
Wavelet-Based Signal Extraction and Denoising

• overview of key ideas behind wavelet-based approach

• description of four basic models for signal estimation

• discussion of why wavelets can help estimate certain signals

• simple thresholding & shrinkage schemes for signal estimation

• wavelet-based thresholding and shrinkage

• case studies:

− denoising ECG time series

− spectral density function estimation (if time permits)

∗ wavelet-based approach using periodogram

∗ wavelet-based approach using multitaper estimators

• brief comments on ‘second generation’ denoising
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Wavelet-Based Signal Estimation: I

• DWT analysis of X yields W =WX

• DWT synthesis X =WTW yields multiresolution analysis by
splitting WTW into pieces associated with different scales

• DWT synthesis can also estimate ‘signal’ hidden in X if we can
modify W to get rid of noise in the wavelet domain

• if W′ is a ‘noise reduced’ version of W, can form signal estimate
via WTW′
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Wavelet-Based Signal Estimation: II

• key ideas behind simple wavelet-based signal estimation

− certain signals can be efficiently described by the DWT using

∗ all of the scaling coefficients

∗ a small number of ‘large’ wavelet coefficients

− noise is manifested in a large number of ‘small’ wavelet co-
efficients

− can either ‘threshold’ or ‘shrink’ wavelet coefficients to elim-
inate noise in the wavelet domain

• key ideas led to wavelet thresholding and shrinkage proposed
by Donoho, Johnstone and coworkers in 1990s
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Models for Signal Estimation: I

• will consider two types of signals:

1.D, an N dimensional deterministic signal

2.C, an N dimensional stochastic signal; i.e., a vector of ran-
dom variables (RVs) with covariance matrix ΣC

• will consider two types of noise:

1. ε, an N dimensional vector of independent and identically
distributed (IID) RVs with mean 0 and covariance matrix
Σε = σ2

εIN
2. η, an N dimensional vector of non-IID RVs with mean 0 and

covariance matrix Ση
∗ one form: RVs independent, but have different variances

∗ another form of non-IID: RVs are correlated
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Models for Signal Estimation: II

• leads to four basic ‘signal + noise’ models for X

1.X = D + ε

2.X = D + η

3.X = C + ε

4.X = C + η

• in the latter two cases, the stochastic signal C is assumed to
be independent of the associated noise
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Signal Representation via Wavelets: I

• consider deterministic signals D first

• signal estimation problem is simplified if we can assume that
the important part of D is in its large values

• assumption is not usually viable in the original (i.e., time do-
main) representation D, but might be true in another domain

• an orthonormal transform O might be useful because

−O = OD is equivalent to D (since D = OTO)

− we might be able to find O such that the signal is isolated
in M � N large transform coefficients

• Q: how can we judge whether a particular O might be useful
for representing D?
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Signal Representation via Wavelets: II

• let Oj be the jth transform coefficient in O = OD
• letO(0), O(1), . . . , O(N−1) be theOj’s reordered by magnitude:

|O(0)| ≥ |O(1)| ≥ · · · ≥ |O(N−1)|

• example: if O = [−3, 1, 4,−7, 2,−1]T , then
O(0) = O3 = −7, O(1) = O2 = 4, O(2) = O0 = −3 etc.

• define a normalized partial energy sequence (NPES):

CM−1 ≡
∑M−1
j=0 |O(j)|2∑N−1
j=0 |O(j)|2

=
energy in largest M terms

total energy in signal

• let IM be N ×N diagonal matrix whose jth diagonal term is
1 if |Oj| is one of the M largest magnitudes and is 0 otherwise
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Signal Representation via Wavelets: III

• form D̂M ≡ OTIMO, which is an approximation to D

• when O = [−3, 1, 4,−7, 2,−1]T and M = 3, we have

I3 =


1 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 and thus D̂M = OT


−3
0
4
−7
0
0


• Exer. [395] shows that

CM−1 = 1− ‖D− D̂M‖2

‖D‖2
= 1− relative approximation error
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Signal Representation via Wavelets: IV

D1 D2 D3
1

0

−1
0 64 128 0 64 128 0 64 128

t t t

• consider three signals plotted above

•D1 is a sinusoid, which can be represented succinctly by the
discrete Fourier transform (DFT)

•D2 is a bump (only a few nonzero values in the time domain)

•D3 is a linear combination of D1 and D2
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Signal Representation via Wavelets: V

• consider three different orthogonal transforms

− identity transform I (time)

− the orthogonal DFT F (frequency), where F has (k, t)th
element exp(−i2πtk/N)/

√
N for 0 ≤ k, t ≤ N − 1

− the LA(8) DWT W (wavelet)

• # of terms M needed to achieve relative error < 1%:

D1 D2 D3
DFT 2 29 28
identity 105 9 75
LA(8) wavelet 22 14 21
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Signal Representation via Wavelets: VI

D1 D2 D3
1

0

−1
1.0

0.9
0 6464 128 0 64 128 0 64 128

M M M

• use NPESs to see how well these three signals are represented
in the time, frequency (DFT) and wavelet (LA(8)) domains

• time (solid curves), frequency (dotted) and wavelet (dashed)
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Signal Representation via Wavelets: VII

• let us consider the vertical ocean shear time series as a ‘signal’

• will look at plots of

− the signal D itself

− its approximation D̂100 from 100 LA(8) DWT coefficients

− D̂300 from 300 LA(8) DWT coefficients, givingC299
.
= 0.9983

− D̂300 from 300 DFT coefficients, giving C299
.
= 0.9973

• note that 300 coefficients is less than 5% of N = 6784!
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Signal Representation via Wavelets: VIII
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LA(8) D̂100

LA(8) D̂300

DFT D̂300

• need 123 additional DFT coefficients to match C299 for DWT
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Signal Representation via Wavelets: IX
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DFT LA(8) DWT

X

D̂50

D̂100

D̂200

D̂400

• 2nd example: DFT D̂M (left-hand column) & J0 = 6 LA(8)

DWT D̂M (right) for NMR series X (A. Maudsley, UCSF)
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Signal Estimation via Thresholding: I

• assume model of deterministic signal plus IID noise:
X = D + ε

• let O be an N ×N orthonormal matrix

• form O = OX = OD +Oε ≡ d + e

• component-wise, have Ol = dl + el

• define signal to noise ratio (SNR):

