
Wavelet-Based Analysis and Synthesis

of Long Memory Processes

• DWT well-suited for long memory processes (LMPs)

• basic idea: DWT approximately decorrelates LMPs

• on synthesis side, leads to DWT-based simulation of LMPs

• on analysis side, leads to wavelet-based maximum likelihood
and least squares estimators for LMP parameters, along with a
test for homogeneity of variance
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Wavelets and Long Memory Processes: I

• wavelet filters are approximate band-pass filters, with nominal
pass-bands [1/2j+1, 1/2j] (called jth ‘octave band’)

• suppose {Xt} has SX(·) as its spectral density function (SDF)

• statistical properties of {Wj,t} are simple if SX(·) has simple
structure within jth octave band

• example: fractionally di↵erenced (FD) process

(1�B)�Xt = "t,

(where B is the backward shift operator such that (1�B)Xt =
Xt �Xt�1) having SDF

SX(f) = �2
"/[4 sin2(⇡f)]�
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Wavelets and Long Memory Processes: II

• FD process controlled by two parameters: � and �2
"

• for small f , have SX(f) ⇡ C|f |�2�; i.e., a power law

• log(SX(f)) vs. log(f) is approximately linear with slope �2�

• for large ⌧j, the wavelet variance at scale ⌧j, namely ⌫2
X(⌧j),

satisfies ⌫2
X(⌧j) ⇡ C0⌧2��1

j

• log (⌫2
X(⌧j)) vs. log (⌧j) is approximately linear, slope 2� � 1

• approximately ‘self-similar’ (or ‘fractal’)

• stationary ‘long memory’ process (LMP) if 0 < � < 1/2: cor-
relation between Xt and Xt+⌧ dies down slowly as ⌧ increases
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Wavelets and Long Memory Processes: III

• power law model ubiquitous in physical sciences

� voltage fluctuations across cell membranes

� density fluctuations in hour glass

� tra�c fluctuations on Japanese expressway

� impedance fluctuations in geophysical borehole

� fluctuations in the rotation of the earth

� X-ray time variability of galaxies

• DWT well-suited to study FD process and other LMPs

� ‘self-similar’ filters used on ‘self-similar’ processes

� key idea: DWT approximately decorrelates LMPs
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DWT of a Long Memory Process: I
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• realization of an FD(0.4) time series X along with its sample
autocorrelation sequence (ACS): for ⌧ � 0,

⇢̂X,⌧ ⌘
1
N

PN�1�⌧
t=0 XtXt+⌧

1
N

PN�1
t=0 X2

t

=

PN�1�⌧
t=0 XtXt+⌧PN�1

t=0 X2
t

,

which assumes that FD(0.4) is known to have zero mean

• note that ACS dies down slowly (typical for LMPs)
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DWT of a Long Memory Process: II
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• LA(8) DWT of FD(0.4) series and sample ACSs for each Wj
& V7, along with 95% confidence intervals for white noise
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MODWT of a Long Memory Process
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• LA(8) MODWT of FD(0.4) series & sample ACSs for MODWT
coe�cients, none of which are approximately uncorrelated
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DWT of a Long Memory Process: III

• in contrast to X, ACSs for Wj consistent with white noise

• variance of Wj increases with j – to see why, note that

var {Wj,t} =

Z 1/2

�1/2
Hj(f)SX(f) df

⇡ 2

Z 1/2j

1/2j+1
2jSX(f) df

=
1

1
2j � 1

2j+1

Z 1/2j

1/2j+1
SX(f) df ⌘ Cj,

where Cj is average value of SX(·) over [1/2j+1, 1/2j]

• for FD process, can argue that Cj ⇡ SX(1/2j+1
2), where

1/2j+1
2 is midpoint of interval [1/2j+1, 1/2j]
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DWT of a Long Memory Process: IV
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• plot shows cvar {Wj,t} (circles) & SX(1/2j+1
2) (curve) versus

1/2j+1
2, along with 95% confidence intervals for var {Wj,t}

• observed cvar {Wj,t} agrees well with theoretical var {Wj,t}
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Correlations Within a Scale and Between Two Scales

• let {sX,⌧} denote autocovariance sequence (ACVS) for {Xt};
i.e., sX,⌧ = cov {Xt,Xt+⌧}

