
Continuous Wavelet Transforms – Overview

• look at connection between discrete wavelet transforms (DWTs)
and underlying continuous wavelet transforms (CWTs)

• discuss about one form of analysis (wavelet transform modulus
maxima) that benefits from use of CWT rather than DWT

• close with some brief comments about CWTs that do not easily
fall into ‘differences of weighted averages’ framework
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Definition of Continuous Wavelet Transform: I

• start with basic wavelet ψ(·) satisfying conditions
Z ∞

−∞
ψ2(u) du = 1 and

Z ∞

−∞
ψ(u) du = 0

• use ψτ,t(u) = 1√
τψ

°u−t
τ

¢
to stretch/shrink and relocate ψ(·)
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Definition of Continuous Wavelet Transform: II

• define CWT of ‘signal’ x(·) as

W (τ, t) =

Z ∞

−∞
x(u)ψτ,t(u) du =

1√
τ

Z ∞

−∞
x(u)ψ

µ
u− t

τ

∂
du,

where τ > 0 and t ∈ R ≡ (−∞,∞)
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Example: Mexican Hat CWT of Clock Data
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Connection Between DWT and CWT

• motivated DWT by claiming it could be regarded as subsamples
along slices of CWT at scales τ = τj = 2j−1 (MODWT would
be slices with more subsamples on each scale)

• Q: what precisely is the wavelet ψ(·) corresponding to, say, an
LA(8) DWT?

• once ψ(·) is known, can approximate W (τ, t) for arbitrary τ
using numerical integration
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Scaling Functions: I

• start with a scaling function φ(·) satisfying 3 conditions:

1. integral of φ2(·) is unity:
R∞
−∞ φ2(u) du = 1

2. integral of φ(·) is some positive value:
R∞
−∞ φ(u) du > 0

3. orthogonality to its integer shifts:
Z ∞

−∞
φ(u)φ(u− k) du = 0 when k is a nonzero integer
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Scaling Functions: II

• denote stretched/shrunk and relocated φ(·) by

φj,k(u) =
1√
2jφ

µ
u− k

2j

∂

− differs from ψτ,t(u) = 1√
τψ

°u−t
τ

¢
, but need only deal with

∗ scales τ that are powers of 2 and
∗ shifts t that are integers k ∈ Z (the set of all integers),

so we have simplified notation (avoids subscript with a su-
perscript)

• note that φ0,0(u) = φ(u)

• note also that φ(·) is associated with unit scale
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Scaling Functions: III

• simple example is the Haar scaling function:

φ(H)(u) ≡
(

1, −1 < u ≤ 0;

0, otherwise
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• note that φ(H)(·) satisfies conditions 1, 2 and 3
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Approximation Spaces: I

• let V0 be the space of functions with finite energy that can be
expressed as linear combinations of {φ0,k(·) : k ∈ Z}

• V0 is called an approximation space of scale unity

• let x(·) be a signal with finite energy:

kxk2 ≡
Z ∞

−∞
x2(t) dt < ∞;

as shorthand for the above, we say that x(·) belongs to L2(R)
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Approximation Spaces: II

• can analyze x(·) using {φ0,k(·)}:

v0,k ≡ hx(·), φ0,k(·)i ≡
Z ∞

−∞
x(t)φ0,k(t) dt,

where {v0,k} are called the scaling coefficients for unit scale

− if x(·) ∈ V0, can synthesize x(·) from a linear combination
of functions in {φ0,k(·)} weighted by {v0,k}:

x(t) =
∞X

k=−∞
v0,kφ0,k(t) =

∞X

k=−∞
v0,kφ(t− k)

− if x(·) 6∈ V0, right-hand side can be regarded as an approxi-
mation to x(·) (also called the ‘projection’ of x(·) onto V0)
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Approximation Spaces: III

• let Vj be the space of functions with finite energy that can be
expressed as linear combinations of {φj,k(·) : k ∈ Z};

• Vj is called an approximation space of scale λj = 2j
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Approximation Spaces: IV

