
Wavelet Variance – Outline

• examples of time series to motivate discussion

• decomposition of sample variance using wavelets

• theoretical wavelet variance for stochastic processes

− stationary processes

− nonstationary processes with stationary differences

• sampling theory for Gaussian processes

• four examples, including use on time series with time-varying
statistical properties

• summary
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Examples: Time Series Xt Versus Time Index t

(a)

(b)

(c)

(d)

Xt

Xt

t t

(a) atomic clock frequency deviates (daily observations, N = 1025)

(b) subtidal sea level fluctuations (twice daily, N = 8746)

(c) Nile River minima (annual, N = 663)

(d) vertical shear in the ocean (0.1 meters, N = 4096)

• four series are visually different

• goal of time series analysis is to quantify these differences

WMTSA: 8, 184, 192, 328 X–2



Decomposing Sample Variance of Time Series

• one approach: quantify differences by analysis of variance

• let X0, X1, . . . , XN−1 represent time series with N values

• let X denote sample mean of Xt’s: X ≡ 1
N

PN−1
t=0 Xt

• let σ̂2
X denote sample variance of Xt’s:

σ̂2
X ≡ 1

N

N−1X

t=0

°
Xt −X

¢2

• idea is to decompose (analyze, break up) σ̂2
X into pieces that

quantify how time series are different

• wavelet variance does analysis based upon differences between
(possibly weighted) adjacent averages over scales
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Empirical Wavelet Variance

• define empirical wavelet variance for scale τj ≡ 2j−1 as

ν̃2
X(τj) ≡

1

N

N−1X

t=0

fW 2
j,t, where fWj,t ≡

Lj−1X

l=0

h̃j,lXt−l mod N

• if N = 2J , obtain analysis (decomposition) of sample variance:

σ̂2
X =

1

N

N−1X

t=0

°
Xt −X

¢2
=

JX

j=1

ν̃2
X(τj)

(if N not a power of 2, can analyze variance to any level J0,
but need additional component involving scaling coefficients)

• interpretation: ν̃2
X(τj) is portion of σ̂2

X due to changes in av-
erages over scale τj; i.e., ‘scale by scale’ analysis of variance

WMTSA: 298 X–4



Example of Empirical Wavelet Variance

• wavelet variances for time series Xt and Yt of length N = 16,
each with zero sample mean and same sample variance
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Second Example of Empirical Wavelet Variance

• top: part of subtidal sea level data (blue line shows scale of 16)
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• bottom: empirical wavelet variances ν̃2
X(τj)

• note: each fWj,t associated with a portion of Xt, so fW 2
j,t versus

t offers time-based decomposition of ν̃2
X(τj)

WMTSA: 298 X–6



Theoretical Wavelet Variance: I

• now assume Xt is a real-valued random variable (RV)

• let {Xt, t ∈ Z} denote a stochastic process, i.e., collection of
RVs indexed by ‘time’ t (here Z denotes the set of all integers)

• use jth level equivalent MODWT filter {h̃j,l} on {Xt} to create
a new stochastic process:

Wj,t ≡
Lj−1X

l=0

h̃j,lXt−l, t ∈ Z,

which should be contrasted with

fWj,t ≡
Lj−1X

l=0

h̃j,lXt−l mod N, t = 0, 1, . . . , N − 1

WMTSA: 295–296 X–7



Theoretical Wavelet Variance: II

• if Y is any RV, let E{Y } denote its expectation

• let var {Y } denote its variance: var {Y } ≡ E{(Y − E{Y })2}
• definition of time dependent wavelet variance:

ν2
X,t(τj) ≡ var {Wj,t},

with conditions on Xt so that var {Wj,t} exists and is finite

• ν2
X,t(τj) depends on τj and t

• will focus on time independent wavelet variance

ν2
X(τj) ≡ var {Wj,t}

(can adapt theory to handle time varying situation)

• ν2
X(τj) well-defined for stationary processes and certain related

processes, so let’s review concept of stationarity

WMTSA: 295–296 X–8



Definition of a Stationary Process

• if U and V are two RVs, denote their covariance by

cov {U, V } = E{(U − E{U})(V − E{V })}

• stochastic process Xt called stationary if

− E{Xt} = µX for all t, i.e., constant independent of t

− cov{Xt,Xt+τ} = sX,τ , i.e., depends on lag τ , but not t

• sX,τ , τ ∈ Z, is autocovariance sequence (ACVS)

