conservation law

Qq
4πεr2

+EKE,2 =
Qq

4πεr1
+EKE,1, (44)

in which the potential energy expression Qq/(4πεr)
is independent of the relative velocity and the parallel
slip term s‖(β ). The relationship between the parallel
slip term and the kinetic energy is [from (43)]

dEKE

dβ 2 =
mc2

2s‖(β )
. (45)
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Expression for Kinetic Energy

The perpendicular force FE,⊥ does zero work and
therefore does not lead to changes in the kinetic en-
ergy. However, an expression for the kinetic energy can
be found by making the virtual work done by the per-
pendicular force FE,⊥ independent of the perpendicu-
lar slip term s⊥. Consider a charged particle q moving
with the velocity v‖ perpendicular to the distance vec-
tor rr̂ from a stationary charged particle Q as shown in
Fig. 2 (case 2). Let δ r⊥ r̂ be a virtual displacement per-
pendicular to the relative velocity v‖; then taking the
dot product of the virtual displacement with both sides
of Newton’s law yields

s⊥(β‖)α(β‖)
Qq

4πεr2 δ r⊥ = m
δv⊥
δ t

δ r⊥ = mv⊥δv⊥

=
1
2

mδv2
⊥,

(46)

where β‖ =
|v‖|

c . The virtual work done can be made
independent of the slip term s⊥(β‖) if the change in
the kinetic energy (δEKE) has the following form [ob-
tained by dividing both sides of the above equation by
s⊥(β‖)]:

α(β‖)
Qq

4πεr2 δ r⊥ =
1
2

m δv2
⊥

s⊥(β‖)
=

1
2

mc2δβ 2
⊥

s⊥(β‖)

= δEKE,

(47)

which implies that the kinetic energy EKE has the form

EKE(β ) =
1
2

mc2β 2

s⊥
=

1
2

mc2β 2

(1−β 8)1/4 . (48)

Expression for Parallel Slip Term

Differentiating the expression (48) for the kinetic
energy by β 2 yields

dEKE

dβ 2 =
mc2

2

[
1

(1−β 8)5/4

]
, (49)

and comparison with (45) yields the parallel slip term

s‖ = (1−β 8)5/4. (50)

2.5. Summary of Relative-Velocity-Dependent
Model

The relative-velocity approach results in the follow-
ing Lorentz force on an electrically charged particle

[from (22) and (23)] by using the simplified slip terms
[in (37) and (50)]:

FB = [(1−β 8
B)1/4]q(V −VB)×B⊥, (51)

FE = [(1−β 8
E)1/4]

[√
1−β 2

E + β 2
E

]
qE⊥

+[(1−β 8
E)5/4]qE‖.

(52)

At low speeds, the electrical force expression (52) re-
duces to the expression in (20).

3. Applications of the Lorentz Force Expression

In this section, it is shown that the relative-velocity-
dependent Lorentz force expression: (a) satisfies the
force between two wires (a low-velocity effect); and
(b) explains the observed discrepancy in the energy of
high-velocity particles.

3.1. Force between Two Wires

The increase in the electrical force component per-
pendicular to the relative velocity [in (52) which sim-
plifies to (20) at low speeds] can be used to explain the
force between two current-carrying wires, which are
both stationary in a reference frame O. As shown in
Fig. 3, let the second wire (denoted by the subscript 2)
be positioned at rr̂ from the first wire (denoted by the
subscript 1). Moreover, let the currents in the two par-
allel wires be I1 and I2, and let the corresponding mov-
ing charges (per unit length) be −ρ1 and −ρ2 with the
velocities −v1V̂ and −v2V̂ , respectively, i. e.,

I1 = ρ1v1, and I2 = ρ2v2, (53)

where the speeds v1 ≥ 0 and v2 ≥ 0 of the charges are
small, and V̂ is a unit vector along the direction of the
wire (in which current is flowing).

Fig. 3. Force between two currents carrying parallel wires
separated by the distance r.