• can also analyze x(·) using {φj,k(·)}:

vj,k ≡ hx(·), φj,k(·)i =

Z ∞

−∞
x(t)φj,k(t) dt,

where {vj,k} are called the scaling coefficients for scale λj

− if x(·) ∈ Vj, can synthesize x(·) from {φj,k(·)} and {vj,k}:

x(t) =
∞X

k=−∞
vj,kφj,k(t)

− if x(·) 6∈ Vj, right-hand side is the approximation to x(·)
obtained by projecting it onto Vj
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Approximation Spaces: V

• if j > 0, φj,k(·) is a stretched out version of φ0,k(·):
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• hence
∞X

k=−∞
vj,kφj,k(t) is ‘coarser’ than

∞X

k=−∞
v0,kφ0,k(t)

• can formalize this notion of coarser/finer approximations by
stipulating relationships between the spaces Vj’s

WMTSA: 460–464 XIII–13



Multiresolution Analysis: I

• formal definition of multiresolution analysis (MRA): sequence
of closed subspaces Vj ⊂ L2(R), j ∈ Z, such that:

1. · · · ⊂ V3 ⊂ V2 ⊂ V1 ⊂ V0 ⊂ V−1 ⊂ · · ·
←− coarser finer −→

2. x(·) ∈ V0 if and only if x0,k(·) ∈ V0 also

3. x(·) ∈ V0 if and only if xj,0(·) ∈ Vj also

4. following two technical conditions hold:
[

j∈Z
Vj = L2(R) and

\

j∈Z
Vj = {0}

(here ‘0’ refers to function that is 0 for all t)

5. there exists a scaling function φ(·) ∈ V0 such that {φ0,k(·) :
k ∈ Z} forms an orthonormal basis for V0
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Multiresolution Analysis: II

• let’s illustrate these ideas using the Haar scaling function:
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Approximation of Finite Energy Signals: I

• suppose x(·) ∈ V0; i.e., x(·) is signal of scale λ0 = 1

• can write

x(t) =
∞X

k=−∞
v0,kφ0,k(t) with v0,k ≡ hx(·), φ0,k(·)i

• can approximate x(·) by projecting it onto coarser V1 ⊂ V0

• this approximation is given by

s1(t) ≡
∞X

k=−∞
hx(·), φ1,k(·)iφ1,k(t) =

∞X

k=−∞
v1,kφ1,k(t)

(its DWT analog is the first level smooth S1)
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Approximation of Finite Energy Signals: II

• an easy exercise shows that {v0,k} and {v1,k} are related by

v1,k =
∞X

l=−∞
glv0,2k−l,

where

gl ≡
Z ∞

−∞
φ(u + l)

φ(u2)
√

2
du;

i.e., gl = hφ0,−l(·), φ1,0(·)i
• thus: filter {v0,k} and downsample to get {v1,k}!!!
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Approximation of Finite Energy Signals: III

• Haar scaling function example:

gl =

Z ∞

−∞
φ(u + l)

φ(u2)
√

2
du =

1√
2

Z 0

−2
φ(u + l) du

since φ(u2) 6= 0 for −1 < u/2 ≤ 0, i.e., −2 < u ≤ 0

• since φ(u + l) 6= 0 for −1 < u + l ≤ 0, i.e., −1− l < u ≤ −l,
obtain

gl =

(
1/
√

2, l = 0, 1;

0, otherwise,

in agreement with the Haar scaling filter introduced earlier
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Approximation of Finite Energy Signals: IV

• more generally, can approximate x(·) by projecting it onto Vj:

sj(t) ≡
∞X

k=−∞
hx(·), φj,k(·)iφj,k(t) =

∞X

k=−∞
vj,kφj,k(t)

where

vj,k =
∞X

l=−∞
glvj−1,2k−l

(the DWT analog of sj(·) is the jth level smooth Sj)

• compare the above with a very similar equation relating the
DWT scaling coefficients for levels j − 1 and j:

Vj,t =
L−1X

l=0

glVj−1,2t+1−l mod N/2j−1,

where we defined V0,t to be equal Xt

WMTSA: 462–464 XIII–19



Approximation of Finite Energy Signals: V

• schemes quite similar if we equate v0,k with Xk

• note that

v0,k =

Z ∞

−∞
x(t)φ0,k(t) dt,

for which we would need to know x(t) for all t

• usually we just have Xk = x(k), and we get the DWT by

− replacing projections v0,k by the samples Xk

− making a periodic extension

• other initialization schemes possible (e.g., estimate v0,k using
samples Xk with quadrature formulae)
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Relating Scaling Functions to Filters: I

• since V0 ⊂ V−1 and since φ(·) ∈ V0, it follows that φ(·) ∈ V−1,
so we can write

φ(t) =
∞X

l=−∞
hφ(·), φ−1,l(·)iφ−1,l(t) =

∞X

l=−∞
glφ−1,−l(t)

• yields a ‘2 scale’ relationship

φ(t) =
√

2
∞X

l=−∞
glφ(2t + l)

• let Φ(·) be the Fourier transform of φ(·):

Φ(f) ≡
Z ∞

−∞
φ(t)e−i2πft dt
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Relating Scaling Functions to Filters: II

• can use the 2 scale relationship to solve for Φ(·) (and hence
φ(·)) in terms of the discrete Fourier transform G(·) of {gl}:

Φ(−f) =
∞Y

m=1

G( f
2m)
√

2
;

i.e., knowing {gl} is equivalent to knowing the scaling function

• taking the FT of the above and recalling that the DFT of the
jth level equivalent scaling filter {gj,l} takes the form

j−1Y

l=0

G(2lf)

leads us to the connection

φ(− l
2j) ≈ 2j/2gj,l,

with the approximation getting better and better as j increases
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Relating Scaling Functions to Filters: III

• specialize to Daubechies scaling filters {gl}
− {gl} has finite width L; i.e., gl = 0 for l < 0 or l ≥ L

− implies φ(t) = 0 for t 6∈ (−L + 1, 0]

• comparison of {gj,l} and φ( l
2j) for D(4)

{gj,l} φ(·)

j

2

4

6

8

3 · 2j 2 · 2j 2j 0 −3 −2 −1 0
l t

− note: can actually compute φ( l
2j) exactly !
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Wavelet Functions and Detail Spaces: I

• let Vj, j ∈ Z, be an MRA (in particular, V0 ⊂ V−1)

• let W0 ⊂ V−1 be the orthogonal complement of V0 in V−1; i.e.,
if ϕ(·) ∈ W0, then ϕ(·) ∈ V−1 but

hϕ(·), x(·)i = 0

for any x(·) ∈ V0

• by definition can write

V−1 = V0 ⊕W0;

i.e., V−1 is direct sum of V0 and W0 (meaning that any element
in V−1 is the sum of 2 orthogonal functions, one from V0, and
the other from W0)
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Wavelet Functions and Detail Spaces: II

• examples of functions in Haar-based V0, W0 and V−1

V0 W0 V−12

0

−2
−8 0 8−8 0 8−8 0 8

t t t

• in general Vj ⊂ Vj−1 and Wj ⊂ Vj−1 is the orthogonal com-
plement in Vj−1 of Vj:

Vj = Vj+1 ⊕Wj+1

• Wj is called the detail space for scale τj = 2j−1, (the functions
in Wj are analogous to the jth level DWT details Dj)
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Wavelet Functions and Detail Spaces: III

• define wavelet function

ψ(t) ≡
√

2
∞X

l=−∞
hlφ(2t + l), where hl ≡ (−1)lg1−l−L

• can argue that {ψ0,m(·) : m ∈ Z} forms orthonormal basis for
detail space W0, and, in general, {ψj,m(·)} forms orthonormal
basis for Wj
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Wavelet Functions and Detail Spaces: IV

• examples of basis functions and of functions in W1, W0 and
W−1 for Haar case
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Wavelet Functions and Detail Spaces: V

• projections of x(·) onto space Wj give us the difference between
the successive approximations sj−1(·) and sj(·)

• construction emphasizes that wavelets are the connection be-
tween adjacent approximations in an MRA

