Wavelet-Based Analysis and Synthesis

of Long Memory Processes

e DWT well-suited for long memory processes (LMPs)
e basic idea: DW'T approximately decorrelates LMPs
e on synthesis side, leads to DW'T-based simulation of LMPs

e on analysis side, leads to wavelet-based maximum likelihood
and least squares estimators for LMP parameters, along with a
test for homogeneity of variance
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Wavelets and Long Memory Processes: 1

e wavelet filters are approximate band-pass filters, with nominal
pass-bands [1/27111/29] (called jth ‘octave band’)

e suppose { Xt} has Sx(+) as its spectral density function (SDF)

e statistical properties of {W;;} are simple if Sx(-) has simple
structure within 7th octave band

e example: fractionally differenced (FD) process
(1—- B)°X; = ¢,

(where B is the backward shift operator such that (1 — B)X; =
Xt — X3_1) having SDF

Sx(f) = oz/[sin’(x ))°
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Wavelets and Long Memory Processes: 11

e ['D process controlled by two parameters: o0 and ag

o for small f, have Sx(f) ~ C|f|~2; ie., a power law

e log(Sx(f)) vs. log(f) is approximately linear with slope —20

e for large 7;, the wavelet variance at scale 7;, namely ug((Tj),
satisfies V%(Tj) ~ (' 7'325_1

e log (Vg(('rj)) vs. log (7;) is approximately linear, slope 20 — 1

e approximately ‘self-similar’ (or ‘fractal’)

e stationary ‘long memory’ process (LMP) if 0 < § < 1/2: cor-
relation between Xy and X4, dies down slowly as 7 increases
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Wavelets and Long Memory Processes: 111

e power law model ubiquitous in physical sciences

— voltage fluctuations across cell membranes

— density fluctuations in hour glass

— traflic fluctuations on Japanese expressway

— impedance fluctuations in geophysical borehole
— fluctuations in the rotation of the earth

— X-ray time variability of galaxies

e DW'T well-suited to study FD process and other LMPs

— ‘self-similar’ filters used on ‘self-similar’ processes

— key idea: DW'T approximately decorrelates LMPs
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DWT of a Long Memory Process: 1
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e realization of an FD(0.4) time series X along with its sample
autocorrelation sequence (ACS): for 7 > 0,

1 1
e =N Z T X Xtyr T X X
X7 N-1+y2 N—1+y2
N Z X t=0 Xt
which assumes that FD(O.4) is known to have zero mean

e note that ACS dies down slowly (typical for LMPs)
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DWT of a Long Memory Process: 11
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e LA(8) DWT of FD(0.4) series and sample ACSs for each W
& V=, along with 95% confidence intervals for white noise
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MODWT of a Long Memory Process
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7 (lag)
e LA(8) MODWT of FD(0.4) series & sample ACSs for MODWT
coefficients, none of which are approximately uncorrelated
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DWT of a Long Memory Process: 111

e in contrast to X, ACss for W ; consistent with white noise

e variance of W increases with j — to see why, note that
1/2

var {W; +} = 1 H;i(f)Sx(f)df

1/2
2!// -~ 2Sx(f)df
1/27+1
! 1/2J

— 7 1 SX<f)deO,

o7 g 12T

where Cj is average value of Sy (-) over [1/2j+1, 1/2j]

Q

1
o for FD process, can argue that C; ~ Sx(1/2/72), where
o1 . .
1/2773 is midpoint of interval [1/2/711/27]
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DWT of a Long Memory Process: 1V
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e plot shows var {W,;} (circles) & Sx(1/ 2J +%) (curve) versus
»!
1/2773, along with 95% confidence intervals for var {IW; s}
e observed var {W;;} agrees well with theoretical var {W; ;}
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Correlations Within a Scale and Between Two Scales

e let {sx ;} denote autocovariance sequence (ACVS) for { X;};
i.e., SX,T — COV {Xt, Xt_|_7-}

o let {h;;} denote equivalent wavelet filter for jth level

e to quantity decorrelation, can write
COV {Wj,t7 Wj’,t’} = S: S: hjalhjlal/SX,Zj(t—l—l)—Z—Qj/(t’—l—l)—i—l”
[=0 ['=0
from which we can get ACVS (and hence within-scale correla-

tions) for {W; ;}:

