Wavelet Variance — QOutline

e examples of time series to motivate discussion
e decomposition of sample variance using wavelets
e theoretical wavelet variance for stochastic processes

— stationary processes

— nonstationary processes with stationary differences
e sampling theory for Gaussian processes

e four examples, including use on time series with time-varying
statistical properties

e sumiary



Examples: Time Series X; Versus Time Index ¢

Xy (a)

(c)
X
t | @

(a) atomic clock frequency deviates (daily observations, N = 1025)
(b) subtidal sea level fluctuations (twice daily, N = 8746)

©

() vertical shear in the ocean (0.1 meters, N = 4096)

e four series are visually different

Nile River minima (annual, N = 663)

e goal of time series analysis is to quantify these differences

WMTSA: 8, 184, 192, 328 X-2



Decomposing Sample Variance of Time Series

e one approach: quantify differences by analysis of variance

o let X, Xq,..., Xxy_1 represent time series with N values
e let X denote sample mean of X;'s: X = ~ Zi\ial X

o let &gf denote sample variance of X;'s:

N—-1

5 1 2

e idea is to decompose (analyze, break up) 0% into pieces that
quantify how time series are different

e wavelet variance does analysis based upon differences between
(possibly weighted) adjacent averages over scales

X-3



Empirical Wavelet Variance

e define empirical wavelet variance for scale 7']- =Y

N 1 Lj—
2 __ 1172 _
VX<T] = — Z W Rz Where = Z 7, lXt—l mod N
t 0 [=0
o if N =2/ obtain analysis (decomposition) of sample variance:
1 N-—1 ) J
~2 ~ ~2)
X =72, (N-X)"=) k()
=0 =1

(if N not a power of 2, can analyze variance to any level Jj,
but need additional component involving scaling coefficients)

e interpretation: V%(T]) is portion of &g( due to changes in av-

erages over scale 7;; 1.e., ‘scale by scale” analysis of variance

WMTSA: 298 X4



Example of Empirical Wavelet Variance

e wavelet variances for time series Xy and Y; of length N = 16,
cach with zero sample mean and same sample variance

20 0.3
X; 0 X { { o T S ] l 5 (7;)
—2 00t 4]
20 0.3
}/t 0 ‘ l T I | ! ‘ { i J { l D%(Ty)
—2 | | | | 0.0 L1
0 5) 10 15 1 2 4 8
t Tj
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Second Example of Empirical Wavelet Variance

e top: part of subtidal sea level data (blue line shows scale of 16)

75
50 —
25
0
-25
-50 1 1 | 1 1 | 1 1 | 1 1 |

0 48 96 144 192
t

80
40
0 I I I I I I J

1 2 4 8 16 32 64 128
scale

e bottom: empirical wavelet variances D%(Tj)

e note: each W ; associated with a portion of X3, so W]-Qt Versus

. o . ~2
t offers time-based decomposition of 5-(7;)

WMTSA: 298 X6



Theoretical Wavelet Variance: 1

e now assume Xy is a real-valued random variable (RV)

o let {X,t € Z} denote a stochastic process, i.e., collection of
RVs indexed by ‘time’ ¢ (here Z denotes the set of all integers)

e use jth level equivalent MODWT filter {ﬁ% 1} on { X4} to create
a new stochastic process:

Lj—1
Wit= Y hjXiy, tez,
[=0
which should be contrasted with
Lj—1
Wie= > hjiXi jmoan, t=01,...,N—1
[=0

WMTSA: 295-296 X7



Theoretical Wavelet Variance: 11

o if Y is any RV, let E{Y } denote its expectation
o let var {Y'} denote its variance: var {Y'} = F{(Y — E{Y'})?}
e definition of time dependent wavelet variance:
v (1) = var {4},
with conditions on X; so that var {W;;} exists and is finite

o Vg(j ,(7j) depends on 7; and ¢

e will focus on time independent wavelet variance
5 B _
VX<7']’> = var {Wj,t}
(can adapt theory to handle time varying situation)

o V%((Tj) well-defined for stationary processes and certain related

processes, so let’s review concept of stationarity

WMTSA: 295-296 X-8



Definition of a Stationary Process

e if U and V are two RVs, denote their covariance by
covil, V} = E{(U — EQU})(V — E{V})}
e stochastic process Xy called stationary it

