
Examples of DWT & MODWT Analysis: Overview

• look at DWT analysis of electrocardiogram (ECG) data

• discuss potential alignment problems with the DWT and how
they are alleviated with the MODWT

• look at MODWT analysis of ECG data & 3 other time series

− subtidal sea level fluctuations

− Nile River minima

− ocean shear measurements

• discuss practical details

− choice of wavelet filter and of level J0

− handling boundary conditions

− handling sample sizes that are not multiples of a power of 2

− definition of DWT not standardized
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Electrocardiogram Data: I
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• ECG measurements X taken during normal sinus rhythm of a
patient who occasionally experiences arhythmia (data courtesy
of Gust Bardy and Per Reinhall, University of Washington)

• N = 2048 samples collected at rate of 180 samples/second; i.e.,
∆t = 1/180 second

• 11.38 seconds of data in all

• time of X0 taken to be t0 = 0.31 merely for plotting purposes

WMTSA: 125–127 VII–2



Electrocardiogram Data: II
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• features include

− baseline drift (not directly related to heart)

− intermittent high-frequency fluctuations (again, not directly
related to heart)

− ‘PQRST’ portion of normal heart rhythm

• provides useful illustration of wavelet analysis because there are
identifiable features on several scales

WMTSA: 125–127 VII–3



Electrocardiogram Data: III
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• partial DWT coefficients W of level J0 = 6 for ECG time series
using the Haar, D(4), C(6) and LA(8) wavelets (top to bottom)

WMTSA: 126 VII–4



Electrocardiogram Data: IV

• elements Wn of W are plotted versus n = 0, . . . , N−1 = 2047

• vertical dotted lines delineate 7 subvectors W1, . . . ,W6 & V6

• sum of squares of 2048 coefficients W is equal to those of X

• gross pattern of coefficients similar for all four wavelets

WMTSA: 126 VII–5



Electrocardiogram Data: V
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• LA(8) DWT coefficients stacked by scale and aligned with time

• spacing between major tick marks is the same in both plots

WMTSA: 128 VII–6



Electrocardiogram Data: VI

• R waves aligned with spikes in W2 and W3

• intermittent fluctuations appear mainly in W1 and W2

• setting J0 = 6 results in V6 capturing baseline drift

WMTSA: 128 VII–7



Electrocardiogram Data: VII

• to quantify how well various DWTs summarize X, can form
normalized partial energy sequences (NPESs)

• given {Ut : t = 0, . . . , N − 1}, square and order such that

U2
(0) ≥ U2

(1) ≥ · · · ≥ U2
(N−2) ≥ U2

(N−1)

• U2
(0) is largest of all the U2

t values while U2
(N−1) is the smallest

• NPES for {Ut} defined as

Cn ≡

Pn
m=0 U2

(m)
PN−1

m=0 U2
(m)

, n = 0, 1, . . . , N − 1

WMTSA: 129 VII–8



Electrocardiogram Data: VIII

• plots show NPESs for

− original time series (dashed curve, plot (a))

− Haar DWT (solid curves, both plots)

− D(4) DWT (dashed curve, plot (b)); LA(8) is virtually iden-
tical

− DFT (dotted curve, plot (a)) with |Ut|2 rather than U2
t
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Electrocardiogram Data: IX
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• Haar DWT multiresolution analysis of ECG time series

• blocky nature of Haar basis vectors readily apparent

WMTSA: 130 VII–10



Electrocardiogram Data: X
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• D(4) DWT multiresolution analysis

• ‘shark’s fin’ evident in D5 and D6

WMTSA: 131 VII–11



Electrocardiogram Data: XI
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• C(6) DWT multiresolution analysis

• ‘pyramids’ evident in D6

WMTSA: 132 VII–12



Electrocardiogram Data: XII
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• LA(8) DWT MRA (shape of filter less prominent here)

• note where features end up (will find MODWT does better)

WMTSA: 133 VII–13



Effect of Circular Shifts on DWT: I
X T 5X X T 5X
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• bottom row: bump X and bump shifted to right by 5 units

• J0 = 4 LA(8) DWTs (first 2 columns) and MRAs (last 2)

WMTSA: 160–161 VII–14



Effect of Circular Shifts on DWT: II
W4,4 W4,5 W4,6 W4,7
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• level J0 = 4 basis vectors used in LA(8) DWT to produce
wavelet coefficients W4,j, j = 4, . . . , 7 (wavey curves)

• ‘bump’ time series X (spikey curves in top row of plots)

• shifted bump series T 5X (spikey curves, bottom row)

• inner product between plotted basis vector and time series
yields labeled wavelet coefficient

• alignment between basis vectors and time series explains why
DWTs for two series are quite different

