Wavelet-Based Analysis and Synthesis of Long Memory Processes

- DWT well-suited for long memory processes (LMPs)
- basic idea: DWT approximately decorrelates LMPs
- on synthesis side, leads to DWT-based simulation of LMPs
- on analysis side, leads to wavelet-based maximum likelihood and least squares estimators for LMP parameters, along with a test for homogeneity of variance

Wavelets and Long Memory Processes: I

- wavelet filters are approximate band-pass filters, with nominal pass-bands $[1/2^{j+1}, 1/2^j]$ (called jth 'octave band')
- suppose $\{X_t\}$ has $S_X(\cdot)$ as its spectral density function (SDF)
- statistical properties of $\{W_{j,t}\}$ are simple if $S_X(\cdot)$ has simple structure within jth octave band
- example: fractionally differenced (FD) process

$$(1-B)^{\delta} X_t = \varepsilon_t,$$

(where B is the backward shift operator such that $(1-B)X_t = X_t - X_{t-1}$) having SDF

$$S_X(f) = \sigma_{\varepsilon}^2 / [4\sin^2(\pi f)]^{\delta}$$

WMTSA: 281-284

Wavelets and Long Memory Processes: II

- FD process controlled by two parameters: δ and σ_{ε}^2
- for small f, have $S_X(f) \approx C|f|^{-2\delta}$; i.e., a power law
- $\log(S_X(f))$ vs. $\log(f)$ is approximately linear with slope -2δ
- for large τ_j , the wavelet variance at scale τ_j , namely $\nu_X^2(\tau_j)$, satisfies $\nu_X^2(\tau_j) \approx C' \tau_j^{2\delta 1}$
- $\log(\nu_X^2(\tau_j))$ vs. $\log(\tau_j)$ is approximately linear, slope $2\delta-1$
- approximately 'self-similar' (or 'fractal')
- stationary 'long memory' process (LMP) if $0 < \delta < 1/2$: correlation between X_t and $X_{t+\tau}$ dies down slowly as τ increases

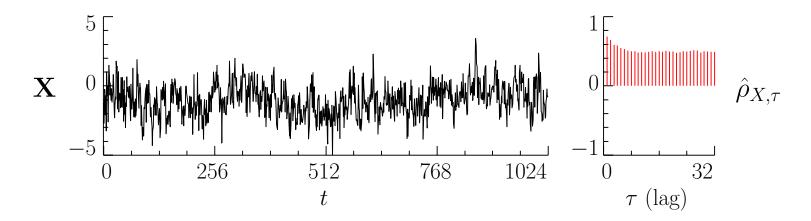
WMTSA: 297, 284

Wavelets and Long Memory Processes: III

- power law model ubiquitous in physical sciences
 - voltage fluctuations across cell membranes
 - density fluctuations in hour glass
 - traffic fluctuations on Japanese expressway
 - impedance fluctuations in geophysical borehole
 - fluctuations in the rotation of the earth
 - X-ray time variability of galaxies
- DWT well-suited to study FD process and other LMPs
 - 'self-similar' filters used on 'self-similar' processes
 - key idea: DWT approximately decorrelates LMPs

WMTSA: 340 XII-4

DWT of a Long Memory Process: I



• realization of an FD(0.4) time series \mathbf{X} along with its sample autocorrelation sequence (ACS): for $\tau \geq 0$,

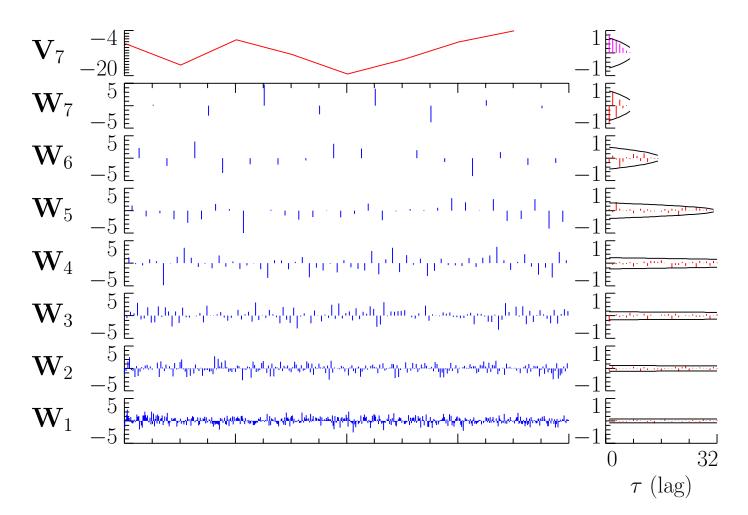
$$\hat{\rho}_{X,\tau} \equiv \frac{\frac{1}{N} \sum_{t=0}^{N-1-\tau} X_t X_{t+\tau}}{\frac{1}{N} \sum_{t=0}^{N-1} X_t^2} = \frac{\sum_{t=0}^{N-1-\tau} X_t X_{t+\tau}}{\sum_{t=0}^{N-1} X_t^2},$$

which assumes that FD(0.4) is known to have zero mean

• note that ACS dies down slowly (typical for LMPs)