— E{X:} = px for all ¢, i.e., constant independent of ¢
— cov{ Xy, Xy4r} = sx 7, 1.e., depends on lag 7, but not ¢

® Sx 7, T € Z, is autocovariance sequence (ACVS)

o sx = cov{Xy, Xy} = var{ X} }; i.e., variance same for all ¢

WMTSA: 266 X9



Spectral Density Functions: 1

e spectral density function (SDF) given by

0.0

- 1
g _ — 12T fT < =
x(f)= ) sxre =5
T=—00
e above requires condition on ACVS such as
0@
> S
SX,T < O
T=—00

(sufficient but not necessary)

WMTSA: 267 X-10



Spectral Density Functions: 1I

e if square summability holds, {sx -} «— Sx(-) says
1/2 |
/ Sx(f)e?™ T df =sx ., TEL
—1/2 ’
e setting 7 = 0 yields fundamental result:
1/2
[ sx(0)dr = s = var (X}
—1/2
i.e., SDF decomposes var { X+} across frequencies f

e interpretation: Sx(f)Af is the contribution to var { X+} due
to frequencies in a small interval of width A f centered at f

WMTSA: 267 X-11



White Noise Process: 1

e simplest example of a stationary process is ‘white noise’
e process X; said to be white noise if

— it has a constant mean F{X;} = ux

— it has a constant variance var { Xt} = a%(

— cov { X¢, Xty r} = 0 for all t and nonzero 7; i.e., distinct RVs
in the process are uncorrelated

e ACVS and SDF for white noise take very simple forms:

2
oy, T=20;
sxyr=cov{Xy, Xpir b =4 & |
’ 0, otherwise.
®.0
—12
Sx(f) =Y sy,e P T =sx,
T=—00

WMTSA: 268 X-12



White Noise Process: 11

e ACVS (left-hand plot), SDF (middle) and a portion of length

N = 64 of one realization (right) for a white noise process with
px = 0and 0% = 1.5

2 2 3

) I A A 0 L —3 | | |
0 2 4 6 0.0 0.5 0 32 64
T f t

e since Sx(f) = 1.5 for all f, contribution Sx(f)Af to a%( is
the same for all frequencies

WMTSA: 268 X-13



Wavelet Variance for Stationary Processes

e for stationary processes, wavelet variance decomposes var { X }:
O
2
> vx(r)) = var { Xy}
7=1

(above result similar to one for sample variance)

° Vg((frj) is thus contribution to var { X} due to scale T;

e note: vx(7;) has same units as X3, which is important for
interpretability

WMTSA: 296-297 X-14



Wavelet Variance for White Noise Process: 1

e for a white noise process, can conclude from Exer. [8.1] that
2 —1
VX(T]‘) X T

e note that

log (13 (r)) o — log ()

so plot of log (Vg((’rj)) vs. log (7;) is linear with a slope of —1

WMTSA: 296-297, 337 X-15



Wavelet Variance for White Noise Process: 11

102 E

10’ E

5 = 10";—
slope = —1 10"25

10-2_IIIIIL|,|I IIIIIL|,|] IIIIIL|,|] IIIIILI_I]
10710° 10" 10%2 108
T

o V%(Tj) versus 7; for j = 1,...,8 (left-hand plot), along with

sample of length N = 256 of Gaussian white noise

e largest contribution to var { Xy} is at smallest scale 7;

e note: later on, we will discuss fractionally differenced (FD)
processes that are characterized by a parameter 0; when 0 = 0,
an FD process is the same as a white noise process

WMTSA: 296-297, 337 X-16



Generalization to Certain Nonstationary Processes

o if wavelet filter is properly chosen, V%(Tj) well-defined for cer-
tain processes with stationary backward differences (increments);
these are also known as intrinsically stationary processes

e first order backward difference ot X is process defined by
1
X =X - X
e second order backward difference of X4 is process defined by

xP = x o xM o X —ox, 4 X

t—1
e X; said to have dth order stationary backward differences if
d
d
vi= ()0
k=0

forms a stationary process (d is a nonnegative integer)

WMTSA: 287-289 X-17



Examples of Processes with Stationary Increments

X; xM x?

