Examples of DWT & MODWT Analysis: Overview

e look at DWT analysis of electrocardiogram (ECG) data

e discuss potential alignment problems with the DW'T and how
they are alleviated with the MODW'T

e look at MODWT analysis of ECG data & 3 other time series

— subtidal sea level fluctuations
— Nile River minima
— ocean shear measurements

e discuss practical details

— choice of wavelet filter and of level J
— handling boundary conditions

— handling sample sizes that are not multiples of a power of 2
— definition of DWT not standardized
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Electrocardiogram Data: I
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e ECG measurements X taken during normal sinus rhythm of a

patient who occasionally experiences arhythmia (data courtesy
of Gust Bardy and Per Reinhall, University of Washington)

o N = 2048 samples collected at rate of 180 samples/second; i.e.,
At = 1/180 second

e 11.38 seconds of data in all
e time of X taken to be tg = 0.31 merely for plotting purposes

WMTSA: 125-127 VII-2



Electrocardiogram Data: 11
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e features include

— baseline drift (not directly related to heart)

— intermittent high-frequency fluctuations (again, not directly
related to heart)

— ‘PQRST’ portion of normal heart rhythm

e provides useful illustration of wavelet analysis because there are
identifiable features on several scales

WMTSA: 125-127 VII-3



Electrocardiogram Data: II1I
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e partial DW'T coefficients W of level Jy = 6 for ECG time series
using the Haar, D(4), C(6) and LA(8) wavelets (top to bottom)

WMTSA: 126 VII-4



Electrocardiogram Data: 1V

e clements W,, of W are plotted versusn =0, ..., N —1 = 2047
e vertical dotted lines delineate 7 subvectors Wy, ..., Wg & Vg
e sum of squares of 2048 coefficients W is equal to those of X

e or0ss pattern of coeflicients similar for all four wavelets

WMTSA: 126 VII-5



Electrocardiogram Data: V
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o LA(8) DWT coeflicients stacked by scale and aligned with time

e spacing between major tick marks is the same in both plots

WMTSA: 128 VII-6



Electrocardiogram Data: VI

e R waves aligned with spikes in W9 and W3
e intermittent fluctuations appear mainly in Wy and W»

e setting Jy = 6 results in Vg capturing baseline drift

WMTSA: 128 VII-7



Electrocardiogram Data: VII

e to quantifty how well various DWTs summarize X, can form
normalized partial energy sequences (NPESs)

o given {U; :t=0,..., N — 1}, square and order such that
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o U (20) is largest of all the U152 values while U (QN—l) is the smallest
e NPES for {U;} defined as
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Electrocardiogram Data: VIII

e plots show NPESs for

— original time series (dashed curve, plot (a))

— Haar DWT (solid curves, both plots)

— D(4) DWT (dashed curve, plot (b)); LA(8) is virtually iden-
tical

— DFT (dotted curve, plot (a)) with |U¢|? rather than U?
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Electrocardiogram Data: IX
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e Haar DW'T multiresolution analysis of ECG time series

e blocky nature of Haar basis vectors readily apparent

WMTSA: 130 VII-10



Electrocardiogram Data: X
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e D(4) DWT multiresolution analysis
e ‘shark’s fin’ evident in Ds and Dg

WMTSA: 131 VII-11



Electrocardiogram Data: XI
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e C(6) DWT multiresolution analysis
e ‘pyramids’ evident in Dg

WMTSA: 132 VII-12



Electrocardiogram Data: XII
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e LA(8) DWT MRA (shape of filter less prominent here)
e note where features end up (will find MODWT does better)

WMTSA: 133 VII-13



Effect of Circular Shifts on DWT: 1
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e bottom row: bump X and bump shifted to right by 5 units
o Jy =4 LA(8) DWTs (first 2 columns) and MRAs (last 2)

WMTSA: 160-161 VII-14



Effect of Circular Shifts on DWT: 11
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o level Jy = 4 basis vectors used in LA(8) DWT to produce
wavelet coefficients Wy ;, j =4,...,7 (wavey curves)

e ‘bump’ time series X (spikey curves in top row of plots)
o shifted bump series 7°X (spikey curves, bottom row)

e inner product between plotted basis vector and time series
yields labeled wavelet coefficient

e alicnment between basis vectors and time series explains why
DWTT's for two series are quite different

WMTSA: 161-162 VII-15



Effect of Circular Shifts on MODWT
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e unlike the DWT, shifting a time series shitts the MODW'T' co-
efficients and components of MRA