‖D‖2

E{‖ε‖2}
=
‖d‖2

E{‖e‖2}
=

∑N−1
l=0 d2

l∑N−1
l=0 E{e2

l }
• assume that SNR is large

• assume that d has just a few large coefficients; i.e., large signal
coefficients dominate O
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Signal Estimation via Thresholding: II

• recall simple estimator D̂M ≡ OTIMO and previous example:

D̂M = OT


1 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0




O0
O1
O2
O3
O4
O5

 = OT


O0
0
O2
O3
0
0


• let Jm be a set of m indices corresponding to places where jth

diagonal element of Im is 1

• in example above, we have J3 = {0, 2, 3}
• strategy in forming D̂M is to keep a coefficient Oj if j ∈ Jm

but to replace it with 0 if j 6∈ Jm (‘kill’ or ‘keep’ strategy)
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Signal Estimation via Thresholding: III

• can pose a simple optimization problem whose solution

1. is a ‘kill or keep’ strategy (and hence justifies this strategy)

2. dictates that we use coefficients with the largest magnitudes

3. tells us what M should be (once we set a certain parameter)

• optimization problem: find D̂M such that

γm ≡ ‖X− D̂m‖2 + mδ2

is minimized over all possible Im, m = 0, . . . , N

• in the above δ2 is a fixed parameter (set a priori)
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Signal Estimation via Thresholding: IV

• ‖X− D̂m‖2 is a measure of ‘fidelity’

− rationale for this term: under our assumption of a high SNR,
D̂m shouldn’t stray too far from X

− fidelity increases (the measure decreases) as m increases

− in minimizing γm, consideration of this term alone suggests
that m should be large

•mδ2 is a penalty for too many terms

− rationale: heuristic says d has only a few large coefficients

− penalty increases as m increases

− in minimizing γm, consideration of this term alone suggests
that m should be small

• optimization problem: balance off fidelity & parsimony
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Signal Estimation via Thresholding: V

• claim: γm = ‖X − D̂m‖2 + mδ2 is minimized when m is set
to the number of coefficients Oj such that O2

j > δ2

• proof of claim: since X = OTO & D̂m ≡ OTImO, have

γm = ‖X− D̂m‖2 + mδ2 = ‖OTO−OTImO‖2 + mδ2

= ‖OT (IN − Im)O‖2 + mδ2

= ‖(IN − Im)O‖2 + mδ2

=
∑
j 6∈Jm

O2
j +

∑
j∈Jm

δ2

• for any given j, if j 6∈ Jm, we contribute O2
j to first sum; on

the other hand, if j ∈ Jm, we contribute δ2 to second sum

• to minimize γm, we need to put j in Jm if O2
j > δ2, thus

establishing the claim
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Thresholding Functions: I

• more generally, thresholding schemes involve

1. computing O ≡ OX
2. defining O(t) as vector with lth element

O
(t)
l =

{
0, if |Ol| ≤ δ;

some nonzero value, otherwise,

where nonzero values are yet to be defined

3. estimating D via D̂(t) ≡ OTO(t)

• simplest scheme is ‘hard thresholding’ (‘kill/keep’ strategy):

O
(ht)
l =

{
0, if |Ol| ≤ δ;

Ol, otherwise.
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Thresholding Functions: II

• plot shows mapping from Ol to O
(ht)
l

3δ

2δ

δ

0

−δ

−2δ

−3δ
−3δ −2δ −δ 0 δ 2δ 3δ

O
(ht)
l

Ol
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Thresholding Functions: III

• alternative scheme is ‘soft thresholding:’

O
(st)
l = sign {Ol} (|Ol| − δ)+ ,

where

sign {Ol} ≡


+1, if Ol > 0;

0, if Ol = 0;

−1, if Ol < 0.

and (x)+ ≡

{
x, if x ≥ 0;

0, if x < 0.

• one rationale for soft thresholding is that it fits into Stein’s class
of estimators (will discuss this later)
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Thresholding Functions: IV

• here is the mapping from Ol to O
(st)
l

3δ

2δ

δ

0

−δ

−2δ

−3δ
−3δ −2δ −δ 0 δ 2δ 3δ

O
(st)
l

Ol
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Thresholding Functions: V

• third scheme is ‘mid thresholding:’

O
(mt)
l = sign {Ol} (|Ol| − δ)++ ,

where

(|Ol| − δ)++ ≡

{
2(|Ol| − δ)+, if |Ol| < 2δ;

|Ol|, otherwise

• provides compromise between hard and soft thresholding
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Thresholding Functions: VI

• here is the mapping from Ol to O
(mt)
l

3δ

2δ

δ

0

−δ

−2δ

−3δ
−3δ −2δ −δ 0 δ 2δ 3δ

O
(mt)
l

Ol
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Thresholding Functions: VII

• example of mid thresholding with δ = 1
3

0

−3

2
1
0
−1
−2

2
1
0
−1
−2

3

0

−3
0 64

Xt

Ol

O
(mt)
l

D̂
(mt)
t

t or l

XI–26



Universal Threshold: I

• Q: how do we go about setting δ?

• specialize to IID Gaussian noise ε with covariance σ2
εIN

• Exer. [263]: e ≡ Oε is also IID Gaussian with covariance σ2
εIN

• Donoho & Johnstone (1995) proposed δ(u) ≡
√

[2σ2
ε log(N)]

(‘log’ here is ‘log base e’)

• rationale for δ(u): because of Gaussianity, can argue that

P
[

max
l
{|el|} > δ(u)] ≤ 1√

[4π log (N)]
→ 0 as N →∞

and hence P
[
maxl{|el}| ≤ δ(u)

]
→ 1 as N →∞, so no noise

will exceed threshold in the limit
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Universal Threshold: II

• suppose D is a vector of zeros so that Ol = el

• implies that O(ht) = 0 with high probability as N →∞
• hence will estimate correct D with high probability

• critique of δ(u):

− consider lots of IID Gaussian series, N = 128: only 13% will
have any values exceeding δ(u)

− δ(u) is slanted toward eliminating vast majority of noise, but,
if we use, e.g., hard thresholding, any nonzero signal trans-
form coefficient of a fixed magnitude will eventually get set
to 0 as N →∞

• nonetheless: δ(u) works remarkably well
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Minimum Unbiased Risk: I

• second approach for setting δ is data-adaptive, but only works
for selected thresholding functions

• assume model of deterministic signal plus non-IID noise:
X = D + η so that O ≡ OX = OD +Oη ≡ d + n