0 256 0 256 0 256
t t t

e 1st column shows, from top to bottom, realizations from

(a) random walk: X; = 22:1 €y, & € 18 zero mean white noise
(b) like (a), but now € has mean of —0.2
(¢) random run: X; = 2:1 Y., where Y} is a random walk

e 2nd & 3rd columns show 1st & 2nd differences Xtm and Xt(2>

WMTSA: 287-289 X-18



Wavelet Variance for Processes with
Stationary Backward Differences: 1

o let { Xt} be nonstationary with dth order stationary differences

e if we use a Daubechies wavelet filter of width L satistying L >
2d, then Vg((’]'j) is well-defined and finite for all 7;, but now

0
2
Z vy (7)) = 00
j=1

WMTSA: 305 X-19



Wavelet Variance for Random Walk Process: 1

e random walk process Xy = ), €, has first order (d = 1)
stationary differences since Xy — Xy_1 = € (i.e., white noise)

e [ > 2d holds for all wavelets when d = 1; for Haar (L = 2),

() = 2 {er} <Tj N i) varfe}

6 27; 6 7
with the approximation becoming better as 7; increases

e note that V%(Tj) increases as 7; increases

e log (Vg((Tj)) ~ log (var {€t}/6) + log (7;), which says that a
plot of log (V%(Tj)) vs. log (7;) is & linear with a slope of +1

e as required, also have

O

val 1€
> k() = et (1+%+2+%+4+%+---) — 0
j=1

§

WMTSA: 337 X-20



Wavelet Variance for Random Walk Process: 11

102 E

10' £
§ = 10° /
slopex~ 1 10

10-2_IIIIIL|,|I IIIIIL|,|] IIIIIL|,|] IIIIILI_I]
10710° 10" 10%2 108
T

o V%(Tj) versus 7; for j = 1,...,8 (left-hand plot), along with
sample of length N = 256 of a Gaussian random walk process
e smallest contribution to var { X} is at smallest scale 7

e note: a fractionally differenced process with parameter 0 = 1
is the same as a random walk process

WMTSA: 337 X-21



Wavelet Variance for Processes with
Stationary Backward Differences: 11

e to see why Vg((Tj) is well-defined and finite if L > 2d, need

basic result from filtering theory: if {Y;} stationary with SDF
Sy (+), then

M—1
Zr= ) amYi-m
m=0
is also a stationary process, and its SDF' is
M—1 | :
Sy(f) = A(F)Sy(f), where A(f) = | S ape 2mfm|
m=0

from which it follows that its variance 1s

1/2
var {Z;} = / ndr= | ASy () dr.

~1/2

WMTSA: 267-268



Wavelet Variance for Processes with
Stationary Backward Differences: III

e example: first backward difference th =Y; —Y;_{, le.,

v — {1, -1 — ')

e here ag = 1, a; = —1 and ay, = 0 otherwise, yielding

A(f) = 4sin’(m f) = D(f)
(proof of the above is Exer. [105b])

WMTSA: 105-107 X-23



Wavelet Variance for Processes with
Stationary Backward Differences: 1V

e consider V%(Tl) (Exer. [304] generalizes result for 75, j > 2)

e by definition, ug((ﬁ) = var {Wu}, with Wl,t = ZZL:_OI Xy
o because hy = h;/+/2, have

- 2 L _ /
AP () = ) = sinktan) 3 (7 7)) ol
[=0
= DIHALS)
where, as before, D(f) = 4sin?(r f) and
L1

