Matching Pursuit – Basics

- idea: approximate X using a few # of 'time/frequency' vectors from large set of such vectors (cf. best basis)
- form 'dictionary' of vectors $\mathcal{D} \equiv \{\mathbf{d}_{\gamma} : \gamma \in \Gamma\}$

$$-\mathbf{d}_{\gamma} = \left[d_{\gamma,0}, d_{\gamma,1}, \dots, d_{\gamma,N-1}\right]^{T}$$

- each vector has unit norm: $\|\mathbf{d}_{\gamma}\|^2 = \sum_{l=0}^{N-1} d_{\gamma,l}^2 = 1$
- γ is vector of parameters connecting \mathbf{d}_{γ} to time/frequency; e.g., $\gamma = [j, n, t]^T$ for WP table dictionary
- Γ = finite set of possible values for γ
- \mathcal{D} contains basis for \mathcal{R}^N , but can be highly redundant (helps identify time/frequency content in \mathbf{X})
- matching pursuit successively approximates ${\bf X}$ with orthogonal projections onto elements of ${\cal D}$

Background Material

- recall that we can reconstruct a time series **X** from its DWT coefficients **W** via $\mathbf{X} = \mathcal{W}^T \mathbf{W}$, where $\mathbf{W} \equiv \mathcal{W} \mathbf{X}$
- *j*th coefficient in **W** is $\langle \mathbf{X}, \mathcal{W}_{j\bullet} \rangle$, i.e., the inner product of **X** & a column vector $\mathcal{W}_{j\bullet}$ whose elements are the *j*th row of \mathcal{W}

• hence we can write

$$\mathbf{X} = \mathcal{W}^T \mathbf{W} = \begin{bmatrix} \mathcal{W}_{0\bullet}, \mathcal{W}_{1\bullet}, \dots, \mathcal{W}_{N-1\bullet} \end{bmatrix} \begin{bmatrix} \langle \mathbf{X}, \mathcal{W}_{0\bullet} \rangle \\ \langle \mathbf{X}, \mathcal{W}_{1\bullet} \rangle \\ \vdots \\ \langle \mathbf{X}, \mathcal{W}_{N-1\bullet} \rangle \end{bmatrix}$$
$$= \sum_{j=0}^{N-1} \langle \mathbf{X}, \mathcal{W}_{j\bullet} \rangle \mathcal{W}_{j\bullet}$$

• regard $\langle \mathbf{X}, \mathcal{W}_{j\bullet} \rangle \mathcal{W}_{j\bullet}$ as approximation to \mathbf{X} based on just $\mathcal{W}_{j\bullet}$

Matching Pursuit Algorithm: I

• for $\mathbf{d}_{\gamma_0} \in \mathcal{D}$, form $\langle \mathbf{X}, \mathbf{d}_{\gamma_0} \rangle \mathbf{d}_{\gamma_0}$, and define residual vector: $\mathbf{R}^{(1)} \equiv \mathbf{X} - \langle \mathbf{X}, \mathbf{d}_{\gamma_0} \rangle \mathbf{d}_{\gamma_0}$ so that $\mathbf{X} = \langle \mathbf{X}, \mathbf{d}_{\gamma_0} \rangle \mathbf{d}_{\gamma_0} + \mathbf{R}^{(1)}$

• note that \mathbf{d}_{γ_0} and $\mathbf{R}^{(1)}$ are orthogonal (this is Exer. [240]):

$$\begin{aligned} \langle \mathbf{d}_{\gamma_0}, \mathbf{R}^{(1)} \rangle &= \langle \mathbf{d}_{\gamma_0}, \mathbf{X} - \langle \mathbf{X}, \mathbf{d}_{\gamma_0} \rangle \mathbf{d}_{\gamma_0} \rangle \\ &= \langle \mathbf{d}_{\gamma_0}, \mathbf{X} \rangle - \langle \mathbf{d}_{\gamma_0}, \langle \mathbf{X}, \mathbf{d}_{\gamma_0} \rangle \mathbf{d}_{\gamma_0} \rangle \\ &= \langle \mathbf{d}_{\gamma_0}, \mathbf{X} \rangle - \langle \mathbf{X}, \mathbf{d}_{\gamma_0} \rangle = 0 \end{aligned}$$