• component-wise, have Ol = dl + nl

• further assume that nl is anN (0, σ2
nl

) RV, where σ2
nl

is assumed
to be known, but we allow the possibility that nl’s are correlated

• let O
(δ)
l be estimator of dl based on a (yet to be determined)

threshold δ

• put O
(δ)
l ’s into vector O(δ)

WMTSA: 402–403 XI–29



Minimum Unbiased Risk: II

• define D̂(δ) ≡ OTO(δ) and associated ‘risk’

R(D̂(δ),D) ≡ E{‖D̂(δ) −D‖2} = E{‖O(D̂(δ) −D)‖2)}
= E{‖O(δ) − d‖2)}

= E
{N−1∑

l=0

(O
(δ)
l − dl)

2
}

• can minimize risk by making E{(O(δ)
l − dl)

2} as small as pos-
sible for each l

• Stein (1981) considered estimators restricted to be of the form

O
(δ)
l = Ol + A(δ)(Ol),

where A(δ)(·) must be ‘weakly differentiable’ (think of it as
defining a derivative for a continuous function that is only piece-
wise differentiable in the usual sense; e.g., soft thresholding)
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Minimum Unbiased Risk: III

• using O
(δ)
l = Ol + A(δ)(Ol) with Ol = dl + nl yields

O
(δ)
l − dl = nl + A(δ)(Ol)

and hence

E{(O(δ)
l − dl)

2} = σ2
nl

+ 2E{nlA(δ)(Ol)} + E{[A(δ)(Ol)]
2}

• because of Gaussianity, can reduce middle term:

E{nlA(δ)(Ol)} = σ2
nl
E

{
d

dx
A(δ)(x)

∣∣∣∣
x=Ol

}

• can now write E{(O(δ)
l − dl)

2} = E{R(σnl, Ol, δ)}, where

R(σnl, x, δ) ≡ σ2
nl

+ 2σ2
nl

d

dx
A(δ)(x) + [A(δ)(x)]2
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Minimum Unbiased Risk: IV

• risk in using D(δ) given by

R(D̂(δ),D) = E


N−1∑
l=0

(O
(δ)
l − dl)

2

 = E


N−1∑
l=0

R(σnl, Ol, δ)


• practical scheme: given realizations ol of Ol, find δ minimizing

N−1∑
l=0

R(σnl, ol, δ)

• for a given δ, above is Stein’s unbiased risk estimator (SURE)
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Minimum Unbiased Risk: V

• example: if we set

A(δ)(Ol) =

{
−Ol, if |Ol| < δ;

−δ sign{Ol}, if |Ol| ≥ δ,

we obtain O
(δ)
l = Ol +A(δ)(Ol) = O

(st)
l , i.e., soft thresholding

• for this case, can argue that

R(σnl, Ol, δ) = O2
l − σ

2
nl

+ (2σ2
nl
−O2

l + δ2)1[δ2,∞)(O
2
l ),

where

1[δ2,∞)(x) ≡

{
1, if δ2 ≤ x <∞;

0, otherwise.

• only the last term depends on δ, and, as a function of δ, SURE
is minimized when last term is minimized
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Minimum Unbiased Risk: VI

• data-adaptive scheme is to replace Ol with its realization, say

ol, and to set δ equal to the value, say δ(S), minimizing
N−1∑
l=0

(2σ2
nl
− o2

l + δ2)1[δ2,∞)(o
2
l ),

• must have δ(S) = |ol| for some l, so minimization is easy

• if nl have a common variance, i.e., σ2
nl

= σ2
0 for all l, need to

find minimizer of the following function of δ:
N−1∑
l=0

(2σ2
0 − o

2
l + δ2)1[δ2,∞)(o

2
l ),

(in practice, σ2
0 is usually unknown, so later on we will consider

how to estimate this also)
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Signal Estimation via Shrinkage

• so far, we have only considered signal estimation via threshold-
ing rules, which will map some Ol to zeros

• will now consider shrinkage rules, which differ from thresholding
only in that nonzero coefficients are mapped to nonzero values
rather than exactly zero (but values can be very close to zero!)

• there are three approaches that lead us to shrinkage rules

1. linear mean square estimation

2. conditional mean and median

3. Bayesian approach

• will only consider 1 and 2, but one form of Bayesian approach
turns out to be identical to 2
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Linear Mean Square Estimation: I

• assume model of stochastic signal plus non-IID noise:
X = C + η so that O = OX = OC +Oη ≡ R + n

• component-wise, have Ol = Rl + nl

• assume C and η are multivariate Gaussian with covariance
matrices ΣC and Ση

• implies R and n are also multivariate Gaussian, but now with
covariance matrices OΣCOT and OΣηOT

• assume that E{Rl} = 0 for any component of interest and that
Rl & nl are uncorrelated

• suppose we estimate Rl via a simple scaling of Ol:

R̂l ≡ alOl, where al is a constant to be determined
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Linear Mean Square Estimation: II

• let us select al by making E{(Rl − R̂l)2} as small as possible,
which, following from Exer. [407], occurs when we set

al =
E{RlOl}
E{O2

l }
• because Rl and nl are uncorrelated with 0 means and because
Ol = Rl + nl, we have

E{RlOl} = E{R2
l } and E{O2

l } = E{R2
l } + E{n2

l },
yielding

R̂l =
E{R2

l }
E{R2

l } + E{n2
l }
Ol =

σ2
Rl

σ2
Rl

+ σ2
nl

Ol

• note: ‘optimum’ al shrinks Ol toward zero, with shrinkage in-
creasing as the noise variance increases
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Background on Conditional PDFs: I

• let X and Y be RVs with probability density functions (PDFs)
fX(·) and fY (·)
• let fX,Y (x, y) be their joint PDF at the point (x, y)

• fX(·) and fY (·) are called marginal PDFs and can be obtained
from the joint PDF via integration:

fX(x) =

∫ ∞
−∞

fX,Y (x, y) dy

• the conditional PDF of Y given X = x is defined as

fY |X=x(y) =
fX,Y (x, y)

fX(x)

(read ‘|’ as ‘given’ or ‘conditional on’)
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Background on Conditional PDFs: II

• by definition RVs X and Y are said to be independent if

fX,Y (x, y) = fX(x)fY (y),

in which case

fY |X=x(y) =
fX,Y (x, y)

fX(x)
=
fX(x)fY (y)

fX(x)
= fY (y)

• thus X and Y are independent if knowing X doesn’t allow us
to alter our probabilistic description of Y

• fY |X=x(·) is a PDF, so its mean value is

E{Y |X = x} =

∫ ∞
−∞

yfY |X=x(y) dy;

the above is called the conditional mean of Y , given X
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Background on Conditional PDFs: III