Force Expression

Consider the two (noncanceling) fields in the first
wire: (a) E−ρ1 associated with the moving charge −ρ1

with the field velocity −v1V̂ given by

E−ρ1 = [−ρ1/(2πεr)]r̂; (54)
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and (b) Eρ1 associated with the corresponding station-
ary charge ρ1 in the wire, i. e., the stationary field given
by

Eρ1 = [ρ1/(2πεr)]r̂. (55)

These two fields act on the moving charge −ρ2 and
a corresponding stationary charge ρ2 on the second
wire (per unit length). For example, the force per unit
length F−ρ1,−ρ2 on the moving charge −ρ2 due to the
moving charge−ρ1 can be obtained from (20) and (54)
as

F−ρ1,−ρ2 = −ρ2

[
1 +

|(−v2)− (−v1)|2
2c2

]
E−ρ1

= −ρ2

[
1 +

|(−v2)− (−v1)|2
2c2

][
− ρ1

2πεr

]
r̂

=
ρ1ρ2r̂
2πεr

[
1 +

|v1 − v2|2
2c2

]
. (56)

Similarly, the force per unit length Fρ1,−ρ2 on the mov-
ing charge −ρ2 due to the stationary charge ρ1, as
well as the the forces F−ρ1,ρ2 ,Fρ1,ρ2 on the stationary
charge ρ2 on the second wire due to the charges (on
the first wire) −ρ1 and ρ1, respectively, are given by

Fρ1,−ρ2 = −ρ1ρ2r̂
2πεr

(
1 +

|− v2|2
2c2

)
,

F−ρ1,ρ2 = −ρ1ρ2r̂
2πεr

(
1 +

|v1|2
2c2

)
,

Fρ1,ρ2 =
ρ1ρ2r̂
2πεr

.

(57)

Thus, the total force per unit length F1,2 on the second
wire can be found using (56) and (57) as

F1,2 = Fρ1,ρ2 + Fρ1,−ρ2 + F−ρ1,ρ2 + F−ρ1,−ρ2

=
ρ1ρ2r̂
2πεr

[
1−

(
1 +

|v2|2
2c2

)
−

(
1 +

|v1|2
2c2

)

+
(

1 +
|v1 − v2|2

2c2

)]

=
ρ1ρ2r̂
2πεr

(−2v1v2

2c2

)
= −µI1I2

2πr
r̂.

(58)

This force on the second wire is attractive (i. e., to-
wards the first wire) if the two wires carry current in
the same direction.

The Force between Wires is Incorrect with an ad-hoc
Perpendicular Slip Term

Another choice of the perpendicular slip term can be
found by matching the acceleration resulting from the

relativistic increase in mass with speed. For example,
the slip term s⊥(βE) in (23) can be chosen such that the
perpendicular component of the force due to an electric
field becomes

FE,⊥ = [s⊥(βE)]qαE⊥ = qE⊥
√

1−β 2
E. (59)

The resulting force can be approximated (at low
speeds βE ) by

FE,⊥ ∼= qE⊥
(

1− β 2
E

2

)
. (60)

However, this expression is not consistent with the
force between two current-carrying wires. In particu-
lar, the scaling of the term β 2

E has the opposite sign
in (60) when compared to the expression in (20). The
use of the expression in (60) would lead to a force

F1,2 =
µI1I2

2πr
r̂ (61)

similar to (58); however, the force between two wires
that are carrying current in the same direction is repul-
sive, which is incorrect.

3.2. High-Velocity Particles

The energy and velocity of charged particles in mag-
netic fields predicted by the relative-velocity approach
are compared with relativistic predictions. These are
then used to explain apparent discrepancies in the mea-
sured energy of high-velocity experiments.

Comparison of Energy and Velocity Expressions

The motion of a particle with the charge q and the
mass m moving with the speed v in a magnetic field B
along a circle with radius ρ is governed by

mv2

ρ
= qvs⊥B, i. e.,

β
(1−β 8)1/4 =

( q
mc

)
ρB = κ .

(62)

The relativistic expression for the velocity vr (and βr =
|vr|/c), for a given value of the non-dimensional pa-
rameter κ , can be found as

mv2
r

ρ
√

1−β 2
r

= qvrB, i. e.,
βr

(1−β 2
r )1/2 = κ , (63)
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(a) (b)

Fig. 4. Variation of (a) the normalized speed and (b) the energy.