• let {hj,l} denote equivalent wavelet filter for jth level

• to quantify decorrelation, can write

cov {Wj,t,Wj0,t0} =

Lj�1X
l=0

Lj0�1X
l0=0

hj,lhj0,l0sX,2j(t+1)�l�2j0(t0+1)+l0,

from which we can get ACVS (and hence within-scale correla-
tions) for {Wj,t}:

cov {Wj,t,Wj,t+⌧} =

Lj�1X
m=�(Lj�1)

sX,2j⌧+m

Lj�|m|�1X
l=0

hj,lhj,l+|m|
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Correlations Within a Scale
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• correlations between Wj,t and Wj,t+⌧ for an FD(0.4) process

• correlations within scale are slightly smaller for Haar

• maximum magnitude of correlation is less than 0.2
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Correlations Between Two Scales: I
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• correlation between Haar wavelet coe�cients Wj,t and Wj0,t0
from FD(0.4) process and for levels satisfying 1  j < j0  4
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Correlations Between Two Scales: II
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• same as before, but now for LA(8) wavelet coe�cients

• correlations between scales decrease as L increases
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Wavelet Domain Description of FD Process

• DWT acts as a decorrelating transform for FD process
(also true for fractional Gaussian noise, pure power law etc.)

• wavelet domain description is simple

• wavelet coe�cients within a given scale are approximately un-
correlated (refinement: assume 1st order autoregressive model)

• wavelet coe�cients have a scale-dependent variance, but these
variances are controlled by the two FD parameters (� and �2

")

• wavelet coe�cients between scales are also approximately un-
correlated (approximation improves as filter width L increases)
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DWT-Based Simulation

• properties of DWT of FD processes lead to schemes for simu-
lating time series X ⌘ [X0, . . . , XN�1]

T with zero mean and
with a multivariate Gaussian distribution

• with N = 2J , recall that X = WTW, where

W =

2
666666664

W1
W2

...
Wj

...
WJ
VJ

3
777777775
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Basic DWT-Based Simulation Scheme

• assume W to contain N uncorrelated Gaussian (normal) ran-
dom variables (RVs) with zero mean

• assume Wj to have variance Cj ⇡ SX(1/2j+1
2)

• assume single RV in VJ to have variance CJ+1 (see textbook
for details about how to set CJ+1)

• approximate FD time series X via Y ⌘WT⇤1/2Z, where

� ⇤1/2 is N ⇥N diagonal matrix with diagonal elements

C
1/2
1 , . . . , C

1/2
1| {z }

N
2 of these

, C
1/2
2 , . . . , C

1/2
2| {z }

N
4 of these

, . . . , C
1/2
J�1, C

1/2
J�1| {z }

2 of these

, C
1/2
J , C

1/2
J+1

� Z is vector of deviations drawn from a Gaussian distribution
with zero mean and unit variance
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Refinements to Basic Scheme: I

• covariance matrix for approximation Y does not correspond to
that of a stationary process

• recall W treats X as if it were circular

• let T be N ⇥N ‘circular shift’ matrix:

T

2
664

Y0
Y1
Y2
Y3

3
775 =

2
664

Y1
Y2
Y3
Y0

3
775 ; T 2

2
664

Y0
Y1
Y2
Y3

3
775 =

2
664

Y2
Y3
Y0
Y1

3
775 ; etc.

• let  be uniformily distributed over 0, . . . , N � 1

• define eY ⌘ T Y

• eY is stationary with ACVS given by, say, seY ,⌧
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Refinements to Basic Scheme: II

• Q: how well does {seY ,⌧
} match {sX,⌧}?

• due to circularity, find that seY ,N�⌧
= seY ,⌧

for ⌧ = 1, . . . , N/2

• implies seY ,⌧
cannot approximate sX,⌧ well for ⌧ close to N

• can patch up by simulating eY with M > N elements and then
extracting first N deviates (M = 4N works well)
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Refinements to Basic Scheme: III

M = N M = 2N M = 4N2.5
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• plot shows true ACVS {sX,⌧} (thick curves) for FD(0.4) process
and wavelet-based approximate ACVSs {seY ,⌧

} (thin curves)

based on an LA(8) DWT in which an N = 64 series is ex-
tracted from M = N , M = 2N and M = 4N series
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Example and Some Notes
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• simulated FD(0.4) series (LA(8), N = 1024 and M = 4N)

• notes:

� can form realizations faster than best exact method

� e�cient ‘real-time’ simulation of extremely long time series
(e.g, N = 230 = 1, 073, 741, 824 or even longer)

� e↵ect of random circular shifting is to render time series non-
Gaussian (a Gaussian mixture model)
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MLEs of FD Parameters: I

• FD process depends on 2 parameters, namely, � and �2
":

SX(f) =
�2
"

[4 sin2(⇡f)]�

• given X = [X0, X1, . . . , XN�1]
T with N = 2J , suppose we

want to estimate � and �2
"