• suppose RVs X and Y are related, but we can only observe X

• suppose we want to approximate the unobservable Y based on
some function of the observable X

• example: we observe part of a time series containing a signal
buried in noise, and we want to approximate the unobservable
signal component based upon a function of what we observed

• suppose we want our approximation to be the function of X ,
say U2(X), such that the mean square difference between Y
and U2(X) is as small as possible; i.e., we want

E{(Y − U2(X))2}
to be as small as possible
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Background on Conditional PDFs: IV

• solution is to use U2(X) = E{Y |X}; i.e., the conditional mean
of Y given X is our best guess at Y in the sense of minimizing
the mean square error (related to fact that E{(Y − a)2} is
smallest when a = E{Y })
• on the other hand, suppose we want the function U1(X) such

that the mean absolute error E{|Y − U1(X)|} is as small as
possible

• the solution now is to let U1(X) be the conditional median; i.e.,
we must solve ∫ U1(x)

−∞
fY |X=x(y) dy = 0.5

to figure out what U1(x) should be when X = x
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Conditional Mean and Median Approach: I

• assume model of stochastic signal plus non-IID noise:
X = C + η so that O = OX = OC +Oη ≡ R + n

• component-wise, have Ol = Rl + nl

• because C and η are independent, R and n must be also

• suppose we approximate Rl via R̂l ≡ U2(Ol), where U2(Ol) is
selected to minimize E{(Rl − U2(Ol))

2}
• solution is to set U2(Ol) equal to E{Rl|Ol}, so let’s work out

what form this conditional mean takes

• to get E{Rl|Ol}, need the PDF of Rl given Ol, which is

fRl|Ol=ol(rl) =
fRl,Ol(rl, ol)

fOl(ol)
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Conditional Mean and Median Approach: II

• Exer. [262a]: the joint PDF of Rl and Ol is related to the joint
PDF fRl,nl(·, ·) of Rl and nl via

fRl,Ol(rl, ol) = fRl,nl(rl, ol − rl) = fRl(rl)fnl(ol − rl),
with the 2nd equality following since Rl & nl are independent

• the marginal PDF for Ol can be obtained from the joint PDF
fRl,Ol(·, ·) by integrating out the first argument:

fOl(ol) =

∫ ∞
−∞

fRl,Ol(rl, ol) drl =

∫ ∞
−∞

fRl(rl)fnl(ol− rl) drl

• putting all these pieces together yields the conditional PDF

fRl|Ol=ol(rl) =
fRl,Ol(rl, ol)

fOl(ol)
=

fRl(rl)fnl(ol − rl)∫∞
−∞ fRl(rl)fnl(ol − rl) drl
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Conditional Mean and Median Approach: III

• mean value of fRl|Ol=ol(·) yields estimator R̂l = E{Rl|Ol}:

E{Rl|Ol = ol} =

∫ ∞
−∞

rlfRl|Ol=ol(rl) drl

=

∫∞
−∞ rlfRl(rl)fnl(ol − rl)drl∫∞
−∞ fRl(rl)fnl(ol − rl) drl

• to make further progress, need a model for the transformation-
domain representation Rl of the signal

• heuristic that signal in the transformation domain has a few
large values and lots of small values suggests a Gaussian mixture
model
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Conditional Mean and Median Approach: IV

• let Il be an RV such that P [Il = 1] = pl & P [Il = 0] = 1−pl
• under Gaussian mixture model, Rl has same distribution as

IlN (0, γ2
l σ

2
Gl

) + (1− Il)N (0, σ2
Gl

)

where N (0, σ2) is a Gaussian RV with mean 0 and variance σ2

− 2nd component models small # of large signal coefficients

− 1st component models large # of small coefficients (γ2
l � 1)

• example: PDFs for case σ2
Gl

= 10, γ2
l σ

2
Gl

= 1 and pl = 0.75

0.4
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0.0
−10 −5 0 5 10−10 −5 0 5 10
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Conditional Mean and Median Approach: V

• to complete model, let nl obey a Gaussian distribution with
mean 0 and variance σ2

nl

• conditional mean estimator of the signal RV Rl is given by

E{Rl|Ol = ol} =
alAl(ol) + blBl(ol)

Al(ol) + Bl(ol)
ol,

where

al ≡
γ2
l σ

2
Gl

γ2
l σ

2
Gl

+ σ2
nl

and bl ≡
σ2
Gl

σ2
Gl

+ σ2
nl

Al(ol) ≡
pl√

(2π[γ2
l σ

2
Gl

+ σ2
nl

])
e
−o2

l /[2(γ2
l σ

2
Gl

+σ2
nl

)]

Bl(ol) ≡
1− pl√

(2π[σ2
Gl

+ σ2
nl

])
e
−o2

l /[2(σ2
Gl

+σ2
nl

)]

WMTSA: 410–411 XI–46



Conditional Mean and Median Approach: VI

• let’s simplify to a ‘sparse’ signal model by setting γl = 0; i.e.,
large # of small coefficients are all zero

• distribution for Rl same as (1− Il)N (0, σ2
Gl

)

• conditional mean estimator becomes E{Rl|Ol = ol} =
bl

1+cl
ol,

where

cl =
pl
√

(σ2
Gl

+ σ2
nl

)

(1− pl)σnl
e
−o2

l bl/(2σ2
nl

)

WMTSA: 411 XI–47



Conditional Mean and Median Approach: VII

6

3

0

−3

−6
−6 −3 0 3 6

ol

E{Rl|Ol = ol}

• conditional mean shrinkage rule for pl = 0.95 (i.e., ≈ 95% of
signal coefficients are 0); σ2

nl
= 1; and σ2

Gl
= 5 (curve furthest

from dotted diagonal), 10 and 25 (curve nearest to diagonal)

• as σ2
Gl

gets large (i.e., large signal coefficients increase in size),

shrinkage rule starts to resemble mid thresholding rule

WMTSA: 411–412 XI–48
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pl = 0.95, σ2
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pl = 0.95, σ2
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Conditional Mean and Median Approach: VIII

• now suppose we estimate Rl via R̂l = U1(Ol), where U1(Ol) is
selected to minimize E{|Rl − U1(Ol)|}
• solution is to set U1(ol) to the median of the PDF for Rl given
Ol = ol

• to find U1(ol), need to solve for it in the equation∫ U1(ol)