WMTSA: 179-181 VII-16
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Electrocardiogram Data: XIII
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e level Jy =6 LA(8) MODWT, with Wj’s circularly shifted

e vertical lines delineate ‘boundary’ coefficients (explained later)

WMTSA: 183
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Electrocardiogram Data: XIV
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e comparison of level 6 MODW'T and DW'T wavelet coeflicients,
after shifting for time alignment

e boundary coefficients delineated by vertical red lines

e subsampling & rescaling W6 yields Wy (note ‘aliasing’ effect)
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Electrocardiogram Data: XV
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e LA(8) MODWT multiresolution analysis of ECG data

WMTSA: 184

VII-19



Electrocardiogram Data: XVI
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e MODWT details seem more consistent across time than DW'T
details; e.g., Dg does not fade in and out as much as Dg

e ‘bumps’ in Dg are slightly asymmetric, whereas those in 756
aren’t
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Electrocardiogram Data: XVII
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e MODWT coefficients and MRA resemble each other, with lat-
ter being necessarily smoother due to second round of filtering

e in the above, §6 1s somewhat smoother than {}6 and 1Is an
intuitively reasonable estimate of the baseline drift
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Subtidal Sea Level Fluctuations: 1
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e subtidal sea level fluctuations X for Crescent City, CA, col-
lected by National Ocean Service with permanent tidal gauge

o N = 8746 values from Jan 1980 to Dec 1991 (almost 12 years)
e one value every 12 hours, so At = 1/2 day

e ‘subtidal’ is what remains after diurnal & semidiurnal tides are
removed by low-pass filter (filter seriously distorts frequency
band corresponding to first physical scale 7y At = 1/2 day)

WMTSA: 185-186 VII-22



Subtidal Sea Level Fluctuations: 11
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e level Jy = 7 Haar MODW'T multiresolution analysis
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Subtidal Sea Level Fluctuations: III
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o level Jy =7 LA(8) MODWT multiresolution analysis

WMTSA: 186 VII-24



Subtidal Sea Level Fluctuations: 1V

e LA(8) picked in part to help with time alignment of wavelet
coefficients, but MRAs for D(4) and C(6) are OK

e Haar MRA suffers from ‘leakage’

— Haar Dj has blgger fluctuations than LA(8) Dy

— Haar D4 and Dj track each other consistently, whereas LA(8)
D4 and D5 are decoupled to a better degree (see scatterplots)

e with Jy =7, §7 represents averages over scale A7 At = 64 days

e this choice of Jy captures intra-annual variations in §7 (not of
interest to decompose these variations further)

WMTSA: 186-188 VII-25



755 versus 754 for Haar Wavelet

e correlation coefhicient = (.64
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Ds, versus D, for LA(8) Wavelet

e correlation coefhicient = 0.31
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gain functions

gain functions

Gain Functions for Haar and LA(8) Details

e can obtain ﬁj by applying zero-phase filter to X (see Equa-
tion (172a)) — here are plots of the associated gain functions
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Subtidal Sea Level Fluctuations: V

years

e expanded view of 1985 and 1986 portion of MRA

e [ull in 52, ﬁg and 154 in December 1985 (associated with
changes on scales of 1, 2 and 4 days)

WMTSA: 187-188 VII-28



Subtidal Sea Level Fluctuations: VI

e MRA suggests seasonally dependent variability at some scales

e because MODWT-based MRA does not preserve energy, prefer-
able to study variability via MODWT wavelet coefficients

e cumulative variance plots for Wj usetul tool for studying time
dependent variance

e can create these plots for LA or coiflet-based \7\7]- as follows

g, H)— __
o form 7 V] ‘W]-, L.e., circularly shift W to align with X

WMTSA: 188-189 VII-29



Subtidal Sea Level Fluctuations: VII

e form normalized cumulative sum of squares:

t
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C'; E—E 12 , t=0,...,N —1;
It N j,u—|—|y]<.H)\ mod N

) — _
note that C; y_y = |77 "W||12/N = |[W,|2/N
e examples for 7 = 2 (left-hand plot) and j = 7 (right-hand)
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Subtidal Sea Level Fluctuations: VIII

e casier to see how variance is building up by subtracting uniform
rate of accumulation tC; y_1/(N — 1) from C} y:

/!

e yields rotated cumulative variance plots
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o C’ét and C’ét associated with physical scales of 1 and 32 days

e helps build up picture of how variability changes within a year

WMTSA: 189-190 VII-31



Subtidal Sea Level Fluctuations: IX
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e comparison of alignment properties of DWT and MODW'T de-
tails D5 and Ds, both associated with changes on a physical
scale of 75 At = 8 days (distance between tick marks)

e DWT details evidently suffer from alignment effects

WMTSA: 189-191

VII-32



Nile River Minima: 1
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e time series X of minimum yearly water level of the Nile River
e data from 622 to 1284, but actually extends up to 1921

e data after about 715 recorded at the Roda gauge near Cairo

e method(s) used to record data before 715 source of speculation

e oldest time series actually recorded by humans?!