• sX,0 = cov{Xt,Xt} = var{Xt}; i.e., variance same for all t

WMTSA: 266 X–9



Spectral Density Functions: I

• spectral density function (SDF) given by

SX(f) =
∞X

τ=−∞
sX,τe

−i2πfτ , |f | ≤ 1

2

• above requires condition on ACVS such as
∞X

τ=−∞
s2
X,τ < ∞

(sufficient but not necessary)

WMTSA: 267 X–10



Spectral Density Functions: II

• if square summability holds, {sX,τ}←→ SX(·) says
Z 1/2

−1/2
SX(f)ei2πfτ df = sX,τ , τ ∈ Z

• setting τ = 0 yields fundamental result:
Z 1/2

−1/2
SX(f) df = sX,0 = var {Xt};

i.e., SDF decomposes var {Xt} across frequencies f

• interpretation: SX(f) ∆f is the contribution to var {Xt} due
to frequencies in a small interval of width ∆f centered at f

WMTSA: 267 X–11



White Noise Process: I

• simplest example of a stationary process is ‘white noise’

• process Xt said to be white noise if

− it has a constant mean E{Xt} = µX

− it has a constant variance var {Xt} = σ2
X

− cov {Xt,Xt+τ} = 0 for all t and nonzero τ ; i.e., distinct RVs
in the process are uncorrelated

• ACVS and SDF for white noise take very simple forms:

sX,τ = cov {Xt,Xt+τ} =

(
σ2
X, τ = 0;

0, otherwise.

SX(f) =
∞X

τ=−∞
sX,τe

−i2πfτ = sX,0

WMTSA: 268 X–12



White Noise Process: II

• ACVS (left-hand plot), SDF (middle) and a portion of length
N = 64 of one realization (right) for a white noise process with
µX = 0 and σ2

X = 1.5

.
......sX,τ SX(f) Xt
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• since SX(f) = 1.5 for all f , contribution SX(f) ∆f to σ2
X is

the same for all frequencies

WMTSA: 268 X–13



Wavelet Variance for Stationary Processes

• for stationary processes, wavelet variance decomposes var {Xt}:
∞X

j=1

ν2
X(τj) = var {Xt}

(above result similar to one for sample variance)

• ν2
X(τj) is thus contribution to var {Xt} due to scale τj

• note: νX(τj) has same units as Xt, which is important for
interpretability

WMTSA: 296–297 X–14



Wavelet Variance for White Noise Process: I

• for a white noise process, can conclude from Exer. [8.1] that

ν2
X(τj) ∝ τ−1

j

• note that
log (ν2

X(τj)) ∝ − log (τj),

so plot of log (ν2
X(τj)) vs. log (τj) is linear with a slope of −1

WMTSA: 296–297, 337 X–15



Wavelet Variance for White Noise Process: II
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δ = 0
slope = −1

• ν2
X(τj) versus τj for j = 1, . . . , 8 (left-hand plot), along with

sample of length N = 256 of Gaussian white noise

• largest contribution to var {Xt} is at smallest scale τ1

• note: later on, we will discuss fractionally differenced (FD)
processes that are characterized by a parameter δ; when δ = 0,
an FD process is the same as a white noise process

WMTSA: 296–297, 337 X–16



Generalization to Certain Nonstationary Processes

• if wavelet filter is properly chosen, ν2
X(τj) well-defined for cer-

tain processes with stationary backward differences (increments);
these are also known as intrinsically stationary processes

• first order backward difference of Xt is process defined by

X
(1)
t = Xt −Xt−1

• second order backward difference of Xt is process defined by

X
(2)
t = X

(1)
t −X

(1)
t−1 = Xt − 2Xt−1 + Xt−2

• Xt said to have dth order stationary backward differences if

Yt ≡
dX

k=0

µ
d

k

∂
(−1)kXt−k

forms a stationary process (d is a nonnegative integer)

WMTSA: 287–289 X–17



Examples of Processes with Stationary Increments

  
 

  
 

  
 

Xt X(1)
t X(2)

t

(a)

(b)

(c)

