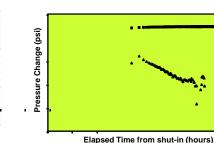


Derivation of Basic Fracture Properties

Contents

- Constraining your fracture model
- Key Fracture Properties
- Defining Fracture Orientation Distribution
- Defining Fracture Size Distribution
- Defining Fracture Intensity
- Defining Fracture Transmissivity

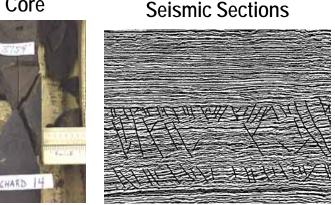
Constraining your Fracture model

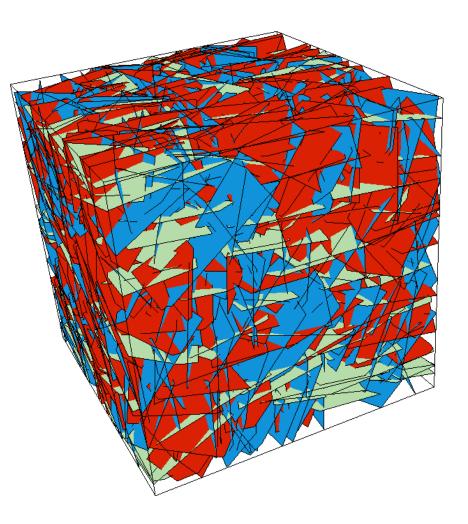

- Fracture models can be constrained by • using a range of data sources/types such as:
 - <u>1D Data</u>. Borehole/scan line Data (used for defining fracture orientation, intensity, aperture, mechanical zonation)
 - <u>2D Data</u>. Face, Bench, Outcrop Mapping, Photogrammetry (used for defining orientation, intensity, termination %, length scale, mechanical zonation)
 - <u>3D Data</u>. Geocellular input from structural restoration, 3D seismic data (e.g. velocity, coherency), curvature analysis etc

© Golder Associates Ltd, 2008

Outcrops

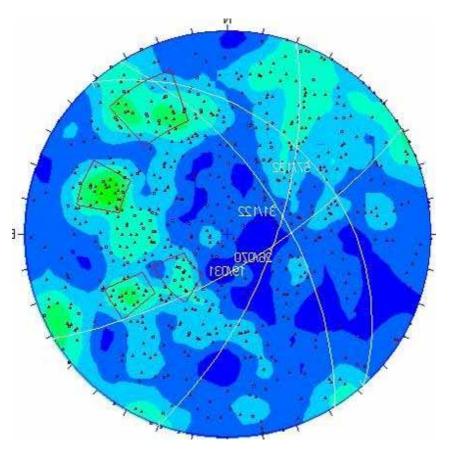
Well Test Data



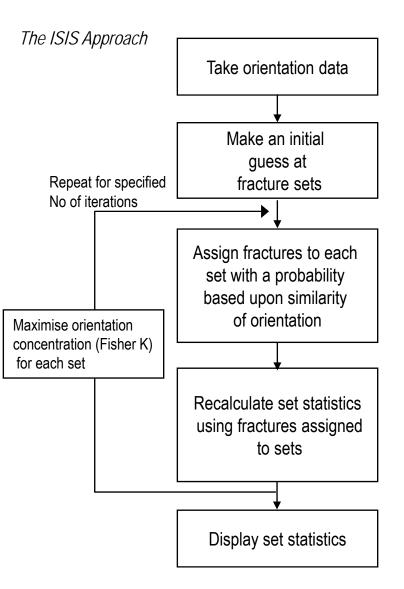

Image Logs

Key properties to be defined

The 3 key properties to be defined for a DFN model are:

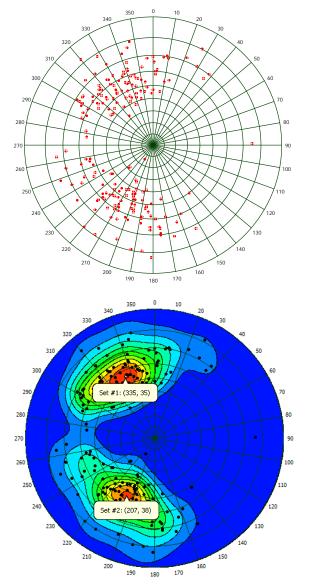

- -Fracture Orientation
- -Fracture Size
- -Fracture Intensity
- –For flow:
 - Fracture Transmissivity
 - Fracture Aperture

Defining Orientation Distributions



- Conventional "DIPS" orientation analysis concentrates upon the main clusters of orientation data rather than the whole distribution
- This can result in as little as 50% of the data being categorised
- DFN based orientation analysis seeks to fully define 100% of the data into their appropriate sets based upon a range of differing orientation distributions

Fracture Set Identification Approach Conder


- Fractures sets are defined as groups of fractures with similar orientations
- FracMan uses an interactive set identification approach (ISIS) to determine the set orientation statistics
- In the future this will include other properties such as infilling, size, termination,....
- ISIS uses an adaptive, probabilistic, pattern recognition algorithm
- ISIS optimises the membership of fracture sets to maximise the concentration for each set

Simple Example

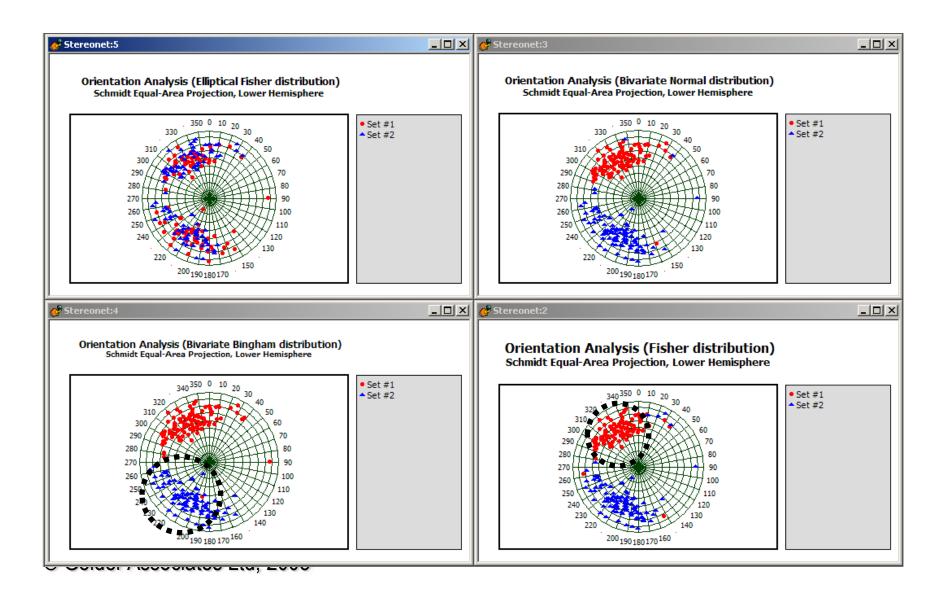
- Consider this example with two clear fracture sets
- Display the data on a stereoplot (e.g Menu>Fracture>Stereoplot)
- Contour the stereoplot to highlight the main fracture clusters
- Left Click on the centres of those clusters – FracMan will add Set No Flags with orientation
- Right click on stereoplot and launch ISIS

ISIS Controls

- 1. Select No of iterations. Recommended No is 50
- 2. Apply Terzaghi correction if required
- 3. Apply a fracture filter if required
- 4. Save the fracture definition for later reuse
- 5. Edit data sources to use
- On the "Set Seeds" tab, view the starting orientations defined from the stereoplot

earch Settings Set Seeds General Iterations: S , T. Correction: Terzaghi Max corrections 7	□] <u>2</u> [№]	ve <u>D</u> efinition (optional) <u>S</u> ave me:	<i>_4.</i>	×		
Data Filter: None		5. sources: Non-parented Objects WellFractureLo 5 iearch Settings Set Seeds Set Name Set Name Set #1 Set #2		Frend (deg)	Mean Plui 34.010907486 38.387094515	27
				Run ISIS	Cancel	Asply