WMTSA: 341-342

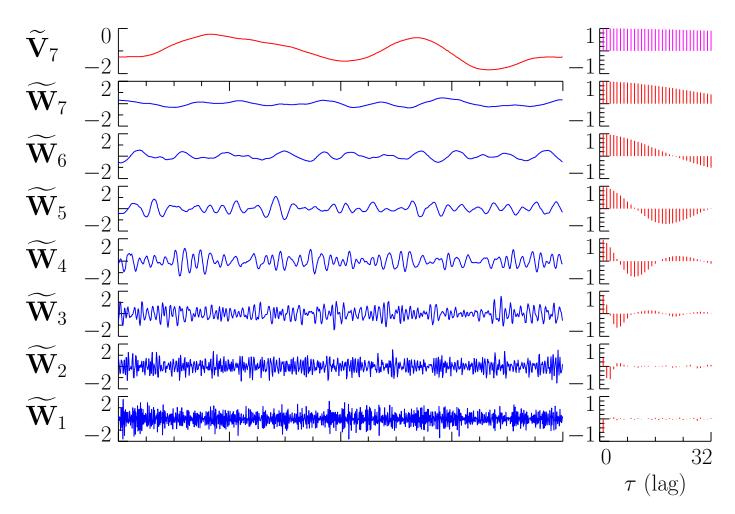
DWT of a Long Memory Process: II



• LA(8) DWT of FD(0.4) series and sample ACSs for each \mathbf{W}_j & \mathbf{V}_7 , along with 95% confidence intervals for white noise

WMTSA: 341–342 XII–6

MODWT of a Long Memory Process



• LA(8) MODWT of FD(0.4) series & sample ACSs for MODWT coefficients, none of which are approximately uncorrelated

DWT of a Long Memory Process: III

- in contrast to \mathbf{X} , ACSs for \mathbf{W}_i consistent with white noise
- variance of \mathbf{W}_j increases with j to see why, note that

$$\operatorname{var} \{W_{j,t}\} = \int_{-1/2}^{1/2} \mathcal{H}_{j}(f) S_{X}(f) df$$

$$\approx 2 \int_{1/2^{j+1}}^{1/2^{j}} 2^{j} S_{X}(f) df$$

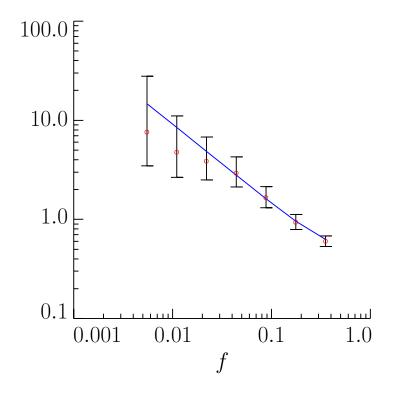
$$= \frac{1}{\frac{1}{2^{j}} - \frac{1}{2^{j+1}}} \int_{1/2^{j+1}}^{1/2^{j}} S_{X}(f) df \equiv C_{j},$$

where C_j is average value of $S_X(\cdot)$ over $[1/2^{j+1}, 1/2^j]$

• for FD process, can argue that $C_j \approx S_X(1/2^{j+\frac{1}{2}})$, where $1/2^{j+\frac{1}{2}}$ is midpoint of interval $[1/2^{j+1},1/2^j]$

WMTSA: 343-344

DWT of a Long Memory Process: IV



- plot shows $\widehat{\text{var}}\{W_{j,t}\}$ (circles) & $S_X(1/2^{j+\frac{1}{2}})$ (curve) versus $1/2^{j+\frac{1}{2}}$, along with 95% confidence intervals for var $\{W_{j,t}\}$
- observed $\widehat{\text{var}} \{W_{j,t}\}$ agrees well with theoretical var $\{W_{j,t}\}$