0

0

0

0 256 0 256 0 256

t t t

• 1st column shows, from top to bottom, realizations from

(a) random walk: Xt =
Pt

u=1 ≤u, & ≤t is zero mean white noise

(b) like (a), but now ≤t has mean of −0.2

(c) random run: Xt =
Pt

u=1 Yu, where Yt is a random walk

• 2nd & 3rd columns show 1st & 2nd differences X
(1)
t and X

(2)
t

WMTSA: 287–289 X–18



Wavelet Variance for Processes with
Stationary Backward Differences: I

• let {Xt} be nonstationary with dth order stationary differences

• if we use a Daubechies wavelet filter of width L satisfying L ≥
2d, then ν2

X(τj) is well-defined and finite for all τj, but now

∞X

j=1

ν2
X(τj) = ∞

WMTSA: 305 X–19



Wavelet Variance for Random Walk Process: I

• random walk process Xt =
∑t
u=1 εu has first order (d = 1)

stationary differences since Xt −Xt−1 = εt (i.e., white noise)

• L ≥ 2d holds for all wavelets when d = 1; for Haar (L = 2),

ν2
X(τj) =

var {εt}
6

(
τj +

1

2τj

)
≈ var {εt}

6
τj,

with the approximation becoming better as τj increases

• note that ν2
X(τj) increases as τj increases

• log (ν2
X(τj)) ≈ log (var {εt}/6) + log (τj), which says that a

plot of log (ν2
X(τj)) vs. log (τj) is ≈ linear with a slope of +1

• as required, also have
∞∑
j=1

ν2
X(τj) =

var {εt}
6

(
1 + 1

2 + 2 + 1
4 + 4 + 1

8 + · · ·
)

=∞

WMTSA: 337 X–20



Wavelet Variance for Random Walk Process: II
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• ν2
X(τj) versus τj for j = 1, . . . , 8 (left-hand plot), along with

sample of length N = 256 of a Gaussian random walk process

• smallest contribution to var {Xt} is at smallest scale τ1

• note: a fractionally differenced process with parameter δ = 1
is the same as a random walk process

WMTSA: 337 X–21



Wavelet Variance for Processes with
Stationary Backward Differences: II

• to see why ν2
X(τj) is well-defined and finite if L ≥ 2d, need

basic result from filtering theory: if {Yt} stationary with SDF
SY (·), then

Zt ≡
M−1X

m=0

amYt−m

is also a stationary process, and its SDF is

SZ(f) = A(f)SY (f), where A(f) ≡

ØØØØØØ

M−1X

m=0

ame−i2πfm

ØØØØØØ

2

,

from which it follows that its variance is

var {Zt} =

Z 1/2

−1/2
SZ(f) df =

Z 1/2

−1/2
A(f)SY (f) df.

WMTSA: 267–268 X–22



Wavelet Variance for Processes with
Stationary Backward Differences: III

• example: first backward difference Y
(1)
t = Yt − Yt−1, i.e.,

{Yt} −→ {1,−1} −→ {Y (1)
t }

• here a0 = 1, a1 = −1 and am = 0 otherwise, yielding

A(f) = 4 sin2(πf) ≡ D(f)

(proof of the above is Exer. [105b])

WMTSA: 105–107 X–23



Wavelet Variance for Processes with
Stationary Backward Differences: IV

• consider ν2
X(τ1) (Exer. [304] generalizes result for τj, j ≥ 2)

• by definition, ν2
X(τ1) ≡ var {W 1,t}, with W 1,t ≡

PL−1
l=0 h̃lXt−l

• because h̃l = hl/
√

2, have

eH(D)
1 (f) =

1

2
H(D)(f) = sinL(πf)

L
2−1X

l=0

µL
2 − 1 + l

l

∂
cos2l(πf)

= D
L
2 (f) eAL(f)

where, as before, D(f) = 4 sin2(πf) and

eAL(f) ≡ 1

2L

L
2−1X

l=0

µL
2 − 1 + l

l

∂
cos2l(πf)

WMTSA: 105–107 X–24



Wavelet Variance for Processes with
Stationary Backward Differences: V

• interpret eH(D)
1 (f) = D

L
2 (f) eAL(f) as the squared gain function

for filter cascade consisting of three parts

• first part of cascade consists of a cascade of d first differences:

{Xt} −→ {1,−1} −→ · · · −→ {1,−1}| {z }
d of these

−→ {Yt}

where {Yt} is stationary with SDF SY (·)
• if L

2 > d, second part uses L
2 − d first differences:

{Yt} −→ {1,−1} −→ · · · −→ {1,−1}| {z }
L
2 − d of these

−→ {Zt}

where {Zt} is stationary with SDF SZ(f) = D
L
2−d(f)SY (f)