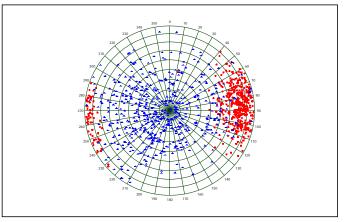
ISIS Statistics



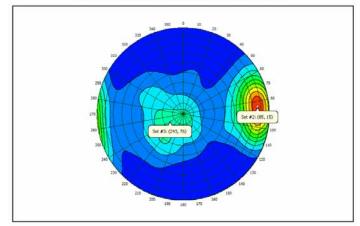
- ISIS automatically calculates the goodness of fit for the identified fracture sets for 4 different orientation distributions:
 - Fisher
 - Bivariate Normal
 - Bivariate Bingham
 - Eliptical Fisher
- Statistics summary show that Set 1 best described with a Fisher distribution and Set 2 with a Bivariate Bingham

	Fisher distribution	Bivariate Normal distribution	Bivariate Bingham distribution	Elliptical Fisher distribution
"Set #1"				
Fracture Count	99	99	104	99
	49.5 %	49.5 %	52 %	49.5 %
Relative Intensity				
Mean Pole	331.000, 32.817	333.707, 30.364	332.282, 33.160	349.702, 9.935
Major Axis	151.000, 57.183	153.588, 57.393	150.548, 56.828	247.491, 50.373
Minor Axis	61.000, 0.000	63.588, 0.000	241.763, 0.794	87.534, 37.880
K1	13.1967	22.9929	-14.8792	6.407
K2		11.4464	-4.66455	3.26833
K12		-0.0863723		
Kolmogorov-Smirnov	0.0644103	0.0944444	0.0842692	0.0827731
K_S Probability	95.371 %	61.9103 %	73.7404 %	77.3963 %
"Set #2"	\smile			
Fracture Count	101	101	96	101
Relative Intensity	50.5 %	50.5 %	48 %	50.5 %
Mean Pole	209.153, 33.703	210.634, 31.416	207.947, 35.593	340.215, 21.447
Major Axis	29.153, 56.297	30.155, 55.191	35.144, 54.192	230.335, 40.881
Minor Axis	299.153, 0.000	300.155, 0.000	300.396, 3.417	90.505, 41.436
K1	9.22459	27.973	-14.418	4.12984
K2	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	14.2317	-4.52339	2.45417
K12		0.00416297		Enon
Kolmogorov-Smirnov	0.114468	0.0709571	0.058	0.135318
K_S Probability	36.4761 %	90.0495 %	98.4389 %	18.6929 %
K_STTOBOBILCY	0011701 70	30.0120 10	20110027 10	10.0525 10
Total Fracture Count	200	200	200	200
Data Pedigree				
Filter	-			
Data Source:	- WellFractureLog Golder1 frac			
Well Log Intervals:	-			
well Log Intervals;	-			