WMTSA: 344–345 XII–9

Correlations Within a Scale and Between Two Scales

- let $\{s_{X,\tau}\}$ denote autocovariance sequence (ACVS) for $\{X_t\}$; i.e., $s_{X,\tau} = \text{cov } \{X_t, X_{t+\tau}\}$
- let $\{h_{j,l}\}$ denote equivalent wavelet filter for jth level
- to quantify decorrelation, can write

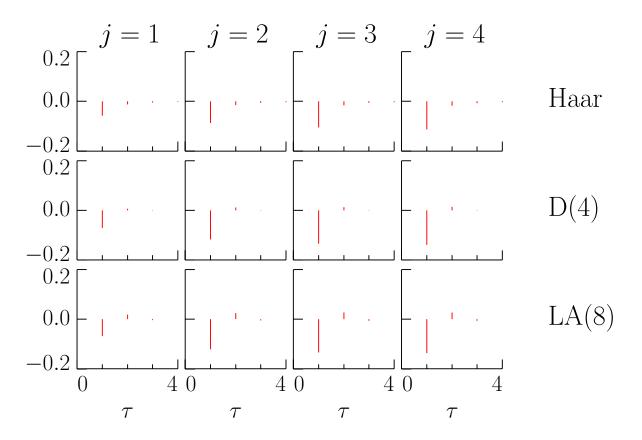
$$\operatorname{cov}\left\{W_{j,t}, W_{j',t'}\right\} = \sum_{l=0}^{L_j-1} \sum_{l'=0}^{L_{j'}-1} h_{j,l} h_{j',l'} s_{X,2^j(t+1)-l-2^{j'}(t'+1)+l'},$$

from which we can get ACVS (and hence within-scale correlations) for $\{W_{i,t}\}$:

$$\operatorname{cov}\left\{W_{j,t},W_{j,t+\tau}\right\} = \sum_{m=-(L_j-1)}^{L_j-1} s_{X,2^j\tau+m} \sum_{l=0}^{L_j-|m|-1} h_{j,l}h_{j,l+|m|}$$

WMTSA: 345 XII-10

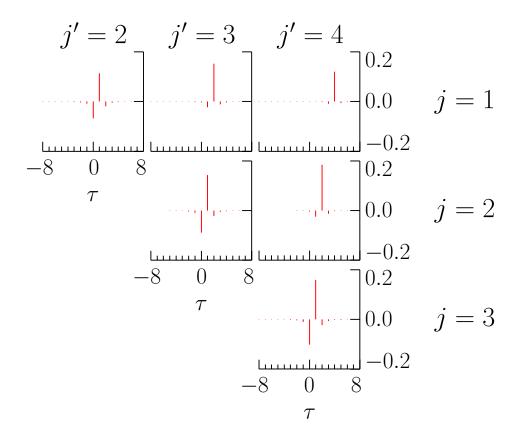
Correlations Within a Scale



- correlations between $W_{j,t}$ and $W_{j,t+\tau}$ for an FD(0.4) process
- correlations within scale are slightly smaller for Haar
- maximum magnitude of correlation is less than 0.2

WMTSA: 345–346 XII–11

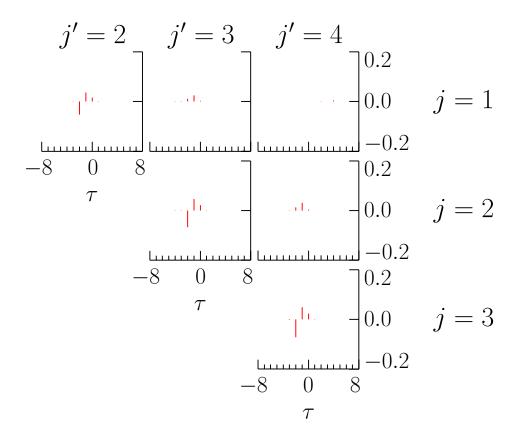
Correlations Between Two Scales: I



• correlation between Haar wavelet coefficients $W_{j,t}$ and $W_{j',t'}$ from FD(0.4) process and for levels satisfying $1 \le j < j' \le 4$

WMTSA: 346–347 XII–12

Correlations Between Two Scales: II



- same as before, but now for LA(8) wavelet coefficients
- \bullet correlations between scales decrease as L increases

WMTSA: 346-347

Wavelet Domain Description of FD Process

- DWT acts as a decorrelating transform for FD process (also true for fractional Gaussian noise, pure power law etc.)
- wavelet domain description is simple
- wavelet coefficients within a given scale are approximately uncorrelated (refinement: assume 1st order autoregressive model)
- wavelet coefficients have a scale-dependent variance, but these variances are controlled by the two FD parameters (δ and σ_{ε}^2)
- wavelet coefficients between scales are also approximately uncorrelated (approximation improves as filter width L increases)