WMTSA: 304–305 X–25



Wavelet Variance for Processes with
Stationary Backward Differences: VI

• third part uses averaging filter embedded within Daubechies
wavelet filter:

{Zt} −→ eAL(·) −→ {W 1,t},
where {W 1,t} is stationary with SDF given by

S1(f) ≡ eAL(f)SZ(f)

= D
L
2−d(f) eAL(f)SY (f)

= D
L
2−d(f) eAL(f)Dd(f)SX(f) = eH(D)

1 (f)SX(f)

if we define an SDF for the nonstationary process {Xt} via

SX(f) ≡ SY (f)

Dd(f)
=

SY (f)

[4 sin2(πf)]d

(Yaglom, 1958)

WMTSA: 304–305, 287 X–26



Wavelet Variance for Processes with
Stationary Backward Differences: VII

• for general τj, can claim that, if {Xt} has stationary incre-
ments of order d and if we use a Daubechies MODWT wavelet
filter {h̃l} of width L ≥ 2d, the fact that the resulting process
{Wj,t} is stationary with variance ν2

X(τj) says that

ν2
X(τj) =

Z 1/2

−1/2

eH(D)
j (f)SX(f) df,

where eH(D)
j (·) is the squared gain function for the jth level

equivalent filter {h̃j,l}

WMTSA: 305 X–27



Fractionally Differenced (FD) Processes: I

• can create a continuum of processes that ‘interpolate’ between
white noise and random walks using notion of ‘fractional differ-
encing’ (Granger and Joyeux, 1980; Hosking, 1981)

• FD(δ) process is determined by 2 parameters δ and σ2
≤ , where

−∞ < δ < ∞ and σ2
≤ > 0 (σ2

≤ is less important than δ)

• if {Xt} is an FD(δ) process, its SDF is given by

SX(f) =
σ2
≤

Dδ(f)
=

σ2
≤

[4 sin2(πf)]δ

• if δ < 1/2, FD process {Xt} is stationary, and, in particular,

− reduces to white noise if δ = 0

− has ‘long memory’ or ‘long range dependence’ if δ > 0

− is ‘antipersistent’ if δ < 0 (i.e., cov {Xt,Xt+1} < 0)

WMTSA: 281–285 X–28



Fractionally Differenced (FD) Processes: II

• if δ ≥ 1/2, FD process {Xt} is nonstationary with dth order
stationary backward differences {Yt}
− here d = bδ + 1/2c, where bxc is integer part of x

− {Yt} is stationary FD(δ − d) process

• if δ = 1, FD process is the same as a random walk process

• using sin(x) ≈ x for small x, can claim that, at low frequencies,

SX(f) =
σ2
≤

[4 sin2(πf)]δ
≈ σ2

≤

(2πf)2δ

(approximation quite good for f ∈ (0, 0.1])

• right-hand side describes SDF for a ‘power law’ process with
exponent −2δ

WMTSA: 287–288 X–29



Fractionally Differenced (FD) Processes: III

• except possibly for two or three smallest scales, have

ν2
X(τj) =

Z 1/2

−1/2

eH(D)
j (f)SX(f) df

≈ 2

Z 1/2j

1/2j+1

σ2
≤

[4 sin2(πf)]δ
df

≈ 2σ2
≤

(2π)2δ

Z 1/2j

1/2j+1

1

f2δ
df = Cτ2δ−1

j

• thus log (ν2
X(τj)) ≈ log (C)+(2δ−1) log (τj), so a log/log plot

of ν2
X(τj) vs. τj looks approximately linear with slope 2δ − 1

for τj large enough

WMTSA: 297 X–30



LA(8) Wavelet Variance for 2 FD Processes
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• left-hand column: ν2
X(τj) versus τj based upon LA(8) wavelet

• right-hand: realization of length N = 256 from each FD process

• see overhead 16 for δ = 0 (white noise), which has slope = −1
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LA(8) Wavelet Variance for 2 More FD Processes
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• δ = 5
6 is Kolmogorov turbulence; δ = 1 is random walk

• note: positive slope indicates nonstationarity, while negative
slope indicates stationarity