Best Fit Distributions

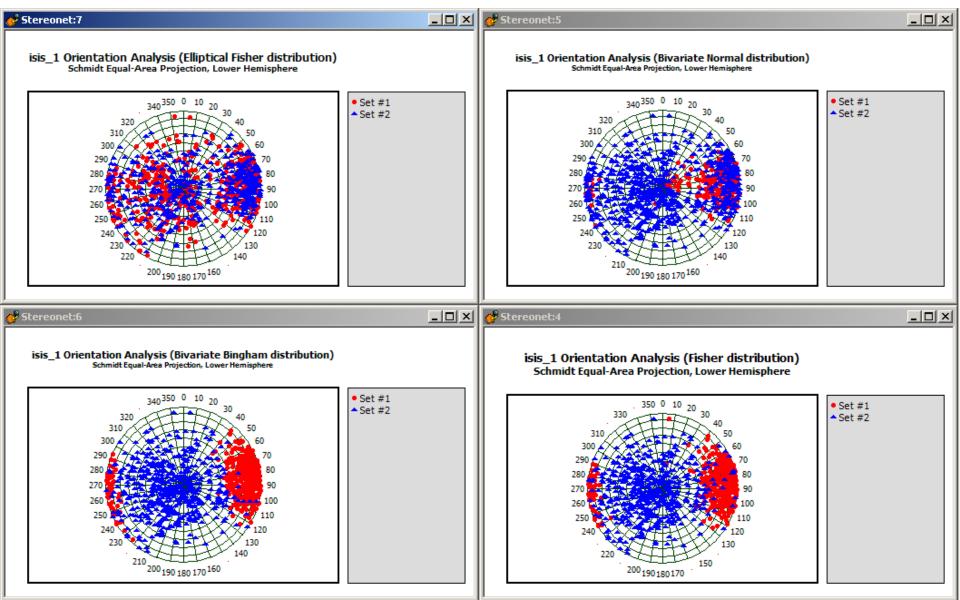


More complicated example



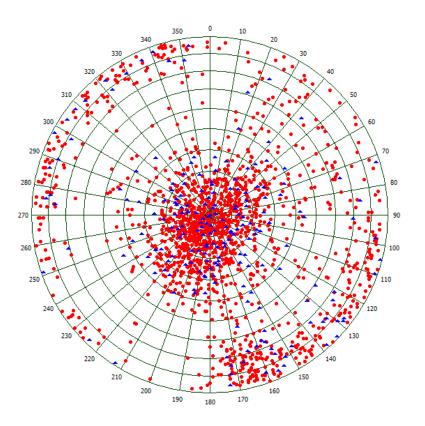
- 2 fracture sets (Fisher Distribution) generated in FracMan with reasonably high dispersion
 - Set 1: 085/15 k=15
 - Set 2: 250/75 k= 5
- Pole centres estimated by clicking on the stereoplot
- ISIS predicts the following distributions:
 - Set 1: 085/15 k=17
 - Set 2: 255/77 k= 4

Orientation Analysis (Fisher distribution) Schmidt Equal-Area Projection, Lower Hemisphere



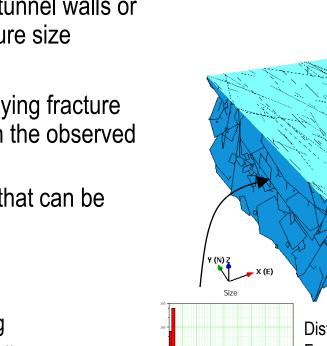
Fracture Pole Orientation Schmidt Equal-Area Projection, Lower Hemisphere

Best fit distributions



Bootstrapping

- When the data are highly dispersed and fracture set definition hard, use *Bootstrapping.*
- This is a statistical method based upon multiple random sampling with replacement from an original sample to create a pseudo-replicate sample of fracture orientations.
- Basically use your data to produce a similar but slightly different fracture population



Red dot – Field Data Blue Triangles – simulation

Defining Size Distributions

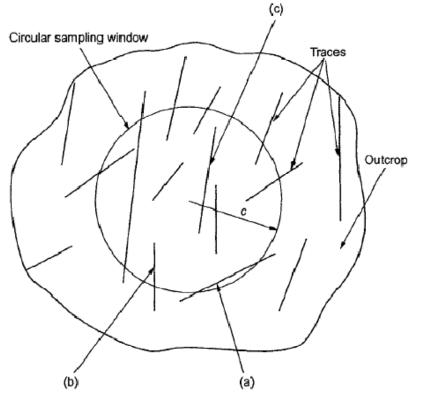
- Defining fracture size has always been problematic
- Fracture traces observed on tunnel walls or benchfaces not actually fracture size
- They are a Cord to a "disc"
- Need to determine the underlying fracture size distribution that results in the observed trace length distribution
- There are a number of ways that can be done:
 - Analytical Method
 - Scaling Laws
 - Manual Simulated Sampling
 - Automated Simulated Sampling

