Matching Pursuit — Basics

e idea: approximate X using a few # of ‘time/frequency’ vectors
from large set of such vectors (cf. best basis)

o form ‘dictionary’ of vectors D = {d~ : v € I'}

—dfy: [d’yOad’y,la""va ﬂT

— each vector has unit norm: ||d,||* = ZN b2 =1

— 7 1s vector of parameters connecting d~ to tlme/ frequency:
e.g., v = [j,n, ] for WP table dictionary

— ' = finite set of possible values for ~y

— D contains basis for RYY, but can be highly redundant (helps
identify time/frequency content in X)

e matching pursuit successively approximates X with orthogonal
projections onto elements of D
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Background Material

e recall that we can reconstruct a time series X from its DW'T

coefficients W via X = WLW, where W = WX

e jth coefficient in W is (X, Wj,), i.c., the inner product of X
& a column vector W, whose elements are the jth row of W

e hence we can write

<X7 W00>
X = WIW = Woe Wier ... W1 | & :W1‘>
B <X7 WN—10> i
N—-1
- Z (X, Wie)WV
1=0

o regard (X, Wje)Wje as approximation to X based on just Wi,

WMTSA: 43, 57 X2



Matching Pursuit Algorithm: I

o for dy, € D, form (X, d~,)dy,, and define residual vector:
R =X — (X, d,)d, so that X = (X, d-,)d, + R

e note that d-, and R<1> are orthogonal (this is Exer. [240]):

(dy, R dr, X = (X, dyg)dy)

(
< > < 707 <X d70> d70>
<dV()7 X> <X7 d70> =0

o hence (X, dy,)dy, & R are also orthogonal, showing that
2
X7 = 13X, dog)dg|” + IRV = [(X, dyg) [+ R

e minimize energy in residuals by choosing vy € I' such that
X,d = max [(X,d
X, = | (X. )
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Matching Pursuit Algorithm: II

e after first step of algorithm, second step is to treat the residuals
in the same manner as X was treated in first step, yielding

R 1 R 1 R 2
with dfn pleed such that

(R, doy)| = max [(RT. dy)]

e letting R = X, after m such steps, have additive decompo-

sition:
m—1

X =Y (RW,d,,)d, +R™
k=0

WMTSA: 239-240 X4



Matching Pursuit Algorithm: III

e also have an energy decomposition:

m—1
2
IX[1P = > IRE, dy)dy, )2+ R
k=0
m—1
= Y |(R™ a2 + IR
k=0

m)HZ

e note: as m increases, | R must decrease (must reach zero

under certain conditions)

WMTSA: 239-240 IX-5



Matching Pursuit Dictionaries: 1

e key to matching pursuit is dictionary
e simplest dictionary: DW'T' dictionary
— D contains dy = Wie, j =0,..., N =1
— 7y = |7] associates W;q with time/scale
— (X, dy) = W; is jth DWT coefficient
— 1Ist step picks W with largest magnitude:

J7#(0)

— 2nd step picks out W with 2nd largest ||

— for any orthonormal D, matching pursuit approximates X
using coefficients with largest magnitudes

WMTSA: 240-241 IX-6



Matching Pursuit Dictionaries: 11

e larger dictionary: wavelet packet table dictionary (more flexible
than best basis)

e even larger dictionary: above combined with basis vectors cor-
responding to a discrete Fourier transform (DFT)

e level Jy MODWT dictionary

— works for all IV, shift invariant, redundant
— D contains vectors whose elements are either

« normalized rows of W, 7 =1,...,Jy, or

* normalized rows of Vj,

WMTSA: 241-242 IX-7



Example — Subtidal Sea Levels: I
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e recall subtidal sea level series X for Crescent City, CA
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Example — Subtidal Sea Levels: 11
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e use Jy = 10 LA(8) MODWT dictionary (96,206 vectors in all)
e above shows first 10 vectors picked by matching pursuit (x £1)
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10
11
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19

e next 10 vectors picked by matching pursuit (x + 1)

WMTSA: 243-247

Example — Subtidal Sea Levels: 111
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Example — Subtidal Sea Levels: IV
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e very first (£ = 0) associated with overall increase in 19823

e first 10 are for 7g At = 64 to A\jg At = 512 days

e 7 of first 20 are associated with 79 At = 128 days (needed to
account for seasonal variabilty)

e k = 3 has inverted sign & picks out gradual dip in Spring, 1984
(cf. 1981, 3, 5, 7 & 8); k = 8 also inverted, but is a boundary

effect

WMTSA: 243-247 IX-11



Example — Subtidal Sea Levels: IV
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e very first (k = 0) associated with overall increase in 19823
e first 10 are for 7g At = 64 to A\jg At = 512 days

e 7 of first 20 are associated with 79 At = 128 days (needed to
account for seasonal variabilty)