WMTSA: 345–350 XII–14

DWT-Based Simulation

- properties of DWT of FD processes lead to schemes for simulating time series $\mathbf{X} \equiv [X_0, \dots, X_{N-1}]^T$ with zero mean and with a multivariate Gaussian distribution
- with $N=2^J$, recall that $\mathbf{X}=\mathcal{W}^T\mathbf{W}$, where

$$\mathbf{W} = egin{bmatrix} \mathbf{W}_1 \ \mathbf{W}_2 \ dots \ \mathbf{W}_j \ dots \ \mathbf{W}_J \ \mathbf{V}_J \end{bmatrix}$$

WMTSA: 355 XII–15

Basic DWT-Based Simulation Scheme

- assume \mathbf{W} to contain N uncorrelated Gaussian (normal) random variables (RVs) with zero mean
- assume \mathbf{W}_j to have variance $C_j \approx S_X(1/2^{j+\frac{1}{2}})$
- assume single RV in V_J to have variance C_{J+1} (see textbook for details about how to set C_{J+1})
- approximate FD time series **X** via $\mathbf{Y} \equiv \mathcal{W}^T \Lambda^{1/2} \mathbf{Z}$, where
 - $-\Lambda^{1/2}$ is $N \times N$ diagonal matrix with diagonal elements

$$C_1^{1/2}, \dots, C_1^{1/2}, C_2^{1/2}, \dots, C_2^{1/2}, \dots, C_2^{1/2}, \dots, C_{J-1}^{1/2}, C_{J-1}^{1/2}, C_{J-1}^{1/2}, C_{J+1}^{1/2}$$
 $\frac{N}{2}$ of these $\frac{N}{4}$ of these $\frac{N}{4}$ of these

 Z is vector of deviations drawn from a Gaussian distribution with zero mean and unit variance

WMTSA: 355 XII-16

Refinements to Basic Scheme: I

- ullet covariance matrix for approximation ${f Y}$ does not correspond to that of a stationary process
- ullet recall ${\mathcal W}$ treats ${\bf X}$ as if it were circular
- let \mathcal{T} be $N \times N$ 'circular shift' matrix:

$$\mathcal{T}\begin{bmatrix} Y_0 \\ Y_1 \\ Y_2 \\ Y_3 \end{bmatrix} = \begin{bmatrix} Y_1 \\ Y_2 \\ Y_3 \\ Y_0 \end{bmatrix}; \quad \mathcal{T}^2 \begin{bmatrix} Y_0 \\ Y_1 \\ Y_2 \\ Y_3 \end{bmatrix} = \begin{bmatrix} Y_2 \\ Y_3 \\ Y_0 \\ Y_1 \end{bmatrix}; \quad \text{etc.}$$

- let κ be uniformly distributed over $0, \ldots, N-1$
- define $\widetilde{\mathbf{Y}} \equiv \mathcal{T}^{\kappa} \mathbf{Y}$
- ullet Y is stationary with ACVS given by, say, $s_{\widetilde{Y},\tau}$

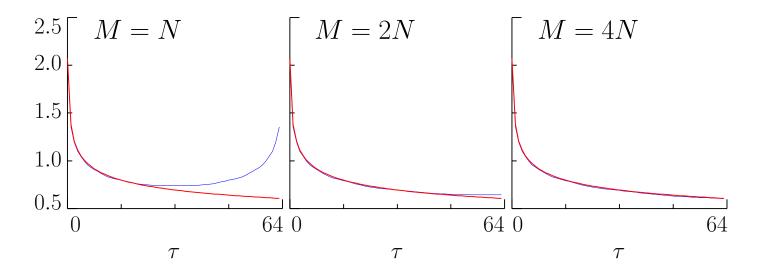
WMTSA: 356-357

Refinements to Basic Scheme: II

- Q: how well does $\{s_{\widetilde{Y},\tau}\}$ match $\{s_{X,\tau}\}$?
- due to circularity, find that $s_{\widetilde{Y},N-\tau}=s_{\widetilde{Y},\tau}$ for $\tau=1,\ldots,N/2$
- ullet implies $s_{\widetilde{Y},\tau}$ cannot approximate $s_{X,\tau}$ well for τ close to N
- can patch up by simulating $\widetilde{\mathbf{Y}}$ with M > N elements and then extracting first N deviates (M = 4N works well)