−∞
fRl|Ol=ol(rl) drl =

∫ U1(ol)
−∞ fRl(rl)fnl(ol − rl) drl∫∞
−∞ fRl(rl)fnl(ol − rl) drl

=
1

2

XI–65



Conditional Mean and Median Approach: IX

• simplifying to the sparse signal model, Godfrey & Rocca (1981)
show that

U1(Ol) ≈

{
0, if |Ol| ≤ δ;

blOl, otherwise,

where

δ = σnl

[
2 log

(
plσGl

(1− pl)σnl

)]1/2

and bl =
σ2
Gl

σ2
Gl

+ σ2
nl

• above approximation valid if pl/(1 − pl) � σ2
nl
/(σGlδ) and

σ2
Gl
� σ2

nl

• note that U1(·) is approximately a hard thresholding rule
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pl = 0.95, σ2
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Wavelet-Based Thresholding

• assume model of deterministic signal plus IID Gaussian noise
with mean 0 and variance σ2

ε : X = D + ε

• using a DWT matrixW , form W =WX =WD+Wε ≡ d+e

• because ε IID Gaussian, so is e (see Exer. [263])

• Donoho & Johnstone (1994) advocate the following:

− form partial DWT of level J0: W1, . . . ,WJ0
and VJ0

− threshold Wj’s but leave VJ0
alone (i.e., administratively,

all N/2J0 scaling coefficients assumed to be part of d)

− use universal threshold δ(u) =
√

[2σ2
ε log(N)]

− use thresholding rule to form W
(t)
j (hard, etc.)

− estimate D by inverse transforming W
(t)
1 , . . . ,W

(t)
J0

and VJ0

WMTSA: 417–419 XI–83



MAD Scale Estimator: I

• procedure assumes σε is know, which is not usually the case

• if unknown, use median absolute deviation (MAD) scale esti-
mator to estimate σε using W1

σ̂(mad) ≡
median {|W1,0|, |W1,1|, . . . , |W1,N2 −1

|}

0.6745
− heuristic: bulk of W1,t’s should be due to noise

− ‘0.6745’ yields estimator such that E{σ̂(mad)} = σε when

W1,t’s are IID Gaussian with mean 0 and variance σ2
ε

− designed to be robust against large W1,t’s due to signal

WMTSA: 420 XI–84



MAD Scale Estimator: II

• example: suppose W1 has 7 small ‘noise’ coefficients & 2 large
‘signal’ coefficients (say, a & b, with 2� |a| < |b|):

W1 = [1.23,−1.72,−0.80,−0.01, a, 0.30, 0.67, b,−1.33]T

• ordering these by their magnitudes yields

0.01, 0.30, 0.67, 0.80, 1.23, 1.33, 1.72, |a|, |b|

• median of these absolute deviations is 1.23, so

σ̂(mad) = 1.23/0.6745
.
= 1.82

• σ̂(mad) not influenced adversely by a and b; i.e., scale estimate
depends largely on the many small coefficients due to noise

WMTSA: 420 XI–85



Examples of DWT-Based Thresholding: I
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Examples of DWT-Based Thresholding: II
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• signal estimate using J0 = 6 partial D(4) DWT with hard

thresholding and universal threshold level estimated by δ̂(u) =√
[2σ̂2

(mad)
log (N)]

.
= 6.49

WMTSA: 418 XI–87



Examples of DWT-Based Thresholding: III
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• same as before, but now using LA(8) DWT with δ̂(u) .= 6.13

WMTSA: 418 XI–88



Examples of DWT-Based Thresholding: IV
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• signal estimate using J0 = 6 partial LA(8) DWT, but now with
soft thresholding

WMTSA: 418 XI–89



Examples of DWT-Based Thresholding: V
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• signal estimate using J0 = 6 partial LA(8) DWT, but now with
mid thresholding

WMTSA: 418 XI–90



MODWT-Based Thresholding

• can base thresholding procedure on MODWT rather than DWT,
yielding signal estimators D̃(ht), D̃(st) and D̃(mt)

• because MODWT filters are normalized differently, universal
threshold must be adjusted for each level:

δ̃
(u)
j ≡

√
[σ̃2

(mad) log (N)/2j−1],

where now MAD scale estimator is based on unit scale MODWT
wavelet coefficients

• results are almost the same as what ‘cycle spinning’ would yield

− would be the same if DWT-based MAD estimates σ̂2
(mad)

were identical for odd/even downsampling and if MODWT-
based estimate σ̃2

(mad)
were such that 2σ̃2

(mad)
= σ̂2

(mad)

WMTSA: 429–430 XI–91



Examples of MODWT-Based Thresholding: I
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• signal estimate using J0 = 6 LA(8) MODWT with hard thresh-
olding

WMTSA: 429–430 XI–92



Examples of DWT-Based Thresholding: III
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• same as before, but now using LA(8) DWT with δ̂(u) .= 6.13

WMTSA: 418 XI–88



Examples of MODWT-Based Thresholding: II
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• same as before, but now with soft thresholding
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Examples of DWT-Based Thresholding: IV
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• signal estimate using J0 = 6 partial LA(8) DWT, but now with
soft thresholding
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Examples of MODWT-Based Thresholding: III
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• same as before, but now with mid thresholding
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Examples of DWT-Based Thresholding: V
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• signal estimate using J0 = 6 partial LA(8) DWT, but now with
mid thresholding

WMTSA: 418 XI–90



VisuShrink: I

• Donoho & Johnstone (1994) recipe with soft thresholding is
known as ‘VisuShrink’ (but really thresholding, not shrinkage)

• one theoretical justification for VisuShrink

− consider the risk for all possible signals D using VisuShrink:

R(D̂(st),D) ≡ E{‖D̂(st) −D‖2}
− consider ‘ideal’ risk R(D̂(i),D) formed with the help of an

‘oracle’ that tells us which Wj,t’s are dominated by noise

− Donoho & Johnstone (1994), Theorem 1:

R(D̂(st),D) ≤ [2 log(N) + 1][σ2
ε + R(D̂(i),D)]

− two risks differ by only a logarithmic factor

− risks for other estimators do poorer when compared to the
‘ideal’ risk

WMTSA: 420 XI–95



VisuShrink: II

• rather than using the universal threshold, can also determine
δ for VisuShrink by finding value δ̂(S) that minimizes SURE,
i.e.,