(a) (b)

Fig. 5. (a) Relative-velocity-based energy vs. relativistic energy in magnetic fields. (b) The large deviation between the
predicted and experimental energy loss ∆E for different average energies Ē is avoided with the relative-velocity-based
approach. The relative-velocity-based values (circles) are from Table 1; the relativity-based values (solid dots) and the theo-
retical curves (solid/dashed lines) are from [3], Figure 7.

where m represents the rest mass in relativity. The cor-
responding relativistic energy Er is given by

Er =
mc2

(1−β 2
r )1/2 −mc2, (64)

while the relative-velocity-based energy E is given
by (48). The predicted velocity and energy for the
relative-velocity approach are compared with those
from the relativistic expressions in Figure 4.

Note that the velocity β predicted by the relative-
velocity approach tends to be higher than the rela-
tivistic value βr while the energy E predicted by the
relative-velocity approach tends to be lower than the
relativistic value Er for large values of κ . This differ-
ence is used to explain (below) the discrepancies in the
observed energy in absorption experiments and in the
β -ray spectrum.

Absorption of High-Energy Electrons

Crane and co-workers [3] investigated the absorp-
tion of high-energy electrons in lead by measuring

the initial energy Er,i and final energy Er,f of elec-
trons before and after passing through a lead ab-
sorber in a cloud chamber [3]. The subscript r de-
notes that the relativistic expression is used to find
the energy from the measured curvature in a mag-
netic field. The corresponding initial and final ener-
gies, from the relative-velocity approach, are found
from Fig. 5a which plots the energy from the relative-
velocity approach against the corresponding relativis-
tic energy at different radii in the magnetic field (i. e.,
different κ). Data from Crane’s results ([3], Fig. 7) is
used to re-compute the energy loss using the relative-
velocity approach. The results are shown in Table 1
and in Fig. 5b demonstrating the recomputed en-
ergy loss ∆E = Ei − Ef versus the average energy
Ē = (Ei −Ef)/2.

Thus, the results show that the large deviation (more
than 50% increase) in the energy loss from the theoret-
ical prediction ([3], Fig. 7), when energy is computed
with the relativistic approach, is avoided if the data is
re-interpreted with the relative-velocity-based expres-
sion for energy.
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Fig. 6. β -Particle counts vs. energy. The
relative-velocity approach predicts a reduction
in the number of particles at the high-energy
end of the spectrum; the resulting average en-
ergy is closer to the temperature-based mea-
surement by Ellis and Wooster [4]. The solid
line is Madgwick’s curve (from [4], Fig. 1)
with the relativistic energy expression. The
crosses are data points obtained from the solid
curve; these data points are used to find the
corresponding relative-velocity-based energy
(circles).

Table 1. Re-evaluation of energy loss in electron absorption
from data by Turin and Crane [3], where the thickness of the
lead absorber is 0.5 mm.

Relativity approach Relative velocity

Average Loss Initial Final Initial Final Average Loss
Ēr, ∆Er, Er,i, Er,f, Ei, Ef, Ē, ∆E,

MeV MeV/cm MeV MeV MeV MeV MeV MeV/cm
2.27 28.5 2.983 1.558 1.728 1.002 1.365 14.424
4.12 33 4.945 3.295 2.716 1.886 2.301 16.606
4.12 35 4.995 3.245 2.741 1.861 2.301 17.613
5.85 43.5 6.938 4.763 3.716 2.624 3.170 21.823
8.35 45.5 9.488 7.213 4.993 3.853 4.423 22.789

Average Energy of the β -Ray Spectrum

Ellis and Wooster [4] found the average disintegra-
tion energy of Ra E to be 0.344 MeV using temper-
ature measurements while the average energy found
from the β -ray spectrum in magnetic fields ([4], Fig. 1)
was 0.395 MeV. The resulting spectrum is shown in
Fig. 6 (solid line); data points were measured on this
curve and the corresponding relative-velocity-based
energy was found using the same relationship of Fig-
ure 5a. The re-computed data points are also shown in
Figure 6.

Note that the value of the energy is smaller for
the relative-velocity approach when compared to the
relativistic energy (towards the higher end of the
spectrum in Fig. 6); therefore, the average energy
is smaller with the relative-velocity approach. The
average value of the spectrum with the relativistic
data points is 0.39 MeV while the average value of
the spectrum with the relative-velocity-based points
is 0.35 MeV. Thus, the re-computed average energy
(0.35 MeV) of Madgwick’s β -ray spectrum data is

close to the average (0.344 MeV) obtained by Ellis and
Wooster [4] using temperature measurements when
compared to the value of 0.39 MeV with the relativistic
energy expression [4]. Therefore, the apparent discrep-
ancy in Madgwick’s data [4] can be explained by using
the relative-velocity-based approach.