- L /
A= 3 (77 g
[=0

WMTSA: 105-107 X-24



Wavelet Variance for Processes with
Stationary Backward Differences: V

e interpret ﬁgD)( f)= D%( F)AL(f) as the squared gain function

for filter cascade consisting of three parts
e first part of cascade consists of a cascade of d first differences:
{X}} — {1,-1} — ... — {1,-1} — {Y:}

d of these
where {Y;} is stationary with SDF Sy (+)

o if % > d, second part uses % — d first differences:

{Yi} —L-U]— - — {1 — {Z}

% — d of these

where {Z;} is stationary with SDF S, (f) = Dé_d(f)ﬁ/(f)

WMTSA: 304-305 X-25



Wavelet Variance for Processes with
Stationary Backward Differences: VI

e third part uses averaging filter embedded within Daubechies
wavelet filter:

(2} — ALL) — (W),
where {Wl,t} is stationary with SDF given by
Si(f) = AL(f)Sz(f)
— DY) AL(f)Sy(f)
— DT AL (DU Sx(f) = HP (H)Sx ()

if we define an SDF for the nonstationary process { X} via

_Sy(f) . Sy(f)
=D )~ e
(Yaglom, 1958)

WMTSA: 304-305, 287 X-26



Wavelet Variance for Processes with
Stationary Backward Differences: VII

o for general 7;, can claim that, if {X;} has stationary incre-
ments of order d and if we use a Daubechies MODW'T wavelet

filter {h;} of width L > 2d, the fact that the resulting process

{W;+} is stationary with variance V%(Tj) says that

1/2
~(D
im= HP (1)Sx(f) df.
where ﬁ§D>() is the squared gain function for the jth level

equivalent filter {h i1t

WMTSA: 305 X-27



Fractionally Differenced (FD) Processes: 1

e can create a continuum of processes that ‘interpolate’ between
white noise and random walks using notion of ‘fractional differ-
encing’ (Granger and Joyeux, 1980; Hosking, 1981)

o FD(§) process is determined by 2 parameters 6 and o2, where
—00 < 6 < 00 and 02 > 0 (07 is less important than §)

o if { X3} is an FD(6) process, its SDF is given by

2 2
% %
S — € €
M= 53~ fism P
o if 6 < 1/2, FD process { X} is stationary, and, in particular,

— reduces to white noise if 0 = 0
— has ‘long memory’ or ‘long range dependence’ if 9 > 0
— is ‘antipersistent’ if § < 0 (i.e., cov {X¢, X311} < 0)

WMTSA: 281-285 X-28



Fractionally Differenced (FD) Processes: 11

oif 0 > 1/2, FD process { X} is nonstationary with dth order
stationary backward differences { Y3}
— here d = |§ + 1/2], where |z] is integer part of x
— {Y;} is stationary FD(é — d) process

e if 0 =1, FD process is the same as a random walk process

e using sin(z) &~ x for small z, can claim that, at low frequencies,

2 2

O¢ 0

S = ~
M= (e p ™
(approximation quite good for f € (0,0.1])

e right-hand side describes SDF for a ‘power law’ process with
exponent —29

WMTSA: 287-288 X-29



Fractionally Differenced (FD) Processes: 111

e except possibly for two or three smallest scales, have

1/2
G

vy (7))

Q

1/2J o2
i /1/2:f+1 tsZ(m )P

20’2 /1/2j 1 df C 25—1
(2m)20 J1jai+1 f20 7

e thus log (V%(Tj)) ~ log (C)+(20 —1)log (7;), so a log/log plot
of V%(Tj) vs. 7; looks approximately linear with slope 20 — 1
for 7; large enough

WMTSA: 297 X-30



LA (8) Wavelet Variance for 2 FD Processes
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e left-hand column: v5(7;) versus 7; based upon LA(8) wavelet

e right-hand: realization of length NV = 256 from each F'D process

e see overhead

WMTSA: 297

16 for 6 = 0 (white noise), which has slope = —1
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LA(8) Wavelet Variance for 2 More FD Processes
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m

= % is Kolmogorov turbulence; 0 = 1 is random walk

e note: positive slope indicates nonstationarity, while negative
slope indicates stationarity