J0∑
j=1

Nj−1∑
t=0

(2σ̂2
(mad) −W

2
j,t + δ2)1[δ2,∞)(W

2
j,t),

as a function of δ, with σ2
ε estimated via MAD

WMTSA: 420–421 XI–96



Examples of DWT-Based Thresholding: III
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δ̂(S) .= 2.19

• VisuShrink estimate based upon level J0 = 6 partial LA(8)
DWT and SURE with MAD estimate based upon W1

WMTSA: 420–421 XI–97



Examples of DWT-Based Thresholding: IV
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• same as before, but now with MAD estimate based upon W1,
W2, . . . , W6 (the common variance in SURE is assumed com-
mon to all wavelet coefficients) – signal estimate less noisy
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Wavelet-Based Shrinkage: I

• assume model of stochastic signal plus Gaussian IID noise:
X = C + ε so that W =WX =WC +Wε ≡ R + e

• component-wise, have Wj,t = Rj,t+ej,t, with Rj,t & ej,t being
independent RVs, both with zero means

• form partial DWT of level J0, shrink Wj’s, but leave VJ0
alone

(assumption E{Rj,t} = 0 reasonable for Wj, but not for VJ0
)

• use conditional mean approach

− Rj,t’s are IID with distribution given by (1−Ij,t)N (0, σ2
G),

i.e., a sparse signal model, where

P
[
Ij,t = 1

]
= p and P

[
Ij,t = 0

]
= 1− p

− ej,t has distribution dictated by N (0, σ2
ε )

− note: parameters do not vary with j or t

WMTSA: 424 XI–99



Wavelet-Based Shrinkage: II

• model has three parameters that need to be set, two related to
signal (σ2

G & p), and one related to noise (σ2
ε )

• can use W1 to estimate σ2
ε via σ̂2

ε = σ̂2
(mad)

• wavelet coefficients in W1, . . . , WJ0
have a common variance

σ2
W , which can be estimated by sample mean σ̂2

W of all W 2
j,t’s

• can use relationship

σ2
G =

σ2
W − σ

2
ε

1− p
to create estimator σ̂2

G once p is chosen (usually subjectively,
but keeping in mind that p is proportion of noise-dominated
coefficients – might be able to set based on rough estimate of
proportion of ‘small’ coefficients)

WMTSA: 411, 424–426 XI–100



Examples of Wavelet-Based Shrinkage: I
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Examples of Wavelet-Based Shrinkage: II
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• shrinkage signal estimates of NMR spectrum based upon level
J0 = 6 partial LA(8) DWT and conditional mean with p = 0
(with this choice of p, estimator collapses to minimum mean
square estimator of ovehead XI–37)

WMTSA: 425 XI–102



Examples of Wavelet-Based Shrinkage: III
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• same as before, but now with p = 0.5
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Examples of Wavelet-Based Shrinkage: IV
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• same as before, but now with p = 0.75
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Examples of Wavelet-Based Shrinkage: V
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• same as before, but now with p = 0.9
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Examples of Wavelet-Based Shrinkage: VI
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• same as before, but now with p = 0.95
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Examples of Wavelet-Based Shrinkage: VII
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• same as before, but now with p = 0.99
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Examples of Wavelet-Based Shrinkage: VIII
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• same as before, but now with p = 0.999
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Examples of Wavelet-Based Shrinkage: IX
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• same as before, but now with p = 0.9999
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Examples of Wavelet-Based Shrinkage: X
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• same as before, but now with p = 0.99999
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Examples of Wavelet-Based Shrinkage: XI
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• same as before, but now with p = 0.999999
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Examples of Wavelet-Based Shrinkage: XII
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• same as before, but now with p = 1
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Shrinkage Functions

• conditional mean estimator takes form

E{Rj,t | Wj,t} =
b

1 + cj,t
Wj,t,

where

b ≡
σ2
G

σ2
G + σ2

ε
and cj,t =

p
√

(σ2
G + σ2

ε )

(1− p)σε
e
−bW 2

j,t/(2σ2
ε )

• shrinkage function determined once σ2
ε , σ

2
G and p are set

• following plots show shrinkage function b
1+cj,t

Wj,t versus Wj,t

for various selections of p as Wj,t ranges from −40 to 40

• note: actual Wj,t’s for NMR series range from −34.3 to 36.4,
with values indicated by short vertical lines at bottom of plots
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Examples of Shrinkage Functions: I
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Examples of Shrinkage Functions: II
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Examples of Shrinkage Functions: III
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Examples of Shrinkage Functions: IV
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Examples of Shrinkage Functions: V
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Examples of Shrinkage Functions: VI
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Examples of Shrinkage Functions: VII
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Examples of Shrinkage Functions: VIII
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Examples of Shrinkage Functions: IX
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Examples of Shrinkage Functions: X
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Examples of Shrinkage Functions: XI
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Wavelet-Based Shrinkage with Cycle Spinning: I
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• same as before, but now with p = 0.9 and cycle spinning
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Examples of Wavelet-Based Shrinkage: V
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• same as before, but now with p = 0.9
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Wavelet-Based Shrinkage with Cycle Spinning: II
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• same as before, but now with p = 0.95 and cycle spinning
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Examples of Wavelet-Based Shrinkage: VI
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• same as before, but now with p = 0.95
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Wavelet-Based Shrinkage with Cycle Spinning: III
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• same as before, but now with p = 0.99 and cycle spinning
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Examples of Wavelet-Based Shrinkage: VII
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• same as before, but now with p = 0.99
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Case Study – Denoising ECG Time Series: I

2
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t (seconds)

X

D̂(ht)

D̂(st)

D̂(mt)

• hard/soft/mid threshold estimates with J0 = 6 partial LA(8)
DWT, MAD & scaling coefficients to 0 (zaps baseline drift)
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Case Study – Denoising ECG Time Series: II

2

0

−2
0.2

0.0

−0.2
0.2

0.0

−0.2
0.2

0.0

−0.2
0 2 4 6 8 10 12

t (seconds)

X

R̂(ht)

R̂(st)

R̂(mt)

• residuals from signal estimates, i.e., R̂(t) = X− D̂(t) (assump-
tion of constant noise variance is questionable)
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SDF Estimation via Periodogram: I

• let {Xt} be a stationary process with mean 0 and variance σ2
X

• spectral density function (SDF) S(·) describes {Xt} by decom-
posing σ2

X on a frequency by frequency basis:∫ 1/2

−1/2
S(f ) df = σ2

X

• suppose we observe a time series that is a realization of a por-
tion X0, . . . , XN−1 of {Xt}, and we want to form a consistent

estimator Ŝ(f ) of S(f ); i.e., want

E{Ŝ(f )} → S(f ) and var {Ŝ(f )} → 0 as N →∞
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SDF Estimation via Periodogram: II