Frequency

Distribution of Fracture radius - implicit

Distribution of observed

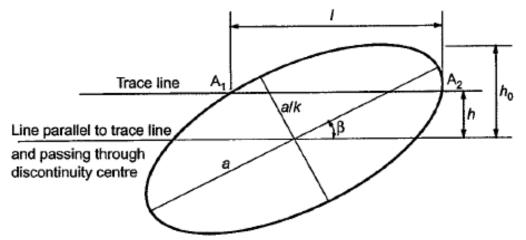
Fracture traces


Trace Lengths

Analytical Method

- Zhang, Einstein, and Dershowitz (2002) derived a method for taking the distribution of trace lengths observed in a circular window and deriving the distribution of fracture radius
- It will work on a bench or tunnel wall but the aspect ratio (i.e. height to width needs to remsin close to 1)
- You need to be aware of the type of censoring that is occuring when measuring trace length

© Golder Associates Ltd, 2008



Censoring Types

- Both ends censored
- One end censored
- Both ends visible

Elliptical Fracture Size and Shape

- Trace Length
 - Mean μ_L
 - Standard Deviation σ_L
- Fracture Radius
 - Mean µ_a
 - Standard Deviation σ_a

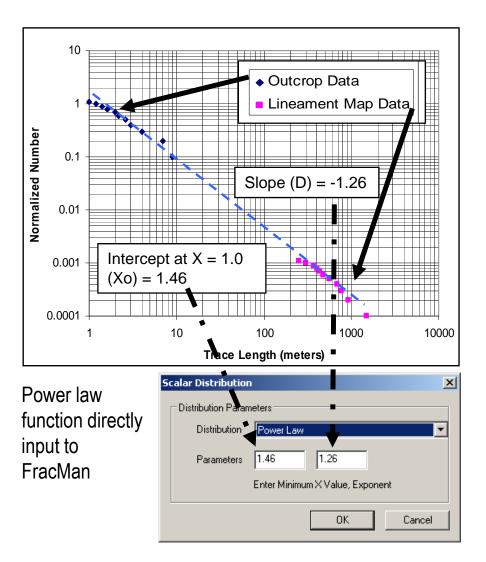
- Elliptical Fractures
 - Ratio of major axis to minor axis k
 - k is one for circular fractures
- Fracture Orientation Relative to trace line
 - Angle β relative to major axis

After Zhalder Associates Ind, Bershowitz (2002)

Convert Trace Length to Radius

Table 1. Expressions for determining μ_a a	nd σ_a	from	μ_I :	and (σ_l
--	---------------	------	-----------	-------	------------

Distribution form of $g(a)$	μ_a	$(\sigma_a)^2$
Log-normal	$\frac{128(\mu_l)^3}{3\pi^3 M[(\mu_l)^2 + (\sigma_l)^2]}$	$\frac{1536\pi^2[(\mu_l)^2 + (\sigma_l)^2](\mu_l)^4 - 128^2(\mu_l)^6}{9\pi^6 M^2[(\mu_l)^2 + (\sigma_l)^2]^2}$
Negative exponential	$\frac{2}{\pi M}\mu_l$	$\left[\frac{2}{\pi M}\mu_l\right]^2$
Gamma	$\frac{64(\mu_l)^2 - 3\pi^2[(\mu_l)^2 + (\sigma_l)^2]}{8\pi M \mu_l}$	$\frac{\{64(\mu_l)^2 - 3\pi^2[(\mu_l)^2 + (\sigma_l)^2]\} \times }{\{3\pi^2[(\mu_l)^2 + (\sigma_l)^2] - 32(\mu_l)^2\}} - \frac{\{3\pi^2[(\mu_l)^2 + (\sigma_l)^2] - 32(\mu_l)^2\}}{64\pi^2 M^2(\mu_l)^2}$


 $M = \frac{\sqrt{\tan^2 \beta + 1}}{\sqrt{k^2 \tan^2 \beta + 1}}$ Assume equal to one for circular fractures

After Zhang, Einstein, and Dershowitz (2002)