WMTSA: 297 X-32



Expected Value of Wavelet Coeflicients

e in preparation for considering problem of estimating V%(Tj)

given an observed time series, let us consider F {Wj,t}

o if {X}} is nonstationary but has dth order stationary incre-
ments, let {Y;} be the stationary process obtained by differenc-
ing { Xt} a total of d times; if {X;} is stationary, let Y = X4

o Exer. [305]: with uy = E{Y;}, have
— E{W;} = Oifeither (i) L > 2d or (ii) L = 2d and pry- = 0
— E{W;+} #0if py # 0 and L = 2d

e thus have F {Wj,t} = 0 if L is picked large enough (L > 2d is
sufficient, but might not be necessary)

e as the argument that follows shows, highly desirable to have
E{W ;} = 0 in order to ease the job of estimating V%-(Tj)

WMTSA: 304-305 X-33



Estimation of a Process Variance: 1

e suppose {Uy} is a stationary process with mean up;r = E{U;}
and unknown variance O'U E{(U; — puy)?}

e can be difficult to estimate O'U for a stationary process

e to understand why, assume first that pg; is known

e when this is the case, can estimate O'%] using

N—-1

=S W )

t=0

-9
g

e estimator above is unbiased: E {6%]} = 0%]

WMTSA: 299-301 X-34



Estimation of a Process Variance: 11

e if yg7 is unknown (more common case), can estimate 0%] using
! N—-1 ! N—-1
6%]ENZ(U75—U)2, where UEN Ut
t=0 t=0

e can argue that F {(7%]} = 0%] —var{U}
e implies 0 < E{&%]} < 0%] because var {U} > 0
o E{&%]} — 0%] as N — oo if SDF exists ... but, for any

e > 0 (say, 0.00- - - 01) and sample size N (say, N = 101010)7
there is some FD(§) process {U} with 0 close to 1/2 such that
E{&%]} <e€- (7%];

i.e., In general, 6%] can be badly biased even for very large N

WMTSA: 299-301 X-35



Estimation of a Process Variance: 111

e example: realization of FD(0.4) process (0%] =1& N =1000)

3

—3[

e using puyy = 0 (lower horizontal line), obtain

e using U = (.53 (upper line), obtain

UM h “ | LA

1I Hlll IHII H\ If” HIJ | 'Ll 'JIHILI I'H'IIJHIIli LA

ol !
Wl

R
500
¢

0 1000

~2 -

52 = 0.99
67, = 0.71

e note that this is comparable to F {&%]} = (0.75

o for this particular example, we would need N > 101V to get

0%] — E{&%]} <
more than 1% of

WMTSA: 299-301

0.01, i.e., to reduce the bias so that it is no

true variance 0%] =]
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Estimation of a Process Variance: 1V

e conclusion: o7; can have substantial bias if pg7 is unknown
(can patch up by estimating §, but must make use of model)
o if {X¢} stationary with mean px, then, because >, h i1 =0,
Li—1

E{W;;} = Z hi B{ X1} = px Z hjj =0

o because E{W ;;} is known, we can form an unbiased estimator
of var {W; 4} = V%(Tj)

e more generally, if { X} is nonstationary with stationary incre-
ments of order d, we can ensure E{W,;} = 0 if we pick the

filler width L such that L > 2d (in some cases, we might be
able to get away with just L = 2d)

WMTSA: 299-301 X-37



Wavelet Variance for Processes with
Stationary Backward Differences: VIII

e conclusions: V%(Tj) well-defined for { X3} that is

— stationary: any L will do and E{W ;;} =0
— nonstationary with dth order stationary increments: need at
least L > 2d, but might need L > 2d to get E{W ;;} =0

o if { X} is stationary, then

©.9)

Z V%-(Tj) = var{X;} < o0
j=1

(recall that each RV in a stationary process must have the same
finite variance)