WMTSA: 297 X–32



Expected Value of Wavelet Coefficients

• in preparation for considering problem of estimating ν2
X(τj)

given an observed time series, let us consider E{Wj,t}
• if {Xt} is nonstationary but has dth order stationary incre-

ments, let {Yt} be the stationary process obtained by differenc-
ing {Xt} a total of d times; if {Xt} is stationary, let Yt = Xt

• Exer. [305]: with µY ≡ E{Yt}, have

− E{Wj,t} = 0 if either (i) L > 2d or (ii) L = 2d and µY = 0

− E{Wj,t} 6= 0 if µY 6= 0 and L = 2d

• thus have E{Wj,t} = 0 if L is picked large enough (L > 2d is
sufficient, but might not be necessary)

• as the argument that follows shows, highly desirable to have
E{Wj,t} = 0 in order to ease the job of estimating ν2

X(τj)

WMTSA: 304–305 X–33



Estimation of a Process Variance: I

• suppose {Ut} is a stationary process with mean µU = E{Ut}
and unknown variance σ2

U = E{(Ut − µU)2}
• can be difficult to estimate σ2

U for a stationary process

• to understand why, assume first that µU is known

• when this is the case, can estimate σ2
U using

σ̃2
U ≡

1

N

N−1X

t=0

(Ut − µU)2

• estimator above is unbiased: E{σ̃2
U} = σ2

U

WMTSA: 299–301 X–34



Estimation of a Process Variance: II

• if µU is unknown (more common case), can estimate σ2
U using

σ̂2
U ≡

1

N

N−1X

t=0

(Ut − U)2, where U ≡ 1

N

N−1X

t=0

Ut

• can argue that E{σ̂2
U} = σ2

U − var {U}
• implies 0 ≤ E{σ̂2

U} ≤ σ2
U because var {U} ≥ 0

• E{σ̂2
U}→ σ2

U as N →∞ if SDF exists . . . but, for any

≤ > 0 (say, 0.00 · · · 01) and sample size N (say, N = 101010
),

there is some FD(δ) process {Ut} with δ close to 1/2 such that

E{σ̂2
U} < ≤ · σ2

U ;

i.e., in general, σ̂2
U can be badly biased even for very large N

WMTSA: 299–301 X–35



Estimation of a Process Variance: III

• example: realization of FD(0.4) process (σ2
U = 1 & N = 1000)

 

 

 

   
 

3

0

−3
0 500 1000

t

• using µU = 0 (lower horizontal line), obtain σ̃2
U

.
= 0.99

• using U
.
= 0.53 (upper line), obtain σ̂2

U
.
= 0.71

• note that this is comparable to E{σ̂2
U}

.
= 0.75

• for this particular example, we would need N ≥ 1010 to get
σ2
U − E{σ̂2

U} ≤ 0.01, i.e., to reduce the bias so that it is no
more than 1% of true variance σ2

U = 1

WMTSA: 299–301 X–36



Estimation of a Process Variance: IV

• conclusion: σ̂2
U can have substantial bias if µU is unknown

(can patch up by estimating δ, but must make use of model)

• if {Xt} stationary with mean µX , then, because
P

l h̃j,l = 0,

E{Wj,t} =

Lj−1X

l=0

h̃j,lE{Xt−l} = µX

Lj−1X

l=0

h̃j,l = 0

• because E{Wj,t} is known, we can form an unbiased estimator
of var {Wj,t} = ν2

X(τj)

• more generally, if {Xt} is nonstationary with stationary incre-
ments of order d, we can ensure E{Wj,t} = 0 if we pick the
filter width L such that L > 2d (in some cases, we might be
able to get away with just L = 2d)

WMTSA: 299–301 X–37



Wavelet Variance for Processes with
Stationary Backward Differences: VIII

• conclusions: ν2
X(τj) well-defined for {Xt} that is

− stationary: any L will do and E{Wj,t} = 0

− nonstationary with dth order stationary increments: need at
least L ≥ 2d, but might need L > 2d to get E{Wj,t} = 0

• if {Xt} is stationary, then
∞X

j=1

ν2
X(τj) = var {Xt} < ∞

(recall that each RV in a stationary process must have the same
finite variance)

WMTSA: 299–301, 305 X–38



Wavelet Variance for Processes with
Stationary Backward Differences: IX

• if {Xt} is nonstationary, then
∞X

j=1

ν2
X(τj) = ∞

• with a suitable construction, we can take the variance of a
nonstationary process with dth order stationary increments to
be ∞