• hence $\langle \mathbf{X}, \mathbf{d}_{\gamma_0} \rangle \mathbf{d}_{\gamma_0} \& \mathbf{R}^{(1)}$ are also orthogonal, showing that $\|\mathbf{X}\|^2 = \|\langle \mathbf{X}, \mathbf{d}_{\gamma_0} \rangle \mathbf{d}_{\gamma_0}\|^2 + \|\mathbf{R}^{(1)}\|^2 = |\langle \mathbf{X}, \mathbf{d}_{\gamma_0} \rangle|^2 + \|\mathbf{R}^{(1)}\|^2$

• minimize energy in residuals by choosing $\gamma_0 \in \Gamma$ such that

$$|\langle \mathbf{X}, \mathbf{d}_{\gamma_0} \rangle| = \max_{\gamma \in \Gamma} |\langle \mathbf{X}, \mathbf{d}_{\gamma} \rangle|$$

Matching Pursuit Algorithm: II

• after first step of algorithm, second step is to treat the residuals in the same manner as **X** was treated in first step, yielding

$$\mathbf{R}^{(1)} = \langle \mathbf{R}^{(1)}, \mathbf{d}_{\gamma_1} \rangle \mathbf{d}_{\gamma_1} + \mathbf{R}^{(2)},$$

with \mathbf{d}_{γ_1} picked such that

$$\left| \langle \mathbf{R}^{(1)}, \mathbf{d}_{\gamma_1} \rangle \right| = \max_{\gamma \in \Gamma} \left| \langle \mathbf{R}^{(1)}, \mathbf{d}_{\gamma} \rangle \right|$$

• letting $\mathbf{R}^{(0)} \equiv \mathbf{X}$, after *m* such steps, have additive decomposition:

$$\mathbf{X} = \sum_{k=0}^{m-1} \langle \mathbf{R}^{(k)}, \mathbf{d}_{\gamma_k} \rangle \mathbf{d}_{\gamma_k} + \mathbf{R}^{(m)}$$

Matching Pursuit Algorithm: III

• also have an energy decomposition:

$$\begin{aligned} \|\mathbf{X}\|^{2} &= \sum_{k=0}^{m-1} \|\langle \mathbf{R}^{(k)}, \mathbf{d}_{\gamma_{k}} \rangle \mathbf{d}_{\gamma_{k}} \|^{2} + \|\mathbf{R}^{(m)}\|^{2} \\ &= \sum_{k=0}^{m-1} |\langle \mathbf{R}^{(k)}, \mathbf{d}_{\gamma_{k}} \rangle|^{2} + \|\mathbf{R}^{(m)}\|^{2} \end{aligned}$$

• note: as m increases, $\|\mathbf{R}^{(m)}\|^2$ must decrease (must reach zero under certain conditions)

Matching Pursuit Dictionaries: I

- key to matching pursuit is dictionary
- simplest dictionary: DWT dictionary

$$-\mathcal{D} \text{ contains } \mathbf{d}_{\gamma} \equiv \mathcal{W}_{j\bullet}, \ j = 0, \dots, N-1$$

$$-\gamma = [j] \text{ associates } \mathcal{W}_{j\bullet} \text{ with time/scale}$$

$$-\langle \mathbf{X}, \mathbf{d}_{\gamma} \rangle = W_j \text{ is } j \text{th DWT coefficient}$$

$$- \text{ 1st step picks } W_j \text{ with largest magnitude:}$$

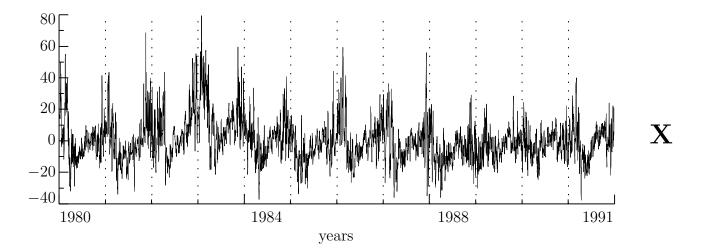
$$\mathbf{X} = W_{(0)} \mathbf{W}_{(0)} + \mathbf{R}^{(1)} \text{ with } \mathbf{R}^{(1)} = \sum_{j \neq (0)} W_j \mathbf{W}_{j\bullet}$$