4. Optics

The field velocities (VE , VB) introduce extra terms
in Maxwell’s equations that are removed to retain
co-ordinate invariance. It is shown that the proposed
model captures relativistic effects in: (i) the propaga-
tion speed of light; (ii) the stellar aberration; (iii) the
transverse Doppler effect; and (iv) the convection of
light by moving media.

4.1. Relative-Velocity in Maxwell’s Equations

Consider an electric field E and a magnetic field B,
which are stationary with respect to an inertial
frame O1 and satisfy Maxwell’s equations in free space
without charges:

×E = −∂B
∂t

, (65)

×B = εµ
∂E
∂t

. (66)

Consider the same equations in a different inertial
frame O2 in which the inertial frame O1 is moving with
constant velocity V . The Galilean transformation be-
tween the two frames

X2 = X1 +Vt
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gives the following relations at any location [X1 in
frame O1 or (X2 −Vt) in frame O2]:

Frame O1 Frame O2 (67)

E(a,b), B(a,b), E(a,b), B(a,b), (68)

a = X1, b = t, a = X2 −Vt, b = t, (69)

VE = 0, VB = 0, VE = V, VB = V, (70)

∂E
∂t

=
∂E
∂b

,
∂E
∂t

=
∂E
∂a

(−VE)+
∂E
∂b

(71)

= −(VE · )E +
∂E
∂b

, (72)

∂E
∂X1

=
∂E
∂a

,
∂E
∂X2

=
∂E
∂a

. (73)

Since the spatial gradient is invariant with frame,
in (73), the curl – e. g., ×B on the left-hand side
of (66) – is also frame-invariant. However, the par-
tial time derivative in (72) has an extra term in
frame 2. Therefore, the partial derivative with time,
such as ∂E

∂t
on the right-hand side of (66), has an extra

term −(VE · )E . Hence, adding the term (VE · )E to
Maxwell’s equation (66) will make it frame-invariant
under the relative-velocity-dependent approach; the
modified equation becomes

×B = εµ
(

∂E
∂t

+(VE · )E
)

. (74)

Noting that

dE
dt

=
∂E
∂t

+(VE · )E (75)

and using a similar argument to modify (65), we
obtain the following inertial-frame-invariant form of
Maxwell’s equations with terms that include the field
velocities VE , VB:

×E = −dB
dt

, (76)

×B = εµ
dE
dt

. (77)

Invariance with Co-Ordinate Change

Electric E and magnetic fields B, with field veloc-
ities VE and VB, respectively, that satisfy Maxwell’s

equations in one reference frame, also satisfy it in an-
other inertial reference frame with a Galilean transfor-
mation of the field velocities. In this sense, the modi-
fied Maxwell’s equations (76) and (77) with the total
time derivatives are invariant to Galilean transforma-
tions between inertial reference frames.

Addition of Current Density

It is noted that a current density of the form

µJ = µε( ·E)VE (78)

can be added to the right-hand side of (77) but is not
needed in the following discussion on optics.

4.2. Propagation Speed of Light

Consider the following two wave equations, which
are considered as disturbances on the nominal electric
field E and magnetic field B, each of which has a field
velocity

VE = VB = V = vzẑ,

with magnitude vz in the ẑ-direction:

E = ex cos(ωt − kz)x̂, (79)

B = by cos(ωt − kz)ŷ. (80)

The terms in the modified Maxwell’s equations (76)
and (77) for the above wave equations are computed:

×B = −byk sin(ωt − kz)x̂, (81)

×E = exk sin(ωt − kz)ŷ, (82)

dB
dt

= [−ω + kvz]by sin(ωt − kz)ŷ, (83)

dE
dt

= [−ω + kvz]ex sin(ωt − kz)x̂. (84)

Substituting (81) – (84) into the modified Maxwell’s
equations (76) and (77) yields

exk = −[−ω + kvz]by, (85)

−byk = εµ [−ω + kvz]ex. (86)

By setting ex = byc and µε = 1
c2 both the equations

reduce to the common expression

ck = (ω − kvz). (87)
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Note that the wave propagation speed Vlight is given
by ω/k; therefore, the light propagation speed (in the
z-direction) is additive, i. e.,

Vlight = ω/k = c + vz. (88)

Thus, the modified Maxwell’s equations allow the
nominal velocity of the field V , in which light is gen-
erated, to be added to the standard velocity of light if
the field is nonmoving – this follows directly from the
invariance of the modified Maxwell’s equations.