• the most basic estimator of S(f ) is the periodogram:

Ŝ(p)(f ) ≡ 1

N

∣∣∣∣∣∣
N−1∑
t=0

Xte
−i2πft

∣∣∣∣∣∣
2

, |f | ≤ 1/2

• for large N and 0 < f < 1/2, statistical theory says that

Ŝ(p)(f ) has a distribution given by S(f )χ2
2/2, where χ2

2 is a
chi-square RV with 2 degrees of freedom

• if N is large enough (might need to be very large!), have

− E{Ŝ(p)(f )} ≈ E{S(f )χ2
2/2} = S(f )

− var {Ŝ(p)(f )} ≈ var {S(f )χ2
2/2} = S2(f )

• conclusion: asN →∞, var {Ŝ(p)(f )} → S2(f ) 6= 0 in general;
i.e., periodogram is an inconsistent estimator of S(f )
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Example of SDF and Periodogram
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f

• periodogram (jagged thin curve) and true SDF (smooth thick)
for a time series of length N = 2048 from an AR(24) process

• periodogram and true SDF are plotted on a decibel (dB) scale;
i.e., 10 log10 S(f ) is plotted versus f

• bias (due to a phenomenon usually called ‘leakage’) is evident
in the periodogram at high frequencies, where it differs from the
true SDF by as much as 40 dB (i.e., four orders of magnitude!)
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SDF Estimation via Periodogram: III

• can formulate SDF estimation as a ‘signal + noise’ problem

• Ŝ(p)(f ) itself is a signal S(f )× χ2
2 noise

• usually S(f ) > 0 and χ2
2 > 0, so can use a log transform to

convert multiplicative model to additive model

• distribution of log Ŝ(p)(f ) is the same as that of

log
(
S(f )χ2

2/2
)

= log (S(f )) + log
(
χ2

2/2
)

• Bartlett & Kendall (1946) show that

E
{

log
(
χ2

2/2
)}

= −γ and var
{

log
(
χ2

2/2
)}

= π2/6

(γ
.
= 0.57721 is Euler’s constant), yielding

E{log(Ŝ(p)(f ))} = log(S(f ))−γ & var{log(Ŝ(p)(f ))} = π2/6
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SDF Estimation via Periodogram: IV

• for fj = j/N , model Y (p)(fj) ≡ log Ŝ(p)(fj) + γ as

Y (p)(fj) = logS(fj) + ε(fj), 0 < fj < 1/2

− regard Y (p)(fj) as observed ‘time’ series

− regard logS(fj) as unknown signal

− regard ε(fj) as noise

∗ E{ε(fj)} = 0 and var {ε(fj)} = π2/6 (known!)

∗ if {Xt} is Gaussian, uncorrelatedness of Ŝ(p)(fj)’s says
that ε(fj)’s are uncorrelated

∗ distribution of ε(fj) is log(χ2
2) (markedly non-Gaussian)

• now have ‘signal + noise’ problem fitting form Y = D + ε
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SDF Estimation via Periodogram: V

• Gao (1993) and Moulin (1994): estimate log SDF based upon
WY =WD +Wε ≡ d + e

• ε is IID, but non-Gaussian & hence same true of e

• cannot use Gaussian-based universal threshold δ(u)

• basic steps in estimation procedure are the following

• assume N = 2J and use FFT algorithm to compute

Ŷ (p)(fj) = log Ŝ(p)(fj) + γ, fj =
j

N
, 0 ≤ j ≤ N

2
− 1;

use of Ŷ (p)(f0) not strictly OK, but small effect for large N
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SDF Estimation via Periodogram: VI

• compute level J0 partial DWT to obtain coefficients

W
(p)
1 ,W

(p)
2 , . . . ,W

(p)
J0

and V
(p)
J0
,

where W
(p)
j has elements W

(p)
j,t = dj,t + ej,t

• apply thresholding scheme to W
(p)
j,t to get W

(t)
j,t

− for large j, can use (via ‘central limit theorem’ argument)

δ(u) =

(
2σ2
ε log

(
N

2

))1/2

=

(
2
π2

6
log

(
N

2

))1/2

;

− for small j, complicated methods required

• estimate Y (fj) by inverse transforming

W
(t)
1 ,W

(t)
2 , . . . ,W

(t)
J0

and V
(p)
J0
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Examples of SDF Estimation via Periodogram

AR(24)

AR(2)

MRC
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f

• SDF estimates (thin jagged) and true SDFs (thick smooth) for
AR(24), AR(2) and mobile radio communications processes
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SDF Estimation via Multitapering: I

• refinement: use multitaper spectral estimator

• advantages of multitaper approach:

− less biased than periodogram

− log of multitaper estimator closer to Gaussian

• disadvantage: errors term now correlated, but this correlation
structure obeys a simple model

• multitapering (1980s) builds upon older idea of tapering (1950s)

• rationale for tapering is to correct for bias in periodogram due
to leakage (recall AR(24) periodogram)
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SDF Estimation via Multitapering: II

• idea is to multiply time series by a data taper {at} and then
essentially form the periodogram for the tapered series:

Ŝ(d)(f ) ≡

∣∣∣∣∣∣
N−1∑
t=0

atXte
−i2πft

∣∣∣∣∣∣
2

• resulting estimator Ŝ(d)(·) is called a direct spectral estimator

• {at} is typically a bell-shaped curve

0

at

0 512 1024

t
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SDF Estimation via Multitapering: III

• critique of tapering is that it loses ‘information’ at end of series
because sample size N is effectively shortened

• Thomson (1982): multitapering recovers ‘lost info’

• idea is to use a set of K orthonormal data tapers {an,t}:
N−1∑
t=0

an,tal,t =

{
1, if n = l;

0, if n 6= l.
0 ≤ n, l ≤ K − 1
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SDF Estimation via Multitapering: IV

• sine tapers are one possible set (Riedel & Sidorenko, 1995):

an,t =

{
2

(N + 1)

}1/2

sin

{
(n + 1)π(t + 1)

N + 1

}
, t = 0, . . . , N −1

{a0,t} {a1,t} {a2,t}
0

0 512 1024 0 512 1024 0 512 1024

t t t
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Example of SDF and Multitaper Estimator: I
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• multitaper SDF estimate (thin jagged curve) and true SDF
(thick smooth) for AR(24) time series of length N = 2048