Lj—l Lj_|m‘_1
cov AW, Wiiir} = Z SX 2ir+m Z 1l )
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Correlations Within a Scale
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e correlations between W ; and W 4 for an FD(0.4) process
e correlations within scale are slightly smaller for Haar

e maximum magnitude of correlation is less than 0.2
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Correlations Between Two Scales: 1
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e correlation between Haar wavelet coefficients W and Wj’,t’
from FD(0.4) process and for levels satisfying 1 < j < j' < 4
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Correlations Between T'wo Scales: 11
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e same as before, but now for LA(8) wavelet coefficients

e correlations between scales decrease as L increases
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Wavelet Domain Description of FD Process

e DWT acts as a decorrelating transtorm for FD process
(also true for fractional Gaussian noise, pure power law etc.)

e wavelet domain description is simple

e wavelet coeflicients within a given scale are approximately un-
correlated (refinement: assume 1st order autoregressive model)

e wavelet coefficients have a scale-dependent variance, but these
variances are controlled by the two FD parameters (6 and o2)

e wavelet coefficients between scales are also approximately un-
correlated (approximation improves as filter width L increases)
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DWT-Based Simulation

e properties of DW'T of FD processes lead to schemes for simu-
lating time series X = [ X, ..., Xy_1]! with zero mean and
with a multivariate Gaussian distribution

o with N = 27 recall that X = W W, where

WMTSA: 355 XII-15



Basic DWT-Based Simulation Scheme

e assume W to contain N uncorrelated Gaussian (normal) ran-
dom variables (RVs) with zero mean

. ]—l—l
e assume W to have variance C; =~ Sx(1/2/72)

e assume single RV in 'V j to have variance Cj . (see textbook
for details about how to set Cjq)

e approximate FD time series X via Y = WIAL 27, where

~AVZis N x N diagonal matrix with diagonal elements

1/2 1/2 1/2 1/2 12 1/2 A1/2 1/2
gl 7"'701 47\02 ,...,02 ,7"'7?J—1>CJ—;7CJ ,CJ+1
% of these % of these 2 of these

— 7, 1s vector of deviations drawn from a Gaussian distribution
with zero mean and unit variance
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Refinements to Basic Scheme: 1

e covariance matrix for approximation Y does not correspond to
that of a stationary process

e recall W treats X as if it were circular

e let 7 be N x N ‘circular shift’ matrix:

Y Y] Y Yo
Yi| | Yo V1| | Y3|
T v | = vy | T vl = v, | ete.
REN Yo REN Ren

e let xk be uniformily distributed over 0,..., N — 1
o define Y = THY
oY is stationary with ACVS given by, say, Sy

WMTSA: 356-357 XII-17



Refinements to Basic Scheme: 11

e (): how well does {33777} match {sx - }7

e due to circularity, find that SV N7 = 57 forr=1,...,N/2

e implies Sg- _ cannot approximate sx  well for 7 close to N

)

e can patch up by simulating Y with M > N elements and then
extracting first N deviates (M = 4N works well)
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Refinements to Basic Scheme: 111

250 M = N M =9N - M = 4N
2.0} ! !
1.5
1.0} I I
0.5 . . . | . . . | . . . |
0 64 0 64 0 64
T T T

e plot shows true ACVS {sx } (thick curves) for FD(0.4) process
and wavelet-based approximate ACVSs {sg _} (thin curves)

based on an LA(8) DWT in which an N = 64 series is ex-
tracted from M = N, M = 2N and M = 4N series
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Example and Some Notes

A T B R
0 256 512 768 1024
t

e simulated FD(0.4) series (LA(8), N = 1024 and M = 4N)

® notes:

— can form realizations faster than best exact method

— efficient ‘real-time’ simulation of extremely long time series
(e.g, N =23V = 1,073, 741,824 or even longer)