Scaling Laws

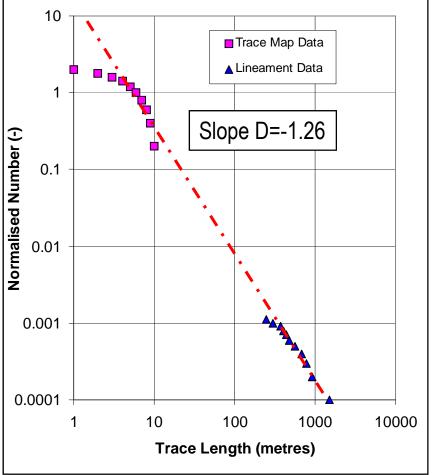
- Field studies have shown that in many rock masses, fractures and faults scale according to power laws
- By taking fault/fracture length data taken at different scales (e.g. regional, mine scale or district faults & fractures), power law function can often be fitted
- The data have to be normalised with respect to the area of the particular sample
- This is not a universal solution and care needed to not mix up data types (e.g. faults and joints)

Scaling Laws - Worked Example Golder

<u>Steps</u>

- Take raw trace length data
- Sort into order from smallest to biggest
- Calculate the cumulative number greater than or equal to the trace
- normalize this cumulative number by the area of the outcrop or map
- Plot normalised number (y axis) against trace length (x axis) for both trace data and map data

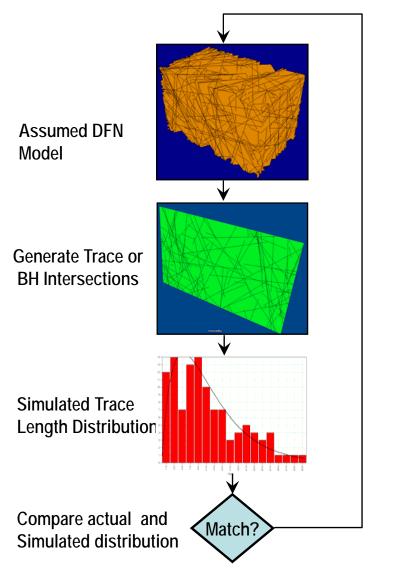
Trace Map Data


1	Sorted	2	Normalised
Trace '	Trace2	Cumulative	Cumulative
Length	Length	Number	Number ₄
1.2	0.6	10	2 -
2.1	1.1	9	1.8
3.5	1.2	8	1.6
0.6	1.2	7	1.4
1.1	2.1	6	1.2
4.5	2.1	5	1
2.1	3.2	4	0.8
3.2	3.5	3	0.6
3.6	3.6	2	0.4
1.2	4.5	1	0.2

m2

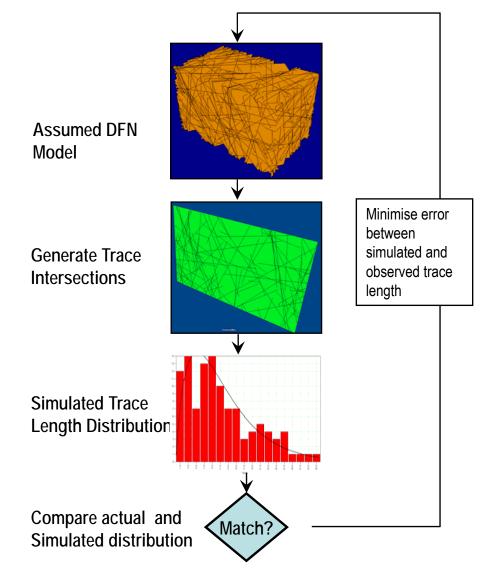
Area = 5

Lineament Data


T	Sorted	Current detine	Normalised
Trace	Trace	Cumulative	Cumulative
Length	Length	Number	Number
250	250	11	0.0011
1500	300	10	0.001
920	370	9	2000.0
300	410	8	3000.0
410	440	7	0.0007
480	480	6	0.0006
690	560	5	0.0005
560	690	4	0.0004
780	780	3	0.0003
440	920	2	0.0002
370	1500	1	0.0001