• estimator based upon K = 10 sine tapers

• for large N and 0 < f < 1/2, statistical theory says that

Ŝ(mt)(f ) has a distribution given by S(f )χ2
2K/2K, where χ2

2K
is a chi-square RV with 2K degrees of freedom (DOFs)
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Example of SDF and Multitaper Estimator: II

• for K ≥ 5, distribution of log (χ2
2K) is approximately Gaussian

with mean ψ(K)− log(K) and variance ψ′(K), where ψ(·) and
ψ′(·) are the di- and trigamma functions

• solid curves are log (χ2
2K) PDFs, while dotted curves are best

approximating Gaussian PDFs

K = 5 K = 6 K = 8

0.0

0.5

1.0

1.5

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4
x x x
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SDF Estimation via Multitapering: V

• model Y (mt)(fj) ≡ log Ŝ(mt)(fj)− ψ(K) + log(K) as

Y (mt)(fj) = logS(fj) + η(fj), 0 < fj < 1/2,

where now fj = j/2M with 2M ≥ N (i.e., spacing of frequen-
cies can be finer than that dictated by sample size N)

• similar to periodogram formulation of ‘signal + noise’ problem,
but now fits the form Y = D + η, where η is approximately
zero mean Gaussian (if K ≥ 5), but correlated

• can argue that cov{η(fj), η(fk)} ≡ sη(fj − fk), i.e., depends
on just ‘lag’ ν = fj − fk
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SDF Estimation via Multitapering: VI

• sη(ν) is approximately ‘triangular’, with a cutoff dictated by

the bandwidth K+1
N+1 associated with the multitaper estimator

K = 5 K = 6 K = 8
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1.0
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0.0 0.006 0.0 0.006 0.0 0.006
ν ν ν
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SDF Estimation via Multitapering: VII

• covariance matrix Ση for η well approximated by the following
‘circular’ matrix dictated by sη(·):

sη(f0) · · · sη(fM
2 −1

) sη(fM
2

) sη(fM
2 −1

) · · · sη(f1)

sη(f1) · · · sη(fM
2 −2

) sη(fM
2 −1

) sη(fM
2

) · · · sη(f2)

sη(f2) · · · sη(fM
2 −3

) sη(fM
2 −2

) sη(fM
2 −1

) · · · sη(f3)

... ... ... ... ...
sη(f1) · · · sη(fM

2
) sη(fM

2 −1
) sη(fM

2 −2
) · · · sη(f0)


• leads to following procedure for estimating S(·)
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SDF Estimation via Multitapering: VIII

• let M ≥ N/2 be any power of 2, i.e., M = 2q

• compute Ŝ(mt)(·) on tapered series padded with 2M−N zeros

{ak,0X0, . . . , ak,N−1XN−1, 0, . . . , 0}, k = 0, . . . , K − 1

• form Y (mt)(fj) ≡ log Ŝ(mt)(fj) − ψ(K) + log(K) with fj =
j/2M

• compute level J0 partial DWT for Y (mt)(fj), 0 ≤ fj < 1/2:

W
(mt)
1 ,W

(mt)
2 , . . . ,W

(mt)
J0

and V
(mt)
J0

elements of W
(mt)
j are W

(mt)
j = dj,t + nj,t

• can show that var{nj,t} ≡ 1
M

∑M−1
k=0 SkHj( kM ) ≡ σ2

j , where

{Sk} is DFT of first row of circular approximation to Ση, and
Hj(·) is squared gain for jth level equivalent filter {hj,l}
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SDF Estimation via Multitapering: IX

• can show that σ2
j < σ2

j+1, i.e., variance increases with scale

• can show that σ2
p < σ2

η = ψ′(K) ≤ σ2
p+1 for some p; e.g., for

Haar, p = 2 for 5 ≤ K ≤ 10

• apply thresholding to W
(mt)
j to obtain W

(t)
j using either

1. level/scale dependent thresholds δj = (2σ2
j log N2 )1/2 or

2. level/scale independent thresholds δ = (2ψ′(K) log N2 )1/2

• 2nd scheme will suppress small scale ‘noise spikes’ while leaving
‘informative’ coarse scale coefficients relatively unattenuated

• estimate log SDF by inverse transforming

W
(t)
1 ,W

(t)
2 , . . . ,W

(t)
J0

and V
(mt)
J0
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Examples of Estimation via Multitapering: I
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• estimated/true SDFs (thin jagged/thick smooth curves)

• estimates are ‘representative’ in having RMSEs closest to the
average RMSE over 1000 simulations (each with N = 2048)

• upper: level-independent soft thresholding; lower: dependent
& hard (J0 = 5 LA(8) DWT with K = 10 sine multitapers)
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Examples of Estimation via Multitapering: II
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• as in previous figure, but now for the mobile radio communica-
tions process

• computer experiments show multitaper-based estimator out-
performs periodogram scheme for AR(24), AR(2) and MRC
processes considered by Gao (1993) and Moulin (1994)
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Comments on ‘Second Generation’ Denoising: I
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• ‘classical’ denoising looks at each Wj,t alone; for ‘real world’
signals, coefficients often cluster within a given level and persist
across adjacent levels (ECG series offers an example)
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Comments on ‘Second Generation’ Denoising: II

• here are some ‘second generation’ approaches that exploit these
‘real world’ properties:

− Crouse et al. (1998) use hidden Markov models for stochastic
signal DWT coefficients to handle clustering, persistence and
non-Gaussianity

− Huang and Cressie (2000) consider scale-dependent multi-
scale graphical models to handle clustering and persistence

− Cai and Silverman (2001) consider ‘block’ thesholding in
which coefficients are thresholded in blocks rather than indi-
vidually (handles clustering)

− Dragotti and Vetterli (2003) introduce the notion of ‘wavelet
footprints’ to track discontinuities in a signal across different
scales (handles persistence)
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Comments on ‘Second Generation’ Denoising: III

• ‘classical’ denoising also suffers from problem of overall signifi-
cance of multiple hypothesis tests

• ‘second generation’ work integrates idea of ‘false discovery rate’
(Benjamini and Hochberg, 1995) into denoising (see Wink and
Roerdink, 2004, for an applications-oriented discussion)

• for some second generation developments, see

− review article by Antoniadis (2007)

− Chapters 3 and 4 of book by Nason (2008)

− October 2009 issue of Statistica Sinica, which has a spe-
cial section entitled ‘Multiscale Methods and Statistics: A
Productive Marriage’
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