• consistent with DWT where Dj = Sj−1 − Sj follows from

X =
jX

k=1

Dk + Sj and X =
j−1X

k=1

Dk + Sj−1
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Relating Wavelet Functions to Filters

• can argue that the wavelet function ψ(·) is related to the jth
level equivalent wavelet filter {hj,l} via ψ(− l

2j) ≈ 2j/2hj,l,
with the approximation improving as j increases

• comparison of {hj,l} and ψ( l
2j) for D(4)

{hj,l} ψ(·)

j

2

4

6

8

3 · 2j 2 · 2j 2j 0 −3 −2 −1 0
l t
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Evaluating CWT at an Arbitrary Scale τ : I

• could in principle compute a Daubechies CWT at any desired
scale τ (i.e., not just τj = 2j)

• to do so, start by computing the jth level equivalent filter {hj,l}
for some large j

• use the relationship

ψ( l
2j) ≈ 2j/2hj,−l

and an interpolation scheme to approximate ψ(·) over the in-
terval (−L + 1, 0] (it is zero outside of this interval)
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Evaluating CWT at an Arbitrary Scale τ : II

• given x(·), use the approximation to ψ(·) to evaluate

W (τ, t) =

Z ∞

−∞
x(u)ψτ,t(u) du =

1√
τ

Z ∞

−∞
x(u)ψ

µ
u− t

τ

∂
du

=
√

τ

Z 0

−L+1
x(τu + t)ψ(u) du

using a numerical integration scheme

• note that Haar wavelet is easy to adjust to an arbitrary scale
since it can be expressed simply in closed form
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Analysis of Singularites Using the CWT: I

• have argued that the DWT is usually an adequate summary
of the information in the CWT, but there are some analysis
techniques for which use of the full CWT is helpful

• consider a signal with a cusp at t = t0: x(t) = a + b|t− t0|α

α = 0.1 α = 0.2 α = 0.41

0
0 1 0 1 0 1

t t t

• degree of ‘cuspiness’ might characterize, e.g., ECG data
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Analysis of Singularites Using the CWT: II

• since ψ(·) must integrate to zero, we have (letting v = (u −
t0)/τ )

W (τ, t0) =
b√
τ

Z ∞

−∞
|u− t0|αψ

µ
u− t0

τ

∂
du

=
b√
τ

Z ∞

−∞
|vτ |αψ(v) dv = Cτα−1

2,

where C 6= 0 for a suitably chosen wavelet (e.g., Mexican hat
wavelet or Daubechies wavelet associated with L ≥ 4)

• plot of log |W (τ, t0)| versus log τ should be linear with a slope
of α− 1

2, i.e., related to degree of cusp
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Analysis of Singularities Using the CWT: III

• for fixed τ , |W (τ, t)| has its maximum value at t = t0, so can
identify location and determine nature of cusp by searching for
the wavelet transform modulus maxima (WTMM)

• in applications, presence of noise and other components can
perturb maxima away from t0, so need to track through CWT
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Morlet Wavelet: I

• in one of the first article on wavelets, Goupillaud, Grossmann
and Morlet (1984) introduced

ψ(u) = Ce−iω0u
≥
e−u2/2 −

√
2e−ω2

0/4e−u2
¥

,

where C and ω0 are positive constants

• ψ(·) is complex-valued, but, like real-valued wavelets, ψ(·) in-
tegrates to zero and, if C is chosen properly, satisfies a unit
energy condition (now taken to be

R
|ψ(u)|2 du = 1)

• as ω0 increases, the second term in the parentheses comes negli-
gible, yielding an approximation known as the Morlet wavelet:

ψ(u) ≈ ψ
(M)
ω0 (u) ≡ π−1/4e−iω0ue−u2/2

(strictly speaking, ψ
(M)
ω0 (·) is not a wavelet because it doesn’t

integrate to zero exactly, but it does so approximationly)
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Morlet Wavelet: II

• here are three Morlet wavelets (real/imaginary components given
by thick/thin curves)
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• does not yield a CWT that is easily interpreted as changes in
weighted averages, but rather is a localized Fourier analysis
(with ω0 controlling the number of local cycles)
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