
Matching Pursuit – Basics

• idea: approximate X using a few # of ‘time/frequency’ vectors
from large set of such vectors (cf. best basis)

• form ‘dictionary’ of vectors D ≡ {dγ : γ ∈ Γ}

− dγ =
£
dγ,0, dγ,1, . . . , dγ,N−1

§T

− each vector has unit norm: kdγk2 =
PN−1

l=0 d2
γ,l = 1

− γ is vector of parameters connecting dγ to time/frequency;
e.g., γ = [j, n, t]T for WP table dictionary

− Γ = finite set of possible values for γ

− D contains basis forRN , but can be highly redundant (helps
identify time/frequency content in X)

• matching pursuit successively approximates X with orthogonal
projections onto elements of D

WMTSA: 239 IX–1



Background Material

• recall that we can reconstruct a time series X from its DWT
coefficients W via X = WTW, where W ≡WX

• jth coefficient in W is hX,Wj•i, i.e., the inner product of X
& a column vector Wj• whose elements are the jth row of W

• hence we can write

X = WTW = [W0•,W1•, . . . ,WN−1•]





hX,W0•i
hX,W1•i

...
hX,WN−1•i





=
N−1X

j=0

hX,Wj•iWj•

• regard hX,Wj•iWj• as approximation to X based on justWj•

WMTSA: 43, 57 IX–2



Matching Pursuit Algorithm: I

• for dγ0 ∈ D, form hX,dγ0idγ0, and define residual vector:

R(1) ≡ X− hX,dγ0idγ0 so that X = hX,dγ0idγ0 + R(1)

• note that dγ0 and R(1) are orthogonal (this is Exer. [240]):

hdγ0,R
(1)i =

≠
dγ0,X− hX,dγ0idγ0

Æ

= hdγ0,Xi −
≠
dγ0, hX,dγ0

Æ
dγ0i

= hdγ0,Xi − hX,dγ0i = 0

• hence hX,dγ0idγ0 & R(1) are also orthogonal, showing that

kXk2 = khX,dγ0idγ0k
2 + kR(1)k2 =

ØØhX,dγ0i
ØØ2 + kR(1)k2

• minimize energy in residuals by choosing γ0 ∈ Γ such that
ØØhX,dγ0i

ØØ = max
γ∈Γ

ØØhX,dγi
ØØ

WMTSA: 239–240 IX–3



Matching Pursuit Algorithm: II

• after first step of algorithm, second step is to treat the residuals
in the same manner as X was treated in first step, yielding

R(1) = hR(1),dγ1idγ1 + R(2),

with dγ1 picked such that
ØØhR(1),dγ1i

ØØ = max
γ∈Γ

ØØhR(1),dγi
ØØ

• letting R(0) ≡ X, after m such steps, have additive decompo-
sition:

X =
m−1X

k=0

hR(k),dγkidγk + R(m)

WMTSA: 239–240 IX–4



Matching Pursuit Algorithm: III

• also have an energy decomposition:

kXk2 =
m−1X

k=0

khR(k),dγkidγkk
2 + kR(m)k2

=
m−1X

k=0

|hR(k),dγki|
2 + kR(m)k2

• note: as m increases, kR(m)k2 must decrease (must reach zero
under certain conditions)

WMTSA: 239–240 IX–5



Matching Pursuit Dictionaries: I

• key to matching pursuit is dictionary

• simplest dictionary: DWT dictionary

− D contains dγ ≡Wj•, j = 0, . . . , N − 1

− γ = [j] associates Wj• with time/scale

− hX,dγi = Wj is jth DWT coefficient

− 1st step picks Wj with largest magnitude:

X = W(0)W(0) + R(1) with R(1) =
X

j 6=(0)

WjWj•

− 2nd step picks out Wj with 2nd largest |Wj|
− for any orthonormal D, matching pursuit approximates X

using coefficients with largest magnitudes

WMTSA: 240–241 IX–6



Matching Pursuit Dictionaries: II

• larger dictionary: wavelet packet table dictionary (more flexible
than best basis)

• even larger dictionary: above combined with basis vectors cor-
responding to a discrete Fourier transform (DFT)

• level J0 MODWT dictionary

− works for all N , shift invariant, redundant

− D contains vectors whose elements are either

∗ normalized rows of fWj, j = 1, . . . , J0, or

∗ normalized rows of eVJ0

WMTSA: 241–242 IX–7



Example – Subtidal Sea Levels: I
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• recall subtidal sea level series X for Crescent City, CA
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Example – Subtidal Sea Levels: II
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• use J0 = 10 LA(8) MODWT dictionary (96,206 vectors in all)

• above shows first 10 vectors picked by matching pursuit (×±1)

WMTSA: 243–247 IX–9



Example – Subtidal Sea Levels: III
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• next 10 vectors picked by matching pursuit (×± 1)
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Example – Subtidal Sea Levels: IV
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• very first (k = 0) associated with overall increase in 1982–3

• first 10 are for τ8 ∆t = 64 to λ10 ∆t = 512 days

• 7 of first 20 are associated with τ9 ∆t = 128 days (needed to
account for seasonal variabilty)

• k = 3 has inverted sign & picks out gradual dip in Spring, 1984
(cf. 1981, 3, 5, 7 & 8); k = 8 also inverted, but is a boundary
effect

WMTSA: 243–247 IX–11



Example – Subtidal Sea Levels: V
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• matching pursuit approximations of orders m = 20, 50 and 200,
along with residuals for m = 200
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Example – Subtidal Sea Levels: VI
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• matching pursuit approximations of orders m = 20, 50 and 200,
but now using a dictionary augmented to include basis vectors
corresponding to the DFT

• k = 0 choice same as before, but k = 1 choice is DFT vector
with period close to one year

• for 2 ≤ k < 200, only k = 65, 84 and 192 are DFT vectors
WMTSA: 243–247 IX–13



Example – Subtidal Sea Levels: VII
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• matching pursuit approximations of orders m = 20, 50 and 200,
but now using a dictionary consisting of just the basis vectors
corresponding to the DFT

WMTSA: 243–247 IX–14



Example – Subtidal Sea Levels: VIII
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• normalized residual sum of squares kR(m)k2/kXk2 versus num-
ber of terms m in matching pursuit approximation using the
MODWT dictionary (thick curve), the DFT-based dictionary
(dashed) and both dictionaries combined (thin)

• combined dictionary does best for small m, but MODWT dic-
tionary by itself becomes competitive as m increases

WMTSA: 243–247 IX–15