• using this construction, we have
∞X

j=1

ν2
X(τj) = var {Xt}

for both the stationary and nonstationary cases

WMTSA: 299–301, 305 X–39



Background on Gaussian Random Variables

• N (µ,σ2) denotes a Gaussian (normal) RV with mean µ and
variance σ2

• will write

X
d
= N (µ,σ2)

to mean ‘RV X has same distribution as Gaussian RV’

• RV N (0, 1) often written as Z (called standard Gaussian or
standard normal)

• let Φ(·) be Gaussian cumulative distribution function

Φ(z) ≡ P[Z ≤ z] =

Z z

−∞

1√
(2π)

e−x2/2 dx

• inverse Φ−1(·) of Φ(·) is such that P[Z ≤ Φ−1(p)] = p

• Φ−1(p) called p× 100% percentage point

WMTSA: 256–257 X–40



Background on Chi-Square Random Variables

• X said to be a chi-square RV with η degrees of freedom if its
probability density function (PDF) is given by

fX(x; η) =
1

2η/2Γ(η/2)
x(η/2)−1e−x/2, x ≥ 0, η > 0

• χ2
η denotes RV with above PDF

• 3 important facts: E{χ2
η} = η; var {χ2

η} = 2η; and, if η is
a positive integer and if Z1, . . . , Zη are independent N (0, 1)
RVs, then

Z2
1 + · · · + Z2

η
d
= χ2

η

• let Qη(p) denote the pth percentage point for the RV χ2
η:

P[χ2
η ≤ Qη(p)] = p

WMTSA: 263–264 X–41



Unbiased Estimator of Wavelet Variance: I

• given a realization of X0, X1, . . . , XN−1 from a process with
dth order stationary differences, want to estimate ν2

X(τj)

• for wavelet filter such that L ≥ 2d and E{Wj,t} = 0, have

ν2
X(τj) = var {Wj,t} = E{W 2

j,t}
• can base estimator on squares of

fWj,t ≡
Lj−1X

l=0

h̃j,lXt−l mod N, t = 0, 1, . . . , N − 1

• recall that

Wj,t ≡
Lj−1X

l=0

h̃j,lXt−l, t ∈ Z

WMTSA: 306 X–42



Unbiased Estimator of Wavelet Variance: II

• comparing

fWj,t =

Lj−1X

l=0

h̃j,lXt−l mod N with Wj,t ≡
Lj−1X

l=0

h̃j,lXt−l

says that fWj,t = Wj,t if ‘mod N ’ not needed; this happens
when Lj − 1 ≤ t < N (recall that Lj = (2j − 1)(L− 1) + 1)

• if N − Lj ≥ 0, unbiased estimator of ν2
X(τj) is

ν̂2
X(τj) ≡

1

N − Lj + 1

N−1X

t=Lj−1

fW 2
j,t =

1

Mj

N−1X

t=Lj−1

W
2
j,t,

where Mj ≡ N − Lj + 1

WMTSA: 306 X–43



Statistical Properties of ν̂2
X(τj)

• assume that {Wj,t} is Gaussian stationary process with mean
zero and ACVS {sj,τ}

• suppose {sj,τ} is such that

Aj ≡
∞X

τ=−∞
s2
j,τ < ∞

(if Aj = ∞, can make it finite usually by just increasing L)

• can show that ν̂2
X(τj) is asymptotically Gaussian with mean

ν2
X(τj) and large sample variance 2Aj/Mj; i.e.,

ν̂2
X(τj)− ν2

X(τj)

(2Aj/Mj)1/2
=

M
1/2
j (ν̂2

X(τj)− ν2
X(τj))

(2Aj)1/2

d
= N (0, 1)

approximately for large Mj ≡ N − Lj + 1
WMTSA: 307 X–44



Estimation of Aj

• in practical applications, need to estimate Aj =
P

τ s2
j,τ

• can argue that, for large Mj, the estimator

Âj ≡

≥
ŝ
(p)
j,0

¥2

2
+

Mj−1X

τ=1

≥
ŝ
(p)
j,τ

¥2
,

is approximately unbiased, where

ŝ
(p)
j,τ ≡

1

Mj

N−1−|τ |X

t=Lj−1

fWj,t
fWj,t+|τ |, 0 ≤ |τ | ≤ Mj − 1

• Monte Carlo results: Âj reasonably good for Mj ≥ 128

WMTSA: 312 X–45



Confidence Intervals for ν2
X(τj): I

• based upon large sample theory, can form a 100(1− 2p)% con-
fidence interval (CI) for ν2