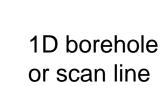
Manual Simulated Sampling

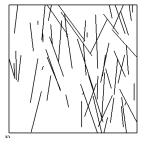
- Make a guess on the type of distribution (e.g. lognormal, exponential), and for the values for the parameters that describe the distribution (e.g. mean size, standard deviation of size)
- Generate a DFN model with these characteristics
- Sample the model with a borehole or plane
- Compare trace length statistics in simulated borehole or plane with measured data
- Change parameters until satisfactory match is achieved



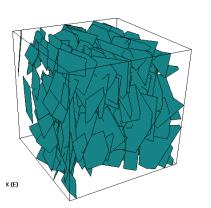
Automated Simulated Sampling

- Coming late 2008 release, automated fracture size derivation
- FracMan will use simulated annealing technique to automatically optimise the match between estimated fracture size distribution and observed trace length distribution
- This will result provide faster and better constrained estimates of the underlying fracture size distribution


Determining Fracture Intensity



- The degree of fracturing means different things to different people
- There are many ways of defining fracture intensity, e.g:
 - Fracture intensity
 - Fracture density
 - Fracture Frequency
- They are all subjected to high degrees of bias and are highly directional

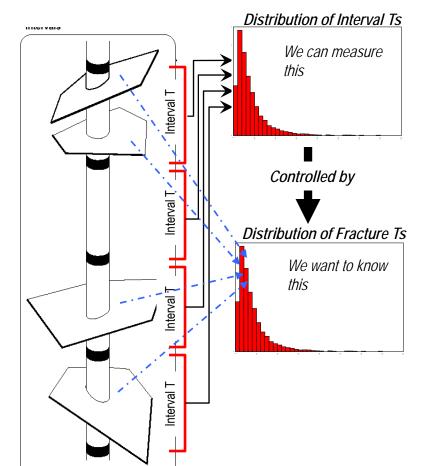

DFN based Fracture Intensity System

- The "Pxy" System of Fracture Intensity
- Two subscripts
 - x denotes sampling space dimension i.e. 1D line, 2D surface, 3D volume)
 - y denotes sample measure dimension (0D count, 1D line, 2D plane, 3D volume)

2D trace map

		Dimension of Measurement				
		0	1	2	3	
Dimensic	1	P10 No of fractures per unit length of borehole	P11 Length of fractures per unit length			Linear Measures
Dimension of Sample	2	P20 No of fractures per unit area	P21 Length of fractures per unit area	P22 Area of fractures per area		Areal Measures
nple	3	P30 No of fractures per unit volume		P32 Area of fractures per unit volume	P33 Volume of fractures per unit volume	Volumetric Measures
		Density		Intensity	Porosity	

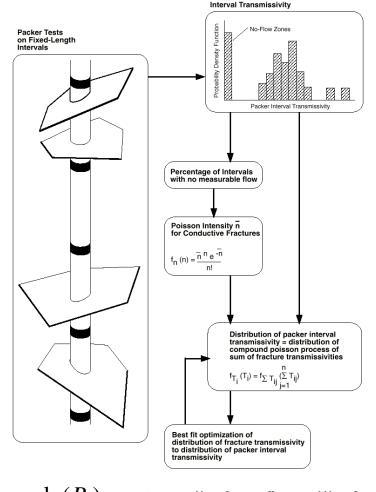
Deriving Intensity inputs



- Determine P32 by simulation
 - Take orientation & size distribution data
 - Simulate a model with an initial P32 value
 - Sample the model in the same way as your data (e.g. borehole or trace plane) and derive P10 or P21 data
 - Repeat for a number of P32 values
- Specify P10 directly
 - FracMan allows you to set the P10 value for a well (or number of wells) and will generate fractures until the P10 value is reached