e k = 3 has inverted sign & picks out gradual dip in Spring, 1984

(cf. 1981, 3, 5, 7 & 8); k = 8 also inverted, but is a boundary
effect

WMTSA: 243-247 IX-11



Example — Subtidal Sea Levels: IV
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e very first (k = 0) associated with overall increase in 19823

e first 10 are for 7g At = 64 to A\jg At = 512 days

e 7 of first 20 are associated with 79 At = 128 days (needed to
account for seasonal variabilty)

e k = 3 has inverted sign & picks out gradual dip in Spring, 1984

(cf. 1981, 3, 5, 7 & 8); k = 8 also inverted, but is a boundary
effect
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Example — Subtidal Sea Levels: IV
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e very first (k = 0) associated with overall increase in 19823
e first 10 are for 7g At = 64 to A\jg At = 512 days

e 7 of first 20 are associated with 79 At = 128 days (needed to
account for seasonal variabilty)

e /t = 3 has inverted sign & picks out gradual dip in Spring, 1984

(cf. 1981, 3, 5, 7 & 8); k = 8 also inverted, but is a boundary
effect
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Example — Subtidal Sea Levels: IV
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(k = 0) associated with overall increase in 1982-3

e first 10 are for 7g At = 64 to A\jg At = 512 days

e 7 of first 20 are associated with 79 At = 128 days (needed to
account for seasonal variabilty)

e k = 3 has inverted sign & picks out gradual dip in Spring, 1984
(cf. 1981, 3, 5, 7 & 8); k = 8 also inverted, but is a boundary

effect
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Example — Subtidal Sea Levels: IV
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(k = 0) associated with overall increase in 1982-3
e first 10 are for 7g At = 64 to A\jg At = 512 days

e 7 of first 20 are associated with 79 At = 128 days (needed to
account for seasonal variabilty)

e k = 3 has inverted sign & picks out gradual dip in Spring, 1984
(cf. 1981, 3, 5, 7 & 8); k = 8 also inverted, but is a boundary

effect
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Example — Subtidal Sea Levels: IV
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e very first (k = 0) associated with overall increase in 19823

e first 10 are for 7g At = 64 to A\jg At = 512 days

e 7 of first 20 are associated with 79 At = 128 days (needed to
account for seasonal variabilty)

e k = 3 has inverted sign & picks out gradual dip in Spring, 1984

(cf. 1981, 3, 5, 7 & 8); k = 8 also inverted, but is a boundary
effect

WMTSA: 243-247 IX-11



Example — Subtidal Sea Levels: IV
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e very first (k = 0) associated with overall increase in 19823
e first 10 are for 7g At = 64 to A\jg At = 512 days

e 7 of first 20 are associated with 79 At = 128 days (needed to
account for seasonal variabilty)

e k = 3 has inverted sign & picks out gradual dip in Spring, 1984
(cf. 1981, 3, 5, 7 & 8); k = 8 also inverted, but is a boundary
effect

WMTSA: 243-247 IX-11



Example — Subtidal Sea Levels: IV
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(k = 0) associated with overall increase in 1982-3

e first 10 are for 7g At = 64 to A\jg At = 512 days

e 7 of first 20 are associated with 79 At = 128 days (needed to
account for seasonal variabilty)

e k = 3 has inverted sign & picks out gradual dip in Spring, 1984
(cf. 1981, 3, 5, 7 & 8); k = 8 also inverted, but is a boundary

effect
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Example — Subtidal Sea Levels: IV
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e very first (k = 0) associated with overall increase in 19823

e first 10 are for 7g At = 64 to A\jg At = 512 days

e 7 of first 20 are associated with 79 At = 128 days (needed to
account for seasonal variabilty)

e k = 3 has inverted sign & picks out gradual dip in Spring, 1984

(cf. 1981, 3, 5, 7 & 8); k = 8 also inverted, but is a boundary
effect
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Example — Subtidal Sea Levels: IV
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e very first (k = 0) associated with overall increase in 19823
e first 10 are for 7g At = 64 to A\jg At = 512 days

e 7 of first 20 are associated with 79 At = 128 days (needed to
account for seasonal variabilty)

e k = 3 has inverted sign & picks out gradual dip in Spring, 1984
(cf. 1981, 3, 5, 7 & 8); k = 8 also inverted, but is a boundary
effect