It is noted that the Michelson-Morley experiment is
expected to yield the null result with the moving fields
approach because the velocity of light is constant in all
directions with respect to the frame of measurements
(in which light was generated).

4.3. Effect of Star’s Velocity on Aberration

In a reference frame on earth, the velocity of the
earth Ve = veV̂e adds to the velocity of stellar light to
generate the aberration effect, see (88), as in the origi-
nal explanation by Bradley [13]. The angle of the light
direction with respect to earth (θ measured perpendic-
ular to earth’s motion as shown in Fig. 7) is maximum
if the star’s velocity Vs = vsV̂s reduces the nominal light
speed to (c− vs) (if angle θs = 0). Thus, the maximum
change in the light direction with respect to earth is 2θ ,
where

tanθ =
ve

c− vs
. (89)

For small speeds vs and ve the above expression is only
linear in ve (and not linear in vs). It can be approxi-
mated as

θ ≈ ve

c
. (90)

c

vs

+ve

Star

Earth

θ

sθ

Fig. 7. Aberration formula based on relative velocity matches
the classical expression [13].

The effect of the star’s velocity Vs on the aberration ef-
fect (due to earth’s motion) is small if the speed of the
star is small, i. e., vs is much smaller than the nomi-
nal velocity of light c. Therefore, stellar aberration ap-
pears to be independent of the star’s velocity Vs [14]
and appears to only depend on the relative change in
the observer’s velocity [15].

4.4. Transverse Doppler Effect

Consider the Doppler effect due to addition of ve-
locities in different frames. Let light be generated in
frame 1 with the velocity C = cĈ and angle θ1 (in
frame 1). Moreover, in frame 2, the observed velocity
of light is C2 = c2Ĉ2 with angle θ2 as shown in Fig-
ure 8. Furthermore, let frame 1 be moving with the rel-
ative velocity V = vV̂ relative to frame 2.

The magnitude c2 of the observed velocity (at an
angle θ2) can be determined from the law of cosines:

v2 + c2
2 −2vc2 cosθ2 = c2, (91)

which implies that

c2 = vcosθ2 +
√

c2 − v2 sin2 θ2.

Hence, the frequencies f1 and f2 in the two frames are
related by

f2 = f1
c2

c

= f1
vcosθ2 +

√
c2 − v2 sin2 θ2

c

Fig. 8. Relative-velocity approach explains the transverse
Doppler effect: Frame 1, which has the relative velocity V
with respect to frame 2, generates light whose velocity is c in
frame 1. The observed velocity of the light is at an angle θ2
in frame 2.
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=




f1

(
1 +

v
c

)
, if θ2 = 0,

f1

(
1− v

c

)
, if θ2 = π ,

f1

√
1−

(v
c

)2
, if θ2 = π/2.

(92)

The expression (92) for the transverse Doppler ef-
fect, if θ2 = π/2, matches the relativistic expression
(e. g., [16], p. 301).

4.5. Convection of Light in Moving Media

The effect of moving media on the velocity of light
through the media is shown to be similar to Fresnel’s
drag formula without the need for Lorentz contraction
that was developed to explain this effect.

Consider a medium moving with the relative veloc-
ity V = vV̂ in frame 1 as shown in Figure 9. For an
observer O1 in frame 1, the speed of light generated
in frame 1 is c (in vacuum); the goal is to estimate the
effective speed of light ceff,O1 through the moving me-
dia for the same observer (in frame 1). The passage of
light in the moving medium can be differentiated into
two types: (a) the passage of light through particles in
the medium; and (b) passage through vacuum in the
medium – this approach is adapted from the method
by Michelson and Morley [17]. Let the mean length
between particles be L and the mean length of each
particle be αL – these are measured in frame 2 that is
fixed on the moving medium (as shown in Fig. 9). It
is noted that the positive factor α tends to be small,
i. e., the particle length is small when compared to the
distance between particles [17].