X(τj):
"

ν̂2
X(τj)− Φ−1(1− p)

p
2Ajp
Mj

, ν̂2
X(τj) + Φ−1(1− p)

p
2Ajp
Mj

#

;

i.e., random interval traps unknown ν2
X(τj) with probability

1− 2p

• if Aj replaced by Âj, approximate 100(1− 2p)% CI

• critique: lower limit of CI can very well be negative even though
ν2
X(τj) ≥ 0 always

• can avoid this problem by using a χ2 approximation

WMTSA: 311 X–46



Confidence Intervals for ν2
X(τj): II

• χ2
η useful for approximating distribution of linear combinations

of squared Gaussians

• let U1, U2, . . . , UK be K independent Gaussian RVs with mean
0 & variance σ2; then, since var {U2

k} = 2σ4,

Q ≡
KX

k=1

λkU
2
k has E{Q} = σ2

KX

k=1

λk & var {Q} = 2σ4
KX

k=1

λ2
k

• take distribution of Q to be that of the RV aχ2
η, where a and

equivalent degrees of freedom (EDOF) η are to be determined

• because E{χ2
η} = η and var {χ2

η} = 2η, we have E{aχ2
η} = aη

and var {aχ2
η} = 2a2η

• can equate E{Q} & var {Q} to aη & 2a2η to determine a & η

WMTSA: 313 X–47



Confidence Intervals for ν2
X(τj): III

• obtain

E{Q} = aη = σ2
KX

k=1

λk and var {Q} = 2a2η = 2σ4
KX

k=1

λ2
k,

which, when combined, yield

η =
2(E{Q})2
var {Q} =

(
PK

k=1 λk)2
PK

k=1 λ2
k

and a = σ2
PK

k=1 λ2
kPK

k=1 λk

• can also use to approximate sums of correlated squared Gaus-

sians with zero means, e.g., ν̂2
X(τj) = 1

Mj

PN−1
t=Lj−1 W

2
j,t

• can determine η based upon E{ν̂2
X(τj)} = ν2

X(τj) and an
approximation for var {ν̂2

X(τj)}

WMTSA: 313 X–48



Three Ways to Set η: I

1. use large sample theory with appropriate estimates:

η =
2(E{ν̂2

X(τj)})2

var {ν̂2
X(τj)}

≈
2ν4

X(τj)

2Aj/Mj
suggests η̂1 =

Mjν̂
4
X(τj)

Âj

2. assume nominal shape for SDF of {Xt}: SX(f) = hC(f),
where C(·) is known, but h is not; though questionable, get
acceptable CIs using

η2 =

2

µPb(Mj−1)/2c
k=1 Cj(fk)

∂2

Pb(Mj−1)/2c
k=1 C2

j (fk)
& Cj(f) ≡

Z 1/2

−1/2

eH(D)
j (f)C(f) df

3. make an assumption about the effect of wavelet filter on {Xt}
to obtain simple (but effective!) approximation

η3 = max{Mj/2j, 1}
WMTSA: 313–315 X–49



Three Ways to Set η: II

• comments on three approaches

1. η̂1 requires estimation of Aj

− works well for Mj ≥ 128 (5% to 10% errors on average)
− can yield optimistic CIs for smaller Mj

2. η2 requires specification of shape of SX(·)
− common practice in, e.g., atomic clock literature

3. η3 assumes band-pass approximation

− default method if Mj small and there is no reasonable
guess at shape of SX(·)

WMTSA: 313–315 X–50



Confidence Intervals for ν2
X(τj): IV

• after η has been determined, can obtain a CI for ν2
X(τj)

• Exer. [313b]: with prob. 1− 2p, the random interval
"

ην̂2
X(τj)

Qη(1− p)
,
ην̂2

X(τj)

Qη(p)

#

traps the true unknown ν2
X(τj)

• lower limit is now nonnegative

• get approximate 100(1− 2p)% CI for ν2
X(τj), with approxima-

tion improving as N →∞, if we use η̂1 to estimate η

• as N →∞, above CI and Gaussian-based CI converge

WMTSA: 313 X–51



Atomic Clock Deviates: I
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Atomic Clock Deviates: II

• top plot: errors {Xt} in time kept by atomic clock 571 as
compared to time kept at Naval Observatory (measured in mi-
croseconds, where 1,000,000 microseconds = 1 second)

• middle: first backward differences {X(1)
t } in nanoseconds

(1000 nanoseconds = 1 microsecond)

• bottom: second backward differences {X(2)
t }, also in nanosec-

onds

• if {Xt} nonstationary with dth order stationary increments,
need L ≥ 2d, but might need L > 2d to get E{Wj,t} = 0

• Q: what is an appropriate L here?