Deriving fracture transmissivity

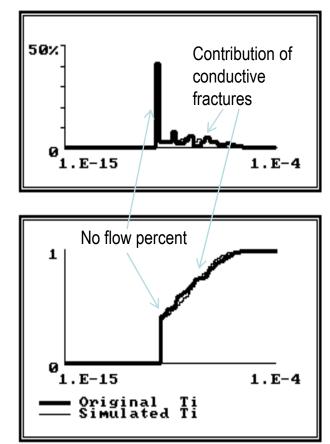
- The problem
 - Fracture transmissivity (T) not actually measured
 - Well tests (either open hole or packer tests) derive the interval transmissivity
- Therefore we need a method that will convert these interval T values into fracture T values
- The solution: the *OXFILET* method (<u>Osnes Extraction of Fixed Interval Length</u> Evaluation of <u>Transmissivity</u>)
- The distribution of packer test T values is controlled by the distribution of fracture T values

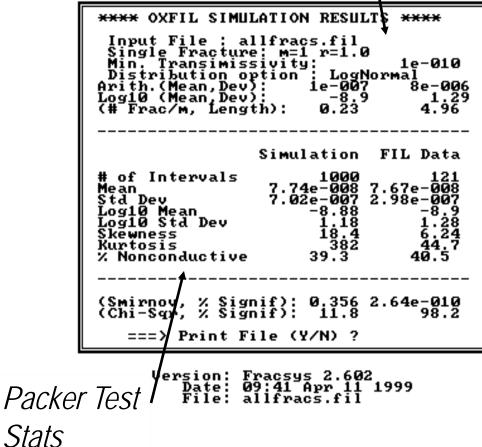

Oxfilet Method

- Analyze distribution of packer test results (Ts) for intensity and transmissivity distribution of single fractures
- The percentage of No-flow tests (or flow below cut-off) gives the conductive fracture frequency (P10 $_{\rm c}$)
- The T distribution of single fractures comes from fitting the T distribution of <u>tests</u> to a trial-and-error guess about the T distribution of <u>single fractures</u>
- Assumes random conductive fractures (Poissonian) and assumed distribution of single fracture Ts
- Most work shows that fracture T is Log Normally distributed

Oxfilet Workflow

- Guess *T* and P_{10} of Fractures •
- Oxfilet generates fractures along hole
- Oxfilet calculates packer test ۲ transmissivities (for either fixed intervals or any combination of arbitrary test-zone lengths)
- Oxfilet compares measured • and simulated packer test transmissivities, adjusting estimated fracture T distribution to optimise match to interval T distribution


 $P_{10} = \frac{-\ln(P_n)}{L}$ P_n - # of no flows/# of tests L - length of test zone


Oxfilet Results

Data and Simulated PDF's

Fracture Network Stats

Quiz 2 – Tuesday Jan 27th 3:35 to 4:00 pm UNDERSTAND THE CONCEPTS OF FRACTURES, FAULTS, AND FOLDS

- Fracture mechanics (Mode I, II, and III and ways to identify them from)
- Measures of Orientation (Strike, Dip, Azimuth, Pole Trend, etc)
- Measures of Intensity (P10, P21, P32)
- Use of Lower Hemisphere Equal Area (Schmidt) Stereonets
- Kinematic Analysis of Rock Slopes
- Mechanical and Hydraulic Properties of Faults and Fractures (including roughness, strength, deformability, aperture, and transmissivity)
- Understanding Fracture "chronology" based on termination modes and shear offsets
- Hydraulic Properties: Hydraulic Conductivity, intrinsic permeability, etc
- *Relationship between in situ stress and faults and fractures*
- Definitions of types of faults (normal, reverse, etc) and types of folds (anticline, syncline) and their characteristics
- Fracture characterization (surface roughness, types of surfaces for different Modes, infillings, etc)
- RESOURCES FOR STUDYING
 - Hoek 4, Watham Chapter 12 (particularly the definition of folds and the various kinds of folds)
 - Wikipedia pages for faults, folds, and horsts (links on our website)
 - Course notes (on our website), particularly:
 - Fracture Characteization
 - Fracture Intensity
 - Fracture Properties
 - Tectonics, Faults, and Stress
 - Stereonet Material