- 2nd step picks out W_j with 2nd largest $|W_j|$
- for any orthonormal \mathcal{D} , matching pursuit approximates \mathbf{X} using coefficients with largest magnitudes

Matching Pursuit Dictionaries: II

- larger dictionary: wavelet packet table dictionary (more flexible than best basis)
- even larger dictionary: above combined with basis vectors corresponding to a discrete Fourier transform (DFT)
- level J_0 MODWT dictionary
 - works for all N, shift invariant, redundant
 - \mathcal{D} contains vectors whose elements are either * normalized rows of $\widetilde{\mathcal{W}}_j$, $j = 1, \ldots, J_0$, or * normalized rows of $\widetilde{\mathcal{V}}_{J_0}$

Example – Subtidal Sea Levels: I



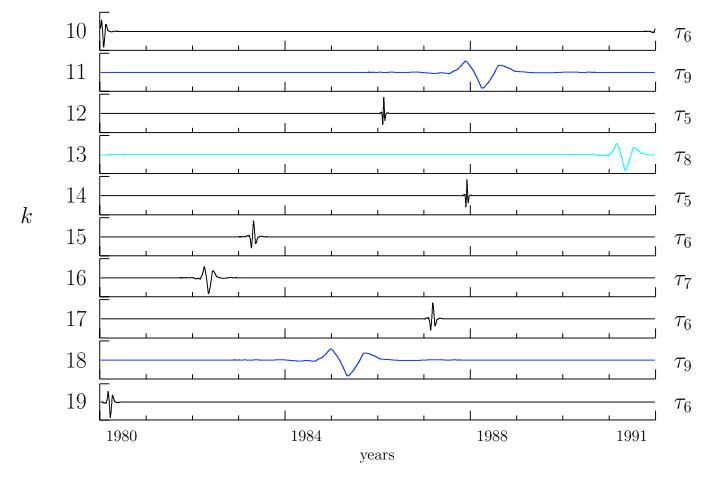
 \bullet recall subtidal sea level series ${\bf X}$ for Crescent City, CA



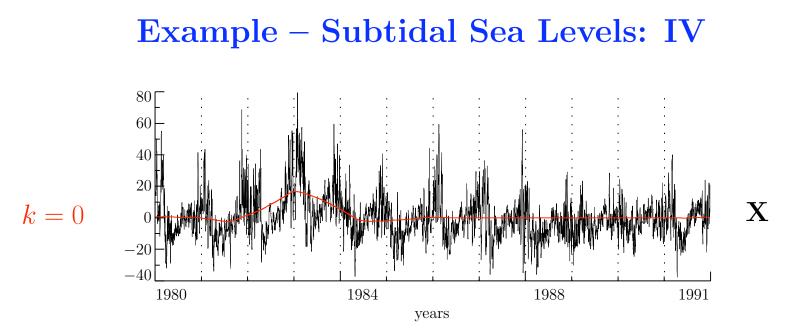
• use $J_0 = 10 \text{ LA}(8) \text{ MODWT}$ dictionary (96,206 vectors in all)

• above shows first 10 vectors picked by matching pursuit $(\times \pm 1)$

Example – Subtidal Sea Levels: III



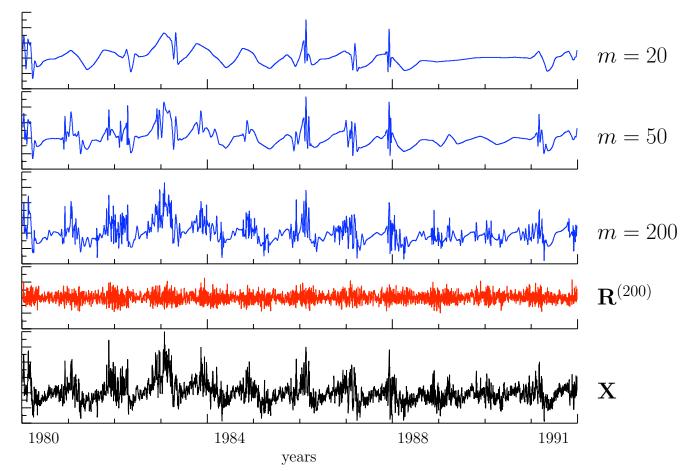
• next 10 vectors picked by matching pursuit $(\times \pm 1)$