WMTSA: 356–357 XII–18

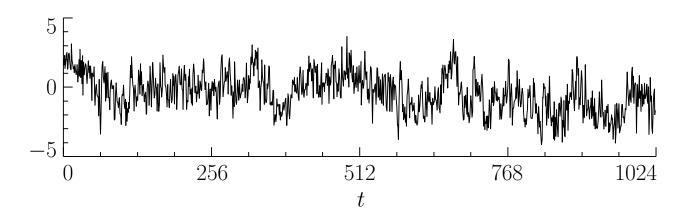
Refinements to Basic Scheme: III



• plot shows true ACVS $\{s_{X,\tau}\}$ (thick curves) for FD(0.4) process and wavelet-based approximate ACVSs $\{s_{\widetilde{Y},\tau}\}$ (thin curves) based on an LA(8) DWT in which an N=64 series is extracted from M=N, M=2N and M=4N series

WMTSA: 356–357 XII–19

Example and Some Notes



- simulated FD(0.4) series (LA(8), N = 1024 and M = 4N)
- notes:
 - can form realizations faster than best exact method
 - efficient 'real-time' simulation of extremely long time series (e.g, $N=2^{30}=1,073,741,824$ or even longer)
 - effect of random circular shifting is to render time series non-Gaussian (a Gaussian mixture model)

WMTSA: 358–361 XII–20

MLEs of FD Parameters: I

• FD process depends on 2 parameters, namely, δ and σ_{ε}^2 :

$$S_X(f) = \frac{\sigma_{\varepsilon}^2}{[4\sin^2(\pi f)]^{\delta}}$$

- given $\mathbf{X} = [X_0, X_1, \dots, X_{N-1}]^T$ with $N = 2^J$, suppose we want to estimate δ and σ_{ε}^2
- if **X** is stationary (i.e. $\delta < 1/2$) and multivariate Gaussian, can use the maximum likelihood (ML) method

WMTSA: 361 XII–21

MLEs of FD Parameters: II

• definition of Gaussian likelihood function:

$$L(\delta, \sigma_{\varepsilon}^{2} \mid \mathbf{X}) \equiv \frac{1}{(2\pi)^{N/2} |\Sigma_{\mathbf{X}}|^{1/2}} e^{-\mathbf{X}^{T} \Sigma_{\mathbf{X}}^{-1} \mathbf{X}/2}$$

where $\Sigma_{\mathbf{X}}$ is covariance matrix for \mathbf{X} , with (s,t)th element given by $s_{X,s-t}$, and $|\Sigma_{\mathbf{X}}| \& \Sigma_{\mathbf{X}}^{-1}$ denote determinant & inverse

• ML estimators of δ and σ_{ε}^2 maximize $L(\delta, \sigma_{\varepsilon}^2 \mid \mathbf{X})$ or, equivalently, minimize

$$-2\log\left(L(\delta, \sigma_{\varepsilon}^2 \mid \mathbf{X})\right) = N\log\left(2\pi\right) + \log\left(|\Sigma_{\mathbf{X}}|\right) + \mathbf{X}^T \Sigma_{\mathbf{X}}^{-1} \mathbf{X}$$

- exact MLEs computationally intensive, mainly because of the need to deal with $|\Sigma_{\mathbf{X}}|$ and $\Sigma_{\mathbf{X}}^{-1}$
- good approximate MLEs of considerable interest

WMTSA: 361-362

MLEs of FD Parameters: III

- key ideas behind first wavelet-based approximate MLEs
 - have seen that we can approximate FD time series \mathbf{X} by $\mathbf{Y} = \mathcal{W}^T \Lambda^{1/2} \mathbf{Z}$, where $\Lambda^{1/2}$ is a diagonal matrix, all of whose diagonal elements are positive
 - since covariance matrix for \mathbf{Z} is I_N , Equation (262c) says covariance matrix for \mathbf{Y} is

$$\mathcal{W}^T \Lambda^{1/2} I_N (\mathcal{W}^T \Lambda^{1/2})^T = \mathcal{W}^T \Lambda^{1/2} \Lambda^{1/2} \mathcal{W} = \mathcal{W}^T \Lambda \mathcal{W} \equiv \widetilde{\Sigma}_{\mathbf{X}},$$
 where $\Lambda \equiv \Lambda^{1/2} \Lambda^{1/2}$ is also diagonal