WMTSA: 317–318 X–53



Atomic Clock Deviates: III
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Atomic Clock Deviates: IV

• square roots of wavelet variance estimates for atomic clock time
errors {Xt} based upon unbiased MODWT estimator with

− Haar wavelet (x’s in left-hand plot, with linear fit)

− D(4) wavelet (circles in left- and right-hand plots)

− D(6) wavelet (pluses in left-hand plot).

• Haar wavelet inappropriate

− need {X(1)
t } to be a realization of a stationary process with

mean 0 (stationarity might be OK, but mean 0 is way off)

− see Exer. [320b] for explanation of linear appearance

• 95% confidence intervals in the right-hand plot are the square
roots of intervals computed using the chi-square approximation
with η given by η̂1 for j = 1, . . . , 6 and by η3 for j = 7 & 8
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Wavelet Variance Analysis of Time Series
with Time-Varying Statistical Properties

• each wavelet coefficient fWj,t formed using portion of Xt

• suppose Xt associated with actual time t0 + t ∆t

∗ t0 is actual time of first observation X0

∗ ∆t is spacing between adjacent observations

• suppose h̃j,l is least asymmetric Daubechies wavelet

• can associate fWj,t with an interval of width 2τj ∆t centered at

t0 + (2j(t + 1)− 1− |ν(H)
j | mod N) ∆t,

where, e.g., |ν(H)
j | = [7(2j − 1) + 1]/2 for LA(8) wavelet

• can thus form ‘localized’ wavelet variance analysis (implicitly
assumes stationarity or stationary increments locally)

WMTSA: 114–115 X–56



Subtidal Sea Level Fluctuations: I

o
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• estimated time-dependent LA(8) wavelet variances for physical
scale τ2 ∆t = 1 day based upon averages over monthly blocks
(30.5 days, i.e., 61 data points)

• plot also shows a representative 95% confidence interval based
upon a hypothetical wavelet variance estimate of 1/2 and a
chi-square distribution with η = 15.25
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Subtidal Sea Level Fluctuations: II
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• estimated LA(8) wavelet variances for physical scales τj ∆t =
2j−2 days, j = 2, . . . , 7, grouped by calendar month
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Annual Minima of Nile River
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• left-hand plot: annual minima of Nile River

• right: Haar ν̂2
X(τj) before (x’s) and after (o’s) year 715.5, with

95% confidence intervals based upon χ2
η3

approximation
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Vertical Shear in the Ocean: I
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• selected ‘stationary’ portion of vertical shear measurements

{Xt} (top plot) and their first backward differences {X(1)
t }
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Vertical Shear in the Ocean: II
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• unbiased MODWT wavelet variance estimates using the follow-
ing wavelet filters: Haar (x’s in left-hand plot, through which
two regression lines have been fit); D(4) (small circles, right-
hand plot); D(6) (pluses, both plots); and LA(8) (big circles,
right-hand plot).
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Vertical Shear in the Ocean: III
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• D(6) wavelet variance estimates, along with 95% confidence
intervals for true wavelet variance with EDOFs determined
by, from left to right within each group of 3, η̂1 (estimated
from data), η2 (using a nominal model for SX(·)) and η3 =
max{Mj/2j, 1}
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Some Extensions and Ongoing Work

• biased estimators of wavelet variance

• unbiased estimator of wavelet variance for ‘gappy’ time series

• asymptotic theory for non-Gaussian processes satisfying a cer-
tain ‘mixing’ condition

• wavelet cross-covariance and cross-correlation

• extension of notion and estimators to random fields
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Summary

• wavelet variance gives scale-based analysis of variance

• presented statistical theory for Gaussian processes with station-
ary increments

• in addition to the applications we have considered, the wavelet
variance has been used to analyze

− genome sequences

− changes in variance of soil properties

− canopy gaps in forests

− accumulation of snow fields in polar regions

− boundary layer atmospheric turbulence

− regular and semiregular variable stars

X–64
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