WMTSA: 190-193 VII-33



Nile River Minima: 11
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e level Jy = 4 Haar MODWT MRA points out enhanced vari-
ability before 715 at scales 71 At = 1 year and ™ At = 2 year

e Haar wavelet adequate (minimizes # of boundary coefficients)

WMTSA: 190-193 VII-34



Ocean Shear Measurements: 1
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o level Jy = 6 MODWT multiresolution analysis using LA(S)
wavelet of vertical shear measurements (in inverse seconds) ver-
sus depth (in meters; series collected & supplied by Mike Gregg,
Applied Physics Laboratory, University of Washington)

WMTSA: 193-195 VII-35



Ocean Shear Measurements: 11

e At = 0.1 meters and N = 6875

e LA(8) protects against leakage and permits coefficients to be
aligned with depth

o Jy = 6 yields smooth 56 that is free of bursts (these are isolated
in the details D;)

e note small distortions at beginning/end of §6 evidently due to
assumption of circularity

e vertical blue lines delineate subseries of 4096 ‘burst free’ values
(to be reconsidered later)

e since MRA is dominated by g@, let’s focus on details alone

WMTSA: 193-195 VII-36



Ocean Shear Measurements: 111
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o Ysj’s pick out bursts around 450 and 975 meters, but two bursts
have somewhat different characteristics

e possible physical interpretation for first burst: turbulence in 154
drives shorter scale turbulence at greater depths

e hints of increased variability in 155 and 156 prior to second burst

WMTSA: 193-195 VII-37



Choice of Wavelet Filter: 1

e basic strategy: pick wavelet filter with smallest width L that

yields an acceptable analysis (smaller L means fewer boundary
coefficients)

e very much application dependent

— LA(8) good choice for MRA of ECG data and for time/depth
dependent analysis of variance (ANOVA) of subtidal sea lev-
els and shear data

— D(4) or C(6) good choices for MRA of subtidal sea levels,
but Haar isn’t (details ‘locked’ together, i.e., are not isolating
different aspects of the data)

— Haar good choice for MRA of Nile River minima

WMTSA: 135-136, 195-197 VII-38



Choice of Wavelet Filter: 11

e can often pick L via simple procedure of comparing different
MRAs or ANOVAs (this will sometimes rule out Haar if it
differs too much from D(4), D(6), C(6) or LA(8) analyses)

e for MRASs, might argue that we should pick {h;} that is a good
match to the ‘characteristic features’ in X

— hard to quantity what this means, particularly for time series
with different features over different times and scales

— Haar and D(4) are often a poor match, while the LA filters
are usually better because of their symmetry properties

— can use NPESs to quantify match between {h;} and X

e use LA filters or coiflets if time alignment of {W; ;} with X is
important (LA filters with even L/2) i.e., 8 12, 16 or 20, yield
better alignment than those with odd L/2)

WMTSA: 135-136, 195-197 VII-39



Choice of Level Jjy: 1

e again, very much application dependent, but often there is a
clear choice

— Jo = 6 picked for ECG data because 1t isolated the baseline
drift into Vg and Vg, and decomposing this drift further is
of no interest in studying heart rhythms

— Jy = 7 picked for subtidal sea levels because 1t trapped intra-
annual variations in Vg (not of interest to analyze these)

— Jy = 6 picked for shear data because \N76 is free of bursts;
Le., V j, for Jy < 6 would contain a portion of the bursts

— Jo = 4 picked for Nile River minima to demonstrate that
1ts time-dependent variance is due to variations on the two
smallest scales

WMTSA: 145, 199-200 VII-40



Choice of Level Jy: 11

e as Jy increases, there are more boundary coeflicients to deal
with, which suggests not making Jy too big

e if application doesn’t naturally suggest what Jy should be, an
ad hoc (but reasonable) default is to pick Jy such that circu-
larity assumption influences < 50% of Wz or D ;. (next topic
of discussion)