WMTSA: 299-301, 305 X-38



Wavelet Variance for Processes with
Stationary Backward Differences: 1X

o if { X}} is nonstationary, then
O
2
Z VX(T]') = 00
J=1

e with a suitable construction, we can take the variance of a
nonstationary process with dth order stationary increments to
be oo

e using this construction, we have
0. @)
> vx(ry) = var {X;}
7=1

for both the stationary and nonstationary cases

WMTSA: 299-301, 305 X-39



Background on Gaussian Random Variables

o N(u,0?) denotes a Gaussian (normal) RV with mean p and
variance o

e will write ;
X = N(p,07)
to mean ‘RV X has same distribution as Gaussian RV’

e RV N(0,1) often written as Z (called standard Gaussian or
standard normal)

o let ®(-) be Gaussian cumulative distribution function

D(z) = P|Z < 2| = /; wl%)

o inverse ®1(-) of ®(-) is such that P[Z < &~ (p)] = p
o O 1(p) called p x 100% percentage point

6_3;2/2 dx

WMTSA: 256-257 X-40



Background on Chi-Square Random Variables

e X said to be a chi-square RV with n degrees of freedom if its
probability density function (PDF) is given by

1
) — (1/2)—1,~/2

o X727 denotes RV with above PDF

e 3 important facts: E{X%} = 1; var {X%} = 2n; and, if n is
a positive integer and if Zj, ..., Z, are independent N (0, 1)
RVs, then

d
Zi+ -+ 27 =X,
o let @y(p) denote the pth percentage point for the RV X%i
Plx; < Qy(p)] =p

WMTSA: 263-264 X-41



Unbiased Estimator of Wavelet Variance: 1

e given a realization of Xq, X1,..., X y_1 from a process with
dth order stationary differences, want to estimate V%(Tj)

o for wavelet filter such that L > 2d and E{W ,;} = 0, have
— —9
vy (1)) = var {W ;} = E{W; ;}

e can base estimator on squares of

EZ lthmode t:O,l,...,N—l
[=0
e recall that

J
EZ hiXe—, tEZ
[=0

WMTSA: 306 X-42



Unbiased Estimator of Wavelet Variance: 11

e comparing

Lj_l Lj—l
Wit= > hjXe jmedn With Wip= > hj X
1=0 1=0

says that Wjjt = Wjjt if ‘mod N’ not needed; this happens
when L; —1 <t < N (recall that L; = (2/ —1)(L —1) +1)
o if N — L; >0, unbiased estimator of V%(Tj) is
N—

X (7)) = 5 L+1 Z Z Wi

WheI‘GMjEN—Lj—|—1

WMTSA: 306 X-43



Statistical Properties of VX(T])

o assume that {W;} is Gaussian stationary process with mean

zero and ACVS {s; ;}
e suppose {s; r} is such that

= 2
j= D Sjir <

T=—00
(if A; = oo, can make it finite usually by just increasing L)

A

e can show that VX<T]) is asymptotically Gaussian with mean

V%—(Tj) and large sample variance 2A4;/M;:; i.e.,
1/2
i)~ vilry) _ MR k) 4o
(24;/M;)!/?2 (24;)'/2 |

approximately for large M; = N — L; + 1

WMTSA: 307 X-44



Estimation of A j

2

e in practical applications, need to estimate A; = » s ir

e can argue that, for large M, the estimator

(é(p))Q M;—1

i \ 40 (P))
A= 3 (30)
T=1
is approximately unbiased, where

N—1—|7|
W= L W W, 0<|r] <M, —1
j77_ - M ]7t ]7t_|_|7_|7 - - ]

) t=L;—1

N

e Monte Carlo results: A; reasonably good for M; > 128

WMTSA: 312 X-45



Confidence Intervals for Vg((Tj): I

e based upon large sample theory, can form a 100(1 — 2p)% con-
fidence interval (CI) for V%(Tj)I

/2A; 2A.