- can consider $\widetilde{\Sigma}_{\mathbf{X}}$ to be an approximation to $\Sigma_{\mathbf{X}}$
- leads to approximation of log likelihood:

$$-2\log\left(L(\delta, \sigma_{\varepsilon}^2 \mid \mathbf{X})\right) \approx N\log\left(2\pi\right) + \log\left(|\widetilde{\Sigma}_{\mathbf{X}}|\right) + \mathbf{X}^T \widetilde{\Sigma}_{\mathbf{X}}^{-1} \mathbf{X}$$

WMTSA: 362-363

MLEs of FD Parameters: IV

- Q: so how does this help us?
 - easy to invert $\widetilde{\Sigma}_{\mathbf{X}}$:

$$\widetilde{\Sigma}_{\mathbf{X}}^{-1} = \left(\mathcal{W}^T \Lambda \mathcal{W} \right)^{-1} = \left(\mathcal{W} \right)^{-1} \Lambda^{-1} \left(\mathcal{W}^T \right)^{-1} = \mathcal{W}^T \Lambda^{-1} \mathcal{W},$$

where Λ^{-1} is another diagonal matrix, leading to

$$\mathbf{X}^T \widetilde{\Sigma}_{\mathbf{X}}^{-1} \mathbf{X} = \mathbf{X}^T \mathcal{W}^T \Lambda^{-1} \mathcal{W} \mathbf{X} = \mathbf{W}^T \Lambda^{-1} \mathbf{W}$$

– easy to compute the determinant of $\Sigma_{\mathbf{X}}$:

$$|\widetilde{\Sigma}_{\mathbf{X}}| = |\mathcal{W}^T \Lambda \mathcal{W}| = |\Lambda \mathcal{W} \mathcal{W}^T| = |\Lambda I_N| = |\Lambda|,$$

and the determinant of a diagonal matrix is just the product of its diagonal elements

WMTSA: 362-363

MLEs of FD Parameters: V

• define the following three functions of δ :

$$C'_{j}(\delta) \equiv \int_{1/2^{j+1}}^{1/2^{j}} \frac{2^{j+1}}{[4\sin^{2}(\pi f)]^{\delta}} df \approx \int_{1/2^{j+1}}^{1/2^{j}} \frac{2^{j+1}}{[2\pi f]^{2\delta}} df$$

$$C'_{J+1}(\delta) \equiv \frac{N\Gamma(1-2\delta)}{\Gamma^{2}(1-\delta)} - \sum_{j=1}^{J} \frac{N}{2^{j}} C'_{j}(\delta)$$

$$\sigma_{\varepsilon}^{2}(\delta) \equiv \frac{1}{N} \left(\frac{V_{J,0}^{2}}{C'_{J+1}(\delta)} + \sum_{j=1}^{J} \frac{1}{C'_{j}(\delta)} \sum_{t=0}^{\frac{N}{2^{j}}-1} W_{j,t}^{2} \right)$$

MLEs of FD Parameters: VI

• wavelet-based approximate MLE $\tilde{\delta}$ for δ is the value that minimizes the following function of δ :

$$\tilde{l}(\delta \mid \mathbf{X}) \equiv N \log(\sigma_{\varepsilon}^{2}(\delta)) + \log(C'_{J+1}(\delta)) + \sum_{j=1}^{J} \frac{N}{2^{j}} \log(C'_{j}(\delta))$$

- once $\tilde{\delta}$ has been determined, MLE for σ_{ε}^2 is given by $\sigma_{\varepsilon}^2(\tilde{\delta})$
- computer experiments indicate scheme works quite well

WMTSA: 363-364

Other Wavelet-Based Estimators of FD Parameters

- second MLE approach: formulate likelihood directly in terms of nonboundary wavelet coefficients
 - handles stationary or nonstationary FD processes (i.e., need not assume $\delta < 1/2$)
 - handles certain deterministic trends
- alternative to MLE is least square estimator (LSE)
 - recall that, for large τ and for $\beta = 2\delta 1$, have $\log(\nu_X^2(\tau_j)) \approx \zeta + \beta \log(\tau_j)$
 - suggests determining δ by regressing $\log(\hat{\nu}_X^2(\tau_j))$ on $\log(\tau_j)$ over range of τ_j
 - weighted LSE takes into account fact that variance of $\log(\hat{\nu}_X^2(\tau_j))$ depends upon scale τ_j (increases as τ_j increases)