Consider an observer O2 in frame 2; let the nominal
speed of light through a particle in the medium be cm
if the relative velocity V is zero. However, due to mo-
tion of the medium, the speed of light (generated in
frame 1) through particles is (cm − v) and through vac-
uum is (c− v) for observer 2. The total velocity is not
a linear summation of the two velocities; the effective

Fig. 9. Relative-velocity approach to model the convec-
tion effect (Fresnel drag) in moving media. In the moving
medium (frame 2) the mean length between particles is L
and the average length of each particle is αL.

speed of light ceff,O2 through the medium (for a fixed
observer in frame O2) is given by

L
ceff,O2

=
αL

cm − v
+

(1−α)L
c− v

, i. e.,

ceff,O2 =
1

α
cm−v + (1−α)

c−v

.
(93)

The nominal speed cnom of the light through the
medium with zero relative velocity is obtained, by set-
ting v = 0 in (93), as

cnom =
1

α
cm

+ (1−α)
c

. (94)

The effective velocity expression in (93) can be ex-
panded in terms of the relative velocity V as (where
the higher-order terms are neglected)

ceff,O2 ≈ cnom +
−1(

α
cm

+ (1−α)
c

)2

(
α
c2

m
+

(1−α)
c2

)
v

= cnom − c2
nom

c2

(
αc2

c2
m

+(1−α)
)

v

= cnom − 1
η2

(
αc2

c2
m

+(1−α)
)

v,

(95)

where η is the medium’s coefficient of refraction. If
α is small, then the expression in (95) can be approxi-
mated by

ceff,O2 ≈ cnom − 1
η2 v. (96)

Rewriting in terms of observer O1 in frame 1, by
adding v to the expression, leads to

ceff,O1 = ceff,O2 + v = cnom − 1
η2 v + v

= cnom +
(

1− 1
η2

)
v,

(97)

which is the same as Fresnel’s expression.

5. Conclusions

We presented a Weber-type, relative-velocity-de-
pendent electromagnetism model. It was shown that
the model: (i) captures relativistic effects in optics and
high-energy particles; and (ii) explains the apparent
discrepancies in experimental energy measurements.



340 S. Devasia · Nonlinear Models for Relativity Effects in Electromagnetism

[1] A. K. T. Assis, Weber’s Electrodynamics, Kluwer Aca-
demic Publishers, Dordrecht 1994.

[2] A. K. T. Assis and H. T. Silva, Pramana – J. Phys. 55,
393 (2000).

[3] J. J. Turin and H. R. Crane, Phys. Rev. 52, 610 (1937).
[4] C. D. Ellis and W. A. Wooster, Proc. R. Soc. London A

117, 109 (1927).
[5] E. Madgwick, Proc. Cambridge Philos. Soc. 23, 982

(1927).
[6] F. A. Scott, Phys. Rev. 48, 391 (1935).
[7] P. C. Ho and M. H. Wang, Chin. J. Phys. 2, 1 (1936).
[8] M. M. Slawsky and H. R. Crane, Phys. Rev. 59, 1203

(1939).
[9] J. R. Richardson and F. N. D. Kurie, Phys. Rev. 50, 999

(1936).

[10] L. H. Martin and A. A. Townsend, Proc. R. Soc. Lon-
don A 170, 190 (1939).

[11] G. J. Neary, Proc. R. Soc. London A 175, 71 (1940).
[12] J. J. Thomson, Philos. Mag. 44, 269 (1897) (reprinted

in: Classical Scientific Papers, Physics, Elsevier, New
York 1964, pp. 77 – 100).

[13] J. Bradley, Philos. Trans. 35, 637 (1727).
[14] K. Brecher, Phys. Rev. Lett. 39, 1051 (1977).
[15] T. R. Phipps, Jr., Am. J. Phys. 57, 549 (1989).
[16] M. Born, Einstein’s Theory of Relativity, revised edi-

tion, Dover Publication, Inc., New York 1962.
[17] A. A. Michelson and E. W. Morley, Am. J. Sci. 31, 377

(1886).