~9 —1 J ~2 —1 J

vx(1j) — @ (1 —p) Uy (1) + @7 (1 —p) ;

_ v VM
i.e., random interval traps unknown Vg((Tj) with probability
1 —2p

o if A; replaced by flj, approximate 100(1 — 2p)% CI

e critique: lower limit of CI can very well be negative even though
V%(Tj) > 0 always

e can avoid this problem by using a y? approximation

WMTSA: 311 X-46



Confidence Intervals for V%(Tj)t IT

o X727 useful for approximating distribution of linear combinations
of squared Gaussians

e let Uy, Us,...,Uk be K independent Gaussian RVs with mean
0 & variance o?; then, since var {U ]%} = 20%,

K K K
Q= ZA;{U]% has F{Q} = 022)% & var{Q} = 2042)%
k=1 k=1 k=1

e take distribution of () to be that of the RV ax%, where a and
equivalent degrees of freedom (EDOF) n are to be determined

e because E{X%} = n and var {X%} = 21, we have E{ax%} = an
and var {ax%} = 2a°n

o can equate E{Q} & var {Q} to an & 241 to determine a & 7

WMTSA: 313 X-A47



Confidence Intervals for V%(T]) IT1

e obtain
K K
E{Q} = an =0’ Z A, and var{Q} = 2a°n = 20 Z A7,
k=1 k=1

which, when combined, yield

K 2
2E{Q}*  (Cpmi A 1 QZk 1k
= T g anda=
varQ} D k=17 >k Mk
e can also use to approximate sums of correlated squared Gaus-

| . 2 2
sians with zero means, e.g., VX(T]) M Zt L W

e can determine 7 based upon E{VX<T]'>} = V%(Tj) and an

approximation for var {ﬁg((T])}

WMTSA: 313 X-48



Three Ways to Set n: 1

1. use large sample theory with appropriate estimates:
2ELDS ()2 2w (7 M;vs (T
BRIV W) M)
var {05 (75) } 2A; /M, Aj
2. assume nominal shape for SDF of {X;}: Sx(f) = hC(f),

where C'(-) is known, but h is not; though questionable, get
acceptable Cls using

1)/2] ’
(Zk 1 Cj(fk)) 1/2 ~ (D)
M,—1)/2) & Ci(f) = M (Of) df
Zk 1 C?(fk) —1/2

3. make an assumption about the effect of wavelet filter on {X;}
to obtain simple (but effective!) approximation

N3 = max{M;/2/,1}

WMTSA: 313-315 X-49
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Three Ways to Set 7): 11

e comments on three approaches

L. 71 requires estimation of A
— works well for M; > 128 (5% to 10% errors on average)
— can yield optimistic Cls for smaller M;

2. 19 requires specification of shape of Sx(+)
— common practice in, e.g., atomic clock literature

3. n3 assumes band-pass approximation

— default method if Mj small and there is no reasonable
guess at shape of Sx(-)

WMTSA: 313-315 X-50



Confidence Intervals for V%(Tj): IV

e after n has been determined, can obtain a CI for V%(Tj)
e Eixer. [313b]: with prob. 1 — 2p, the random interval
k(1)) ()

_Qn(l — P)7 Qn(p)

traps the true unknown Vg((’rj)

e lower limit is now nonnegative

e get approximate 100(1 — 2p)% CI for V%(Tj), with approxima-
tion improving as N — o0, if we use 11 to estimate 7

e as NV — o0, above CI and Gaussian-based CI converge

WMTSA: 313 X-51
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Atomic Clock Deviates: 11

e top plot: errors { Xt} in time kept by atomic clock 571 as
compared to time kept at Naval Observatory (measured in mi-
croseconds, where 1,000,000 microseconds = 1 second)

e middle: first backward differences {Xtm} in nanoseconds
(1000 nanoseconds = 1 microsecond)

e bottom: second backward differences {Xt@)}, also in nanosec-
onds

o if {X¢} nonstationary with dth order stationary increments,
need L > 2d, but might need L > 2d to get E{W;;} =0

e (): what is an appropriate L here?