WMTSA: 145, 199-200 VII-41



Handling Boundary Conditions: I

e DWT and MODWTT treat time series X as if it were circular

e circularity says X _q is useful surrogate for X_ (sometimes
this is OK, e.g., subtidal sea levels, but in general it is ques-
tionable)

o first step is to delineate which parts of W, and D, are influ-
enced (at least to some degree) by circular boundary conditions

e by considering
Li—1
. —~ 5
Wit = 21/ Wj,ZJ(t+1)—1 and W, = Z hi 1 X1 mod N
[=0

can determine that circularity affects

1
. / . ! __

WMTSA: 136-141, 197-199 VII-42



Handling Boundary Conditions: 11

e can argue that L’1 = % — 1 and L;- = L — 2 for large enough 7

e circularity also affects the following elements of D;:
t:O,...,QJL;-—l and t =N —(L; —2/),...,N —1,
where L, = (27 —1)(L—1)+1
e for MODWT, circularity affects

e

Wigy, t=0,...,min{L; —2,N -1}

e circularity also affects the following elements of 153-:

t:O,...,L]'—Q andt:N—L]’—l—l,...,N—l

WMTSA: 136-141, 197-199 VII-43



Handling Boundary Conditions: III
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e examples of delineating LA(8) DWT boundary coefficients for
ECG data and of marking parts of MRA influenced by circu-
larity

WMTSA: 136-141, 197-199 VII-44



Handling Boundary Conditions: IV

e boundary regions increase as the filter width L increases

e for fixed L, boundary regions in DW'T MRAs are smaller than
those for MODW'T MRASs

e for fixed L, MRA boundary regions increase as J increases (an
exception is the Haar DW'T)

e these considerations might influence our choice of L and DW'T
versus MODW'T

WMTSA: 136-141, 197-199 VII-45
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Handling Boundary Conditions: V
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e comparison of DWT smooths Sg (top 4 plots) and MODWT
smooths Sg (bottom 4) for ECG data using, from top to bottom
within each group, the Haar, D(4), C(6) and LA(8) wavelets

WMTSA: 196

VII-46



Handling Boundary Conditions: VI

e just delineating parts of W and D, that are influenced by cir-
cular boundary conditions can be misleading (too pessimistic)

o effective width \; = 27, = 2J of jth level equivalent filters can
be much smaller than actual width L; = (2 — 1)(L — 1) + 1

e arguably less pessimistic delineations would be to always mark
boundaries appropriate for the Haar wavelet (its actual width
is the effective width for other filters)

WMTSA: 136-141, 197-199 VII-47



Handling Boundary Conditions: VII
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e plots of LA(8) equivalent wavelet/scaling filters, with actual
width L; compared to effective width of 2/

WMTSA: 136-141, 197-199 VII-48



Handling Boundary Conditions: VIII

e to lessen the impact of boundary conditions, we can use ‘tricks’
from Fourier analysis, which also treats X as if it were circular

— extend series with X (similar to zero padding)

— polynomial extrapolations

— use ‘reflection” boundary conditions by pasting a reflected
(time-reversed) version of X to end of X

—44.2

—53.8 L. . . A AR N L I L |

1800 1900 2000 2100 2200
year

— note that series so constructed of length 2/NV has same sample
mean and sample variance as original series X

WMTSA: 136-141, 197-199 VII-49



Handling Boundary Conditions: IX
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e comparison of effect of reflection (red /blue) and circular (black)
boundary conditions on LA(8) DWT-based MRA for oxygen
isotope data
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Handling Non-Power of Two Sample Sizes

e not a problem with the MODW'T, which is defined naturally
for all sample sizes N

e partial DW'T requires just N = M 2J0 rather than N = 27/
e can pad with sample mean X etc.
e can truncate down to multiple of 2J0

— truncate at beginning of series & do analysis
— truncate at end of series & do analysis

— combine two analyses together

e can use a specialized pyramid algorithm involving at most one
special term at each level

WMTSA: 141-145 VII-51



Lack of Standard Definition for DWT: 1

e our definition of DW'T matrix ¥V based upon

— convolutions rather than inner products

— odd indexed downsampling rather than even indexed

— using (—1)*1h; 1 to define g; rather than (—1)—1h,_;

— ordering coefficients in resulting transform from small to
large scale rather than large to small

e choices other than the above are used frequently elsewhere,
resulting in DWT's that can differ from what we have presented

WMTSA: 149-150 VII-52



Lack of Standard Definition for DWT': 11

e two left-hand columns: D(4) DWT matrix W as defined here

e two right-hand columns: S-Plus Wavelets D(4) DWT ma-
trix (after reordering of its row vectors)

e only the scaling coeflicient is guaranteed to be the same!!!
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