• if X is stationary (i.e. � < 1/2) and multivariate Gaussian,
can use the maximum likelihood (ML) method
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MLEs of FD Parameters: II

• definition of Gaussian likelihood function:

L(δ, σ2
ε | X) ≡ 1

(2π)N/2|ΣX|1/2
e−XTΣ−1

X X/2

where ΣX is covariance matrix for X, with (s, t)th element
given by sX,s−t, and |ΣX|& Σ−1

X denote determinant & inverse

•ML estimators of δ and σ2
ε maximize L(δ, σ2

ε | X) or, equiva-
lently, minimize

−2 log (L(δ, σ2
ε | X)) = N log (2π) + log (|ΣX|) + XTΣ−1

X X

• exact MLEs computationally intensive, mainly because of the
need to deal with |ΣX| and Σ−1

X

• good approximate MLEs of considerable interest
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MLEs of FD Parameters: III

• key ideas behind first wavelet-based approximate MLEs

� have seen that we can approximate FD time series X by
Y = WT⇤1/2Z, where ⇤1/2 is a diagonal matrix, all of
whose diagonal elements are positive

� since covariance matrix for Z is IN , Equation (262c) says
covariance matrix for Y is

WT⇤1/2IN(WT⇤1/2)T = WT⇤1/2⇤1/2W = WT⇤W ⌘ e⌃X,

where ⇤ ⌘ ⇤1/2⇤1/2 is also diagonal

� can consider e⌃X to be an approximation to ⌃X

• leads to approximation of log likelihood:

�2 log (L(�,�2
" | X)) ⇡ N log (2⇡) + log (|e⌃X|) + XT e⌃�1

X X
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MLEs of FD Parameters: IV

• Q: so how does this help us?

� easy to invert e⌃X:

e⌃�1
X =

⇣
WT⇤W

⌘�1
= (W)�1 ⇤�1

⇣
WT

⌘�1
= WT⇤�1W,

where ⇤�1 is another diagonal matrix, leading to

XT e⌃�1
X X = XTWT⇤�1WX = WT⇤�1W

� easy to compute the determinant of e⌃X:

|e⌃X| = |WT⇤W| = |⇤WWT | = |⇤IN | = |⇤|,
and the determinant of a diagonal matrix is just the product
of its diagonal elements
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MLEs of FD Parameters: V

• define the following three functions of �:

C0j(�) ⌘
Z 1/2j

1/2j+1

2j+1

[4 sin2(⇡f)]�
df ⇡

Z 1/2j

1/2j+1

2j+1

[2⇡f ]2�
df

C0J+1(�) ⌘ N�(1� 2�)

�2(1� �)
�

JX
j=1

N

2jC
0
j(�)

�2
"(�) ⌘ 1

N

0
BB@

V 2
J,0

C0J+1(�)
+

JX
j=1

1

C0j(�)

N
2j
�1X

t=0

W 2
j,t

1
CCA
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MLEs of FD Parameters: VI

• wavelet-based approximate MLE �̃ for � is the value that min-
imizes the following function of �:

l̃(� | X) ⌘ N log(�2
"(�)) + log(C0J+1(�)) +

JX
j=1

N

2j log(C0j(�))

• once �̃ has been determined, MLE for �2
" is given by �2

"(�̃)

• computer experiments indicate scheme works quite well
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Other Wavelet-Based Estimators of FD Parameters

• second MLE approach: formulate likelihood directly in terms
of nonboundary wavelet coefficients

− handles stationary or nonstationary FD processes
(i.e., need not assume δ < 1/2)

− handles certain deterministic trends

• alternative to MLE is least square estimator (LSE)

− recall that, for large τ and for β = 2δ − 1, have

log (ν2
X(τj)) ≈ ζ + β log (τj)

− suggests determining δ by regressing log (ν̂2
X(τj)) on log (τj)

over range of τj
− weighted LSE takes into account fact that variance of log (ν̂2

X(τj))
depends upon scale τj (increases as τj increases)
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Homogeneity of Variance: I

• because DWT decorrelates LMPs, nonboundary coe�cients in
Wj should resemble white noise; i.e., cov {Wj,t,Wj,t0} ⇡ 0
when t 6= t0, and var {Wj,t} should not depend upon t