WMTSA: 243-247 IX-11



Example — Subtidal Sea Levels: IV
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e very first (k = 0) associated with overall increase in 19823

e first 10 are for 7g At = 64 to A\jg At = 512 days

e 7 of first 20 are associated with 79 At = 128 days (needed to
account for seasonal variabilty)

e k = 3 has inverted sign & picks out gradual dip in Spring, 1984

(cf. 1981, 3, 5, 7 & 8); k = 8 also inverted, but is a boundary
effect
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Example — Subtidal Sea Levels: IV
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e very first (k = 0) associated with overall increase in 19823

e first 10 are for 7g At = 64 to A\jg At = 512 days

e 7 of first 20 are associated with 79 At = 128 days (needed to
account for seasonal variabilty)

e k = 3 has inverted sign & picks out gradual dip in Spring, 1984

(cf. 1981, 3, 5, 7 & 8); k = 8 also inverted, but is a boundary
effect

WMTSA: 243-247 IX-11



Example — Subtidal Sea Levels: IV
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(k = 0) associated with overall increase in 1982-3

e first 10 are for 7g At = 64 to A\jg At = 512 days

e 7 of first 20 are associated with 79 At = 128 days (needed to
account for seasonal variabilty)

e k = 3 has inverted sign & picks out gradual dip in Spring, 1984
(cf. 1981, 3, 5, 7 & 8); k = 8 also inverted, but is a boundary

effect
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Example — Subtidal Sea Levels: IV
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e very first (k = 0) associated with overall increase in 19823

e first 10 are for 7g At = 64 to A\jg At = 512 days

e 7 of first 20 are associated with 79 At = 128 days (needed to
account for seasonal variabilty)

e k = 3 has inverted sign & picks out gradual dip in Spring, 1984

(cf. 1981, 3, 5, 7 & 8); k = 8 also inverted, but is a boundary
effect
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Example — Subtidal Sea Levels: IV
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e very first (k = 0) associated with overall increase in 19823

e first 10 are for 7g At = 64 to A\jg At = 512 days

e 7 of first 20 are associated with 79 At = 128 days (needed to
account for seasonal variabilty)

e k = 3 has inverted sign & picks out gradual dip in Spring, 1984

(cf. 1981, 3, 5, 7 & 8); k = 8 also inverted, but is a boundary
effect
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Example — Subtidal Sea Levels: IV
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e very first (k = 0) associated with overall increase in 19823

e first 10 are for 7g At = 64 to A\jg At = 512 days

e 7 of first 20 are associated with 79 At = 128 days (needed to
account for seasonal variabilty)

e k = 3 has inverted sign & picks out gradual dip in Spring, 1984

(cf. 1981, 3, 5, 7 & 8); k = 8 also inverted, but is a boundary
effect

WMTSA: 243-247 IX-11



Example — Subtidal Sea Levels: IV
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(k = 0) associated with overall increase in 1982-3

e first 10 are for 7g At = 64 to A\jg At = 512 days

e 7 of first

20 are associated with 7 At = 128 days (needed to

account for seasonal variabilty)

e k = 3 has inverted sign & picks out gradual dip in Spring, 1984

(cf. 1981,
effect

WMTSA: 243-247

3,5, 7& 8); k =8 also inverted, but is a boundary
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Example — Subtidal Sea Levels: IV
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e very first (k = 0) associated with overall increase in 19823
e first 10 are for 7g At = 64 to A\jg At = 512 days

e 7 of first 20 are associated with 79 At = 128 days (needed to
account for seasonal variabilty)

e k = 3 has inverted sign & picks out gradual dip in Spring, 1984

(cf. 1981, 3, 5, 7 & 8); k = 8 also inverted, but is a boundary
effect

WMTSA: 243-247 IX-11



Example — Subtidal Sea Levels: IV
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e very first (k = 0) associated with overall increase in 19823

e first 10 are for 7g At = 64 to A\jg At = 512 days

e 7 of first 20 are associated with 79 At = 128 days (needed to
account for seasonal variabilty)

e k = 3 has inverted sign & picks out gradual dip in Spring, 1984
(cf. 1981, 3, 5, 7 & 8); k = 8 also inverted, but is a boundary

effect
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Example — Subtidal Sea Levels: V
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e matching pursuit approximations of orders m = 20, 50 and 200,
along with residuals for m = 200
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Example — Subtidal Sea Levels: VI

1980 1984 1988 1991

years

e matching pursuit approximations of orders m = 20, 50 and 200,
but now using a dictionary augmented to include basis vectors
corresponding to the DF'T

e k£ = 0 choice same as before, but £ = 1 choice is DFT vector
with period close to one year

o for 2 < k < 200, only £ = 65,84 and 192 are DF'T' vectors

WMTSA: 243-247 IX-13



Example — Subtidal Sea Levels: VII

1980 1984 1988 1991
years

e matching pursuit approximations of orders m = 20, 50 and 200,
but now using a dictionary consisting of just the basis vectors
corresponding to the DFE'T
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Example — Subtidal Sea Levels: VIII
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e normalized residual sum of squares |R™)||2/[|X||? versus num-
ber of terms m in matching pursuit approximation using the
MODWT dictionary (thick curve), the DFT-based dictionary

(dashed) and both dictionaries combined (thin)

e combined dictionary does best for small m, but MODWT dic-
tionary by itselt becomes competitive as m increases

WMTSA: 243-247 IX-15