WMTSA: 368–379 XII–27

Homogeneity of Variance: I

- because DWT decorrelates LMPs, nonboundary coefficients in \mathbf{W}_{j} should resemble white noise; i.e., $\operatorname{cov}\{W_{j,t}, W_{j,t'}\} \approx 0$ when $t \neq t'$, and $\operatorname{var}\{W_{j,t}\}$ should not depend upon t
- ullet can test for homogeneity of variance in ${f X}$ using ${f W}_j$ over a range of levels j
- suppose U_0, \ldots, U_{N-1} are independent normal RVs with $E\{U_t\} = 0$ and var $\{U_t\} = \sigma_t^2$
- want to test null hypothesis

$$H_0: \sigma_0^2 = \sigma_1^2 = \dots = \sigma_{N-1}^2$$

• can test H_0 versus a variety of alternatives, e.g.,

$$H_1: \sigma_0^2 = \dots = \sigma_k^2 \neq \sigma_{k+1}^2 = \dots = \sigma_{N-1}^2$$

using normalized cumulative sum of squares

WMTSA: 379-380

Homogeneity of Variance: II

 \bullet to define test statistic D, start with

$$\mathcal{P}_k \equiv \frac{\sum_{j=0}^k U_j^2}{\sum_{j=0}^{N-1} U_j^2}, \quad k = 0, \dots, N-2$$

and then compute $D \equiv \max(D^+, D^-)$, where

$$D^{+} \equiv \max_{0 \le k \le N-2} \left(\frac{k+1}{N-1} - \mathcal{P}_{k} \right) \& D^{-} \equiv \max_{0 \le k \le N-2} \left(\mathcal{P}_{k} - \frac{k}{N-1} \right)$$

- can reject H_0 if observed D is 'too large,' where 'too large' is quantified by considering distribution of D under H_0
- need to find critical value x_{α} such that $\mathbf{P}[D \geq x_{\alpha}] = \alpha$ for, e.g., $\alpha = 0.01, 0.05$ or 0.1

WMTSA: 380–381 XII–29

Homogeneity of Variance: III

- once determined, can perform α level test of H_0 :
 - compute D statistic from data U_0, \ldots, U_{N-1}
 - reject H_0 at level α if $D \geq x_{\alpha}$
 - fail to reject H_0 at level α if $D < x_{\alpha}$
- can determine critical values x_{α} in two ways
 - Monte Carlo simulations
 - large sample approximation to distribution of D:

$$\mathbf{P}[(N/2)^{1/2}D \ge x] \approx 1 + 2\sum_{l=1}^{\infty} (-1)^l e^{-2l^2 x^2}$$

(reasonable approximation for $N \ge 128$)

WMTSA: 380-381

Homogeneity of Variance: IV

• idea: given time series $\{X_t\}$, compute D using nonboundary wavelet coefficients $W_{j,t}$ (there are $M'_j \equiv N_j - L'_j$ of these):

$$\mathcal{P}_k \equiv \frac{\sum_{t=L'_j}^k W_{j,t}^2}{\sum_{t=L'_j}^{N_j-1} W_{j,t}^2}, \quad k = L'_j, \dots, N_j - 2$$

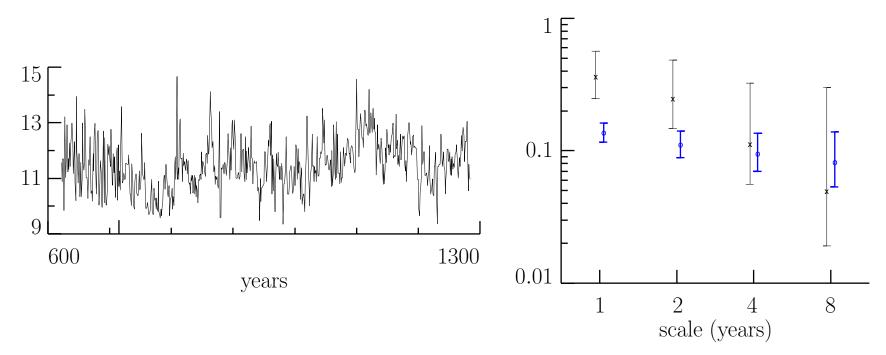
• if null hypothesis rejected at level j, can use nonboundary MODWT coefficients to locate change point based on

$$\widetilde{\mathcal{P}}_{k} \equiv \frac{\sum_{t=L_{j}-1}^{k} \widetilde{W}_{j,t}^{2}}{\sum_{t=L_{j}-1}^{N-1} \widetilde{W}_{j,t}^{2}}, \quad k = L_{j} - 1, \dots, N - 2$$