• can test for homogeneity of variance in X using Wj over a
range of levels j

• suppose U0, . . . , UN�1 are independent normal RVs with E{Ut} =
0 and var {Ut} = �2

t

• want to test null hypothesis

H0 : �2
0 = �2

1 = · · · = �2
N�1

• can test H0 versus a variety of alternatives, e.g.,

H1 : �2
0 = · · · = �2

k 6= �2
k+1 = · · · = �2

N�1

using normalized cumulative sum of squares
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Homogeneity of Variance: II

• to define test statistic D, start with

Pk ⌘
Pk

j=0 U2
jPN�1

j=0 U2
j

, k = 0, . . . , N � 2

and then compute D ⌘ max (D+, D�), where

D+ ⌘ max
0kN�2

✓
k + 1

N � 1
� Pk

◆
& D� ⌘ max

0kN�2

✓
Pk �

k

N � 1

◆

• can reject H0 if observed D is ‘too large,’ where ‘too large’ is
quantified by considering distribution of D under H0

• need to find critical value x↵ such that P[D � x↵] = ↵ for,
e.g., ↵ = 0.01, 0.05 or 0.1
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Homogeneity of Variance: III

• once determined, can perform ↵ level test of H0:

� compute D statistic from data U0, . . . , UN�1

� reject H0 at level ↵ if D � x↵

� fail to reject H0 at level ↵ if D < x↵

• can determine critical values x↵ in two ways

�Monte Carlo simulations

� large sample approximation to distribution of D:

P[(N/2)1/2D � x] ⇡ 1 + 2
1X
l=1

(�1)le�2l2x2

(reasonable approximation for N � 128)
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Homogeneity of Variance: IV

• idea: given time series {Xt}, compute D using nonboundary
wavelet coe�cients Wj,t (there are M 0

j ⌘ Nj � L0j of these):

Pk ⌘

Pk
t=L0j

W 2
j,tPNj�1

t=L0j
W 2

j,t

, k = L0j, . . . , Nj � 2

• if null hypothesis rejected at level j, can use nonboundary
MODWT coe�cients to locate change point based on

ePk ⌘
Pk

t=Lj�1
fW 2

j,tPN�1
t=Lj�1

fW 2
j,t

, k = Lj � 1, . . . , N � 2

along with analogs eD+
k and eD�k of D+

k and D�k

WMTSA: 380–381 XII–31



Annual Minima of Nile River
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• left-hand plot: annual minima of Nile River

• new measuring device introduced around year 715

• right: Haar ⌫̂2
X(⌧j) before (x’s) and after (o’s) year 715.5, with

95% confidence intervals based upon �2
⌘3

approximation
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Example – Annual Minima of Nile River: II

l̃(� | X)

�

�100

�300

�500
0.0 0.1 0.2 0.3 0.4 0.5

• based upon last 512 values (years 773 to 1284), plot shows
l̃(� | X) versus � for the first wavelet-based approximate MLE
using the LA(8) wavelet (upper curve) and corresponding curve
for exact MLE (lower)

� wavelet-based approximate MLE is value minimizing upper
curve: �̃

.
= 0.4532

� exact MLE is value minimizing lower curve: �̂
.
= 0.4452
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Example – Annual Minima of Nile River: III
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• using last 512 values again, variance of wavelet coe�cients com-
puted via LA(8) MLEs �̃ and �2

"(�̃) (solid curve) as compared
to sample variances of LA(8) wavelet coe�cients (circles)

• agreement is almost too good to be true!
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Example – Annual Minima of Nile River: IV

• results of testing all Nile River minima for homogeneity of vari-
ance using the Haar wavelet filter with critical values deter-
mined by computer simulations

critical levels
⌧j M 0

j D 10% 5% 1%

1 year 331 0.1559 0.0945 0.1051 0.1262
2 years 165 0.1754 0.1320 0.1469 0.1765
4 years 82 0.1000 0.1855 0.2068 0.2474
8 years 41 0.2313 0.2572 0.2864 0.3436

• can reject null hypothesis of homogeneity of variance at level
of significance 0.05 for scales ⌧1 & ⌧2, but not at larger scales
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Example – Annual Minima of Nile River: V
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• Nile River minima (top plot) along with curves (constructed
per Equation (382)) for scales ⌧1 & ⌧2 (middle & bottom) to
identify change point via time of maximum deviation (vertical
lines denote year 715)
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Summary

• wavelets approximately decorrelate LMPs

• leads to practical and flexible schemes for simulating LMPs

• also leads to schemes for estimating parameters of LMPs

� approximate maximum likelihood estimators (two varieties)

� weighted least squares estimator

• can also devise wavelet-based tests for

� homogeneity of variance

� trends (see Section 9.4 & Craigmile et al., Environmetrics,
15, 313–35, 2004, for details)
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