— effect of random circular shifting is to render time series non-
Gaussian (a Gaussian mixture model)
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MLEs of FD Parameters: 1

e I'D process depends on 2 parameters, namely, 0 and ag ;

)
Sx(f) =

O¢

4 sin?(7 f)]°

e given X = X, X1, ... ,XN_l]T with N = 27 suppose we
want to estimate ¢ and o2

e if X is stationary (i.e. § < 1/2) and multivariate Gaussian,
can use the maximum likelihood (ML) method

WMTSA: 361 XII-21



MLEs of FD Parameters: 11

e definition of Gaussian likelihood function:

1 Tsy—1
2 _ ~XTy!x /2
L(d,0f | X) = (27T>N/2|Zx|1/26 X

where Yx is covariance matrix for X, with (s,%)th element
given by sx ¢, and |Xx| & Zil denote determinant & inverse

e ML estimators of ¢ and o2 maximize L(J, 02 | X) or, equiva-
lently, minimize

—2log (L(5, 0% | X)) = Nlog (27) + log (|x|) + X' 55X

e exact MLEs computationally intensive, mainly because of the
need to deal with |Xx| and Zil

e cood approximate MLEs of considerable interest

WMTSA: 361-362 XII-22



MLEs of FD Parameters: 111

e key ideas behind first wavelet-based approximate MLESs

— have seen that we can approximate FD time series X by
Y = wipl/ 27, where AY2 s a diagonal matrix, all of
whose diagonal elements are positive

— since covariance matrix for Z is Iy, Equation (262¢) says
covariance matrix for Y is

WAL (WEAYT = WIALZAL2yy = wTaw = 5,
where A = AY/2AL/2 is also diagonal
— can consider Xx to be an approximation to ix

e leads to approximation of log likelihood:

—21log (L(8,02 | X)) = Nlog (27) + log (|Zx|) + XTiilX
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MLEs of FD Parameters: 1V

e (): so how does this help us?

— easy to mvert iX:

—~

Syl = (WTAW)_1 — (W) 1A (WT)_1 —WIA—Iw,
where A1 is another diagonal matrix, leading to
XIS X =X IWIA-wx = wia~iw
— easy to compute the determinant of iX:
x| = WIAW] = [AWWT| = [ALy| = |A]

and the determinant of a diagonal matrix is just the product
of its diagonal elements
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MLEs of FD Parameters: V

e define the following three functions of o:

s = 1/2J 0j+1 1/27 9j+1
j< ) = //2J+1 4 sin?( 7Tf 0 G //QJH 27 f]20 f

ZN /
OJ—|—1<5> = I-Q(l B 5) 270](5)
1
( 2 J 2! \
0‘2 = ! VJ’O E L QE 2
€<5> B N \C&+1<5> —|_j:1 C;(5) t=0 Wj,t)
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MLEs of FD Parameters: VI

e wavelet-based approximate MLE 4 for ¢ is the value that min-
imizes the following function of o:

(6 | X) = N log(c2(5)) + log( Ch.1(8)) + Z—log C’/

e once ¢ has been determined, MLE for o2 is given by o2(0)

e computer experiments indicate scheme works quite well
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Other Wavelet-Based Estimators of FFD Parameters

e second MLE approach: formulate likelihood directly in terms
of nonboundary wavelet coeflicients

— handles stationary or nonstationary FD processes
(i.e., need not assume § < 1/2)

— handles certain deterministic trends
e alternative to MLE is least square estimator (LSE)

— recall that, for large 7 and for § = 20 — 1, have
log (v (7)) = ¢ + flog (1)
— suggests determining ¢ by regressing log (ﬁg((T])) on log (7;)

over range of 7;

— weighted LSE takes into account fact that variance of log (ﬁg((Tj))

depends upon scale 7; (increases as 7; increases)
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Homogeneity of Variance: 1

e because DW'T decorrelates LMPs, nonboundary coefficients in
W should resemble white noise; i.e., cov {Wj,t,Wj’t/} ~ 0
when t # ¢/, and var {W; +} should not depend upon ¢

e can test for homogeneity of variance in X using W, over a
range of levels j

e suppose Uy, . .., Up_q are independent normal RVs with E{U;} =
0 and var {Us} = o7
e want to test null hypothesis
2 2 2
e can test Hy versus a variety of alternatives, e.g..
2 2 2 2
using normalized cumulative sum of squares