• very first (k = 0) associated with overall increase in 1982–3

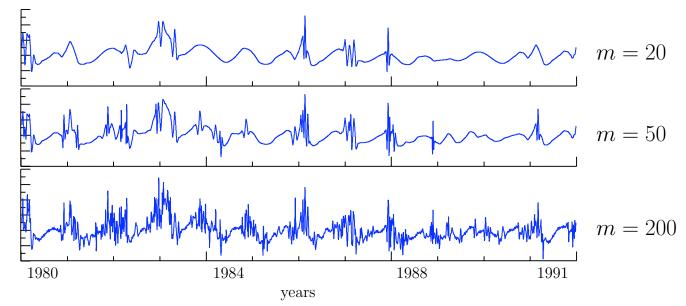
- first 10 are for $\tau_8 \Delta t = 64$ to $\lambda_{10} \Delta t = 512$ days
- 7 of first 20 are associated with $\tau_9 \Delta t = 128$ days (needed to account for seasonal variability)
- k = 3 has inverted sign & picks out gradual dip in Spring, 1984 (cf. 1981, 3, 5, 7 & 8); k = 8 also inverted, but is a boundary effect

Example – Subtidal Sea Levels: V



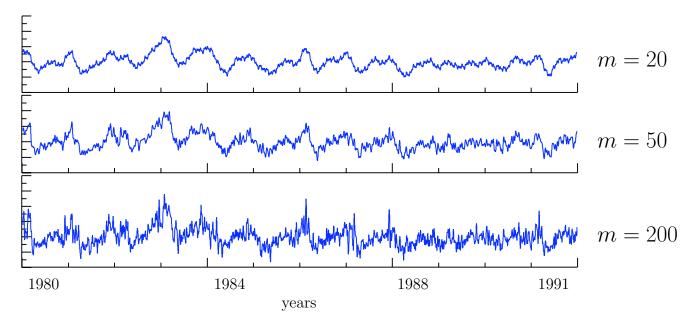
• matching pursuit approximations of orders m = 20, 50 and 200, along with residuals for m = 200

Example – Subtidal Sea Levels: VI



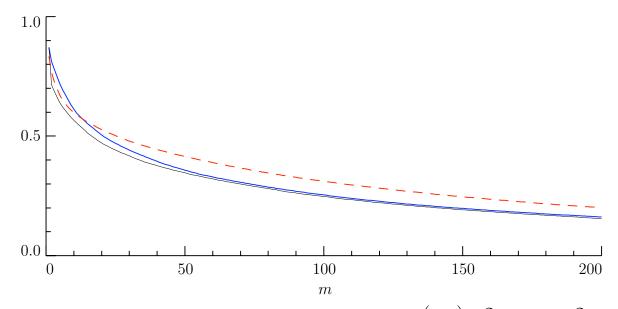
- matching pursuit approximations of orders m = 20, 50 and 200, but now using a dictionary augmented to include basis vectors corresponding to the DFT
- k = 0 choice same as before, but k = 1 choice is DFT vector with period close to one year
- for $2 \le k < 200$, only k = 65, 84 and 192 are DFT vectors

Example – Subtidal Sea Levels: VII



• matching pursuit approximations of orders m = 20, 50 and 200, but now using a dictionary consisting of just the basis vectors corresponding to the DFT

Example – Subtidal Sea Levels: VIII



- normalized residual sum of squares $\|\mathbf{R}^{(\mathbf{m})}\|^2 / \|\mathbf{X}\|^2$ versus number of terms m in matching pursuit approximation using the MODWT dictionary (thick curve), the DFT-based dictionary (dashed) and both dictionaries combined (thin)
- combined dictionary does best for small m, but MODWT dictionary by itself becomes competitive as m increases