along with analogs \widetilde{D}_k^+ and \widetilde{D}_k^- of D_k^+ and D_k^-

WMTSA: 380-381

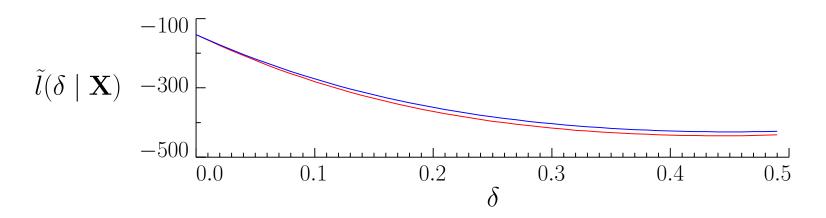
Annual Minima of Nile River



- left-hand plot: annual minima of Nile River
- new measuring device introduced around year 715
- right: Haar $\hat{\nu}_X^2(\tau_j)$ before (x's) and after (o's) year 715.5, with 95% confidence intervals based upon $\chi_{\eta_3}^2$ approximation

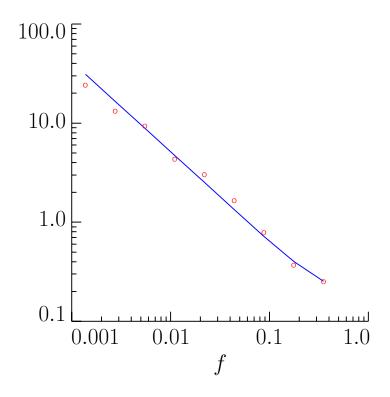
WMTSA: 326–327 XII–32

Example – Annual Minima of Nile River: II



- based upon last 512 values (years 773 to 1284), plot shows $\tilde{l}(\delta \mid \mathbf{X})$ versus δ for the first wavelet-based approximate MLE using the LA(8) wavelet (upper curve) and corresponding curve for exact MLE (lower)
 - wavelet-based approximate MLE is value minimizing upper curve: $\tilde{\delta} \doteq 0.4532$
 - exact MLE is value minimizing lower curve: $\hat{\delta} \doteq 0.4452$

Example – Annual Minima of Nile River: III



- using last 512 values again, variance of wavelet coefficients computed via LA(8) MLEs $\tilde{\delta}$ and $\sigma_{\varepsilon}^2(\tilde{\delta})$ (solid curve) as compared to sample variances of LA(8) wavelet coefficients (circles)
- agreement is almost too good to be true!

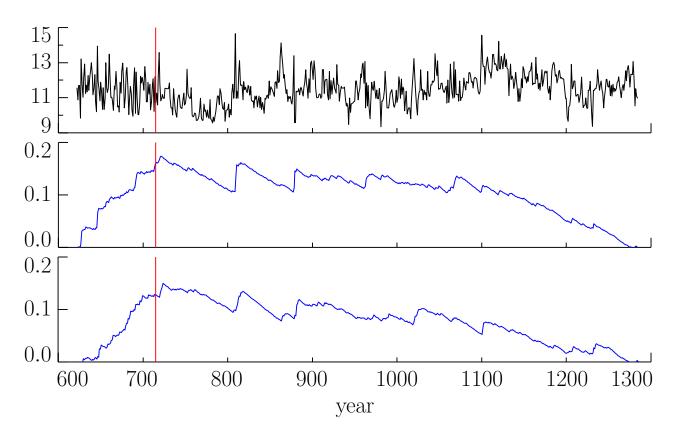
Example – Annual Minima of Nile River: IV

• results of testing all Nile River minima for homogeneity of variance using the Haar wavelet filter with critical values determined by computer simulations

				critical levels	
$ au_j$	M_j'	D	10%	5%	1%
1 year	331	0.1559	0.0945	0.1051	0.1262
2 years	165	0.1754	0.1320	0.1469	0.1765
4 years	82	0.1000	0.1855	0.2068	0.2474
8 years	41	0.2313	0.2572	0.2864	0.3436

• can reject null hypothesis of homogeneity of variance at level of significance 0.05 for scales $\tau_1 \& \tau_2$, but not at larger scales

Example – Annual Minima of Nile River: V



• Nile River minima (top plot) along with curves (constructed per Equation (382)) for scales $\tau_1 \& \tau_2$ (middle & bottom) to identify change point via time of maximum deviation (vertical lines denote year 715)

Summary

- wavelets approximately decorrelate LMPs
- leads to practical and flexible schemes for simulating LMPs
- also leads to schemes for estimating parameters of LMPs
 - approximate maximum likelihood estimators (two varieties)
 - weighted least squares estimator
- can also devise wavelet-based tests for
 - homogeneity of variance
 - trends (see Section 9.4 & Craigmile et al., Environmetrics, 15, 313–35, 2004, for details)

WMTSA: 388-391