WMTSA: 379-380 XII-28



Homogeneity of Variance: 11

e to define test statistic D, start with

k 2

> =0 U;
PkE ]<7—01 ]2, k:O,...,N—Q
SV
and then compute D = max (DT, D7), where
k+1 k
Dt = - & DT = R
OglglgaJ}\{f—Q (N —1 Pk) OS%%_Q (P N — 1)

e can reject Hy if observed D is ‘too large,” where ‘too large’ is
quantified by considering distribution of D under Hy

e need to find critical value z, such that P|D > z,| = « for,
e.g., a = 0.01, 0.05 or 0.1
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Homogeneity of Variance: 111

e once determined, can perform « level test of Hy:

— compute D statistic from data Up, ..., Un_j
— reject Hy at level a if D > x,
— fail to reject Hy at level a it D < 2,

e can determine critical values x, In two ways

— Monte Carlo simulations

— large sample approximation to distribution of D:
O
2,2
P[(N/2)V?D > a] m1+2) (=1)e
[=1
(reasonable approximation for N > 128)
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Homogeneity of Variance: IV

e idea: given time series { X}, compute D using nonboundary
wavelet coefficients W; ; (there are M ]’ = N, — L;- of these):

Zf:L’.W2 ,
P = k=L.... N;—2
N Y ]7 Y ]
Zt L/ W2

e if null hypothesis rejected at level 7, can use nonboundary
MODWT coeflicients to locate change point based on

Y L—1W2
Pr. = k=Lj—1,...,N—=2

2 Y
Zt L. —1Wj,t
along with analogs DZ and 13]; of DZ and D,

WMTSA: 380-381 XII-31



Annual Minima of Nile River
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e left-hand plot: annual minima of Nile River

e new measuring device introduced around year 715

e right: Haar ﬁ%((Tj) before (x’s) and after (o’s) year 715.5, with

95% confidence intervals based upon X7273 approximation
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Example — Annual Minima of Nile River: 11
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e based upon last 512 values (years 773 to 1284), plot shows
[(0 | X) versus ¢ for the first wavelet-based approximate MLE

using the LA(8) wavelet (upper curve) and corresponding curve
for exact MLE (lower)

— wavelet-based approximate MLE is value minimizing upper
curve: 0 = (0.4532

— exact MLE is value minimizing lower curve: o = 0.4452
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Example — Annual Minima of Nile River: 1II
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e using last 512 values again, variance of wavelet coefficients com-
puted via LA(8) MLEs ¢ and ¢2(6) (solid curve) as compared
to sample variances of LA(8) wavelet coefficients (circles)

e agreement is almost too good to be true!
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Example — Annual Minima of Nile River: IV

e results of testing all Nile River minima for homogeneity of vari-
ance using the Haar wavelet filter with critical values deter-
mined by computer simulations

critical levels

o M, D 10% 5% 1%

L year 331 0.1559 0.0945 0.1051 0.1262
2vyears 165 0.1754 0.1320 0.1469  0.1765
4 years 82 0.1000 0.1855 0.2068 0.2474
Syears 41  0.2313  0.2572  0.28064 0.3436

e can reject null hypothesis of homogeneity of variance at level
of significance 0.05 for scales 71 & 7, but not at larger scales
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Example — Annual Minima of Nile River: V
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e Nile River minima (top plot) along with curves (constructed
per Equation (382)) for scales 71 & m (middle & bottom) to
identify change point via time of maximum deviation (vertical
lines denote year 715)
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Summary

e wavelets approximately decorrelate LMPs
e leads to practical and flexible schemes for simulating LMPs
e also leads to schemes for estimating parameters of LMPs

— approximate maximum likelihood estimators (two varieties)

— weighted least squares estimator
e can also devise wavelet-based tests for

— homogeneity of variance

— trends (see Section 9.4 & Craigmile et al., Environmetrics,
15, 313-35, 2004, for details)
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