WMTSA: 317-318 X-53



Atomic Clock Deviates: 111
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Atomic Clock Deviates: 1V

e square roots of wavelet variance estimates for atomic clock time
errors { Xy} based upon unbiased MODW'T estimator with
— Haar wavelet (x’s in left-hand plot, with linear fit)
— D(4) wavelet (circles in left- and right-hand plots)
— D(6) wavelet (pluses in left-hand plot).

e Haar wavelet inappropriate

— need {Xtm} to be a realization of a stationary process with
mean 0 (stationarity might be OK, but mean 0 is way off)

— see Exer. [320b] for explanation of linear appearance

e 95% confidence intervals in the right-hand plot are the square
roots of intervals computed using the chi-square approximation
with 1 given by ny for y =1,...,6 and by n3 for j =7 & 8

WMTSA: 319 X-55



Wavelet Variance Analysis of Time Series
with Time-Varying Statistical Properties

e cach wavelet coefficient /W/j7t formed using portion of X3
e suppose X+ associated with actual time ¢+ t At

x T 1s actual time of first observation Xy
x At 1s spacing between adjacent observations

® Suppose iLj)l 1s least asymmetric Daubechies wavelet

e can associate Wj,t with an interval of width 27; At centered at

to+ (27(t 4+ 1) — 1 — 14" mod N) A,

where, e.g., |V§H)| = [7(2) — 1) + 1]/2 for LA(8) wavelet

e can thus form ‘localized” wavelet variance analysis (implicitly
assumes stationarity or stationary increments locally)

WMTSA: 114-115 X-56



Subtidal Sea Level Fluctuations: 1
100.0 F

10.0

1.0 _ }

0.1 . . . | . . . | . . . |
1980 1984 1988 1991
years

e estimated time-dependent LA(8) wavelet variances for physical
scale 79 At = 1 day based upon averages over monthly blocks
(30.5 days, i.e., 61 data points)

e plot also shows a representative 95% confidence interval based
upon a hypothetical wavelet variance estimate of 1/2 and a
chi-square distribution with n = 15.25

WMTSA: 324-326 X-57



Subtidal Sea Level Fluctuations: 11
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e estimated LA(8) wavelet variances for physical scales 7; At =
2] =2 days, 7 = 2,...,7, grouped by calendar month

WMTSA: 324-326 X-58



Annual Minima of Nile River

0.1 — ! | I

600 1300
1 2 4 8
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e left-hand plot: annual minima of Nile River

e right: Haar ﬁ%(Tj) before (x’s) and after (o’s) year 715.5, with
95% confidence intervals based upon X7273 approximation

WMTSA: 326-327 X-59



Vertical Shear in the Ocean: 1
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e selected ‘stationary’ portion of vertical shear measurements
{X:} (top plot) and their first backward differences {Xtm}

WMTSA: 327-328 X-60



Vertical Shear in the Ocean: 11
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e unbiased MODW'T wavelet variance estimates using the follow-
ing wavelet filters: Haar (x’s in left-hand plot, through which
two regression lines have been fit); D(4) (small circles; right-
hand plot); D(6) (pluses, both plots); and LA(8) (big circles,
right-hand plot).

WMTSA: 329 X-61



Vertical Shear in the Ocean: 111

10? i Hﬂ m
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9359
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7; At (meters)
e D(6) wavelet variance estimates, along with 95% confidence
intervals for true wavelet variance with EDOFs determined
by, from left to right within each group of 3, 7y (estimated

from data), no (using a nominal model for Sx(-)) and 73 =
max{M;/27,1}

WMTSA: 333 X-62



Some Extensions and Ongoing Work

e biased estimators of wavelet variance

e unbiased estimator of wavelet variance for ‘gappy’ time series

e asymptotic theory for non-Gaussian processes satisfying a cer-
tain ‘mixing’ condition

e wavelet cross-covariance and cross-correlation

e extension of notion and estimators to random fields

X-63



Summary

e wavelet variance gives scale-based analysis of variance

e presented statistical theory for Gaussian processes with station-
ary mcrements

e in addition to the applications we have considered, the wavelet
variance has been used to analyze
— genome sequences
— changes in variance of soil properties
— canopy gaps in forests
— accumulation of snow fields in polar regions
— boundary layer atmospheric turbulence

— regular and semiregular variable stars

X-64
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