WMTSA: 161–162 VII–15



Effect of Circular Shifts on MODWT
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• unlike the DWT, shifting a time series shifts the MODWT co-
efficients and components of MRA

WMTSA: 179–181 VII–16



Electrocardiogram Data: XIII
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• level J0 = 6 LA(8) MODWT, with fWj’s circularly shifted

• vertical lines delineate ‘boundary’ coefficients (explained later)

WMTSA: 183 VII–17



Electrocardiogram Data: XIV
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• comparison of level 6 MODWT and DWT wavelet coefficients,
after shifting for time alignment

• boundary coefficients delineated by vertical red lines

• subsampling & rescaling fW6 yields W6 (note ‘aliasing’ effect)
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Electrocardiogram Data: XV
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• LA(8) MODWT multiresolution analysis of ECG data

WMTSA: 184 VII–19



Electrocardiogram Data: XVI
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• MODWT details seem more consistent across time than DWT
details; e.g., eD6 does not fade in and out as much as D6

• ‘bumps’ in D6 are slightly asymmetric, whereas those in eD6
aren’t
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Electrocardiogram Data: XVII
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• MODWT coefficients and MRA resemble each other, with lat-
ter being necessarily smoother due to second round of filtering

• in the above, eS6 is somewhat smoother than eV6 and is an
intuitively reasonable estimate of the baseline drift
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Subtidal Sea Level Fluctuations: I
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• subtidal sea level fluctuations X for Crescent City, CA, col-
lected by National Ocean Service with permanent tidal gauge

• N = 8746 values from Jan 1980 to Dec 1991 (almost 12 years)

• one value every 12 hours, so ∆t = 1/2 day

• ‘subtidal’ is what remains after diurnal & semidiurnal tides are
removed by low-pass filter (filter seriously distorts frequency
band corresponding to first physical scale τ1 ∆t = 1/2 day)

WMTSA: 185–186 VII–22



Subtidal Sea Level Fluctuations: II
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• level J0 = 7 Haar MODWT multiresolution analysis
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Subtidal Sea Level Fluctuations: III
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• level J0 = 7 LA(8) MODWT multiresolution analysis

WMTSA: 186 VII–24



Subtidal Sea Level Fluctuations: IV

• LA(8) picked in part to help with time alignment of wavelet
coefficients, but MRAs for D(4) and C(6) are OK

• Haar MRA suffers from ‘leakage’

− Haar eD1 has bigger fluctuations than LA(8) eD1

− Haar eD4 and eD5 track each other consistently, whereas LA(8)
eD4 and eD5 are decoupled to a better degree (see scatterplots)

• with J0 = 7, eS7 represents averages over scale λ7 ∆t = 64 days

• this choice of J0 captures intra-annual variations in eS7 (not of
interest to decompose these variations further)

WMTSA: 186–188 VII–25



eD5 versus eD4 for Haar Wavelet

• correlation coefficient
.
= 0.64

 

 eD5
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eD5 versus eD4 for LA(8) Wavelet

• correlation coefficient
.
= 0.31

 

 eD5

eD4
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Gain Functions for Haar and LA(8) Details

• can obtain D̃j by applying zero-phase filter to X (see Equa-
tion (172a)) – here are plots of the associated gain functions
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Subtidal Sea Level Fluctuations: V
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• expanded view of 1985 and 1986 portion of MRA

• lull in eD2, eD3 and eD4 in December 1985 (associated with
changes on scales of 1, 2 and 4 days)

WMTSA: 187–188 VII–28



Subtidal Sea Level Fluctuations: VI

• MRA suggests seasonally dependent variability at some scales

• because MODWT-based MRA does not preserve energy, prefer-
able to study variability via MODWT wavelet coefficients

• cumulative variance plots for fWj useful tool for studying time
dependent variance

• can create these plots for LA or coiflet-based fWj as follows

• form T −|ν(H)
j |fWj, i.e., circularly shift fWj to align with X

WMTSA: 188–189 VII–29



Subtidal Sea Level Fluctuations: VII

• form normalized cumulative sum of squares:

Cj,t ≡
1

N

tX

u=0

fW 2

j,u+|ν(H)
j | mod N

, t = 0, . . . , N − 1;

note that Cj,N−1 = kT −|ν(H)
j |fWjk2/N = kfWjk2/N

• examples for j = 2 (left-hand plot) and j = 7 (right-hand)
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years

1980 1984 1988 1991
years

WMTSA: 189 VII–30



Subtidal Sea Level Fluctuations: VIII

• easier to see how variance is building up by subtracting uniform
rate of accumulation tCj,N−1/(N − 1) from Cj,t:

C0
j,t ≡ Cj,t − t

Cj,N−1

N − 1

• yields rotated cumulative variance plots

C 0
2,t C 0

7,t

1980 1984 1988 1991
years

1980 1984 1988 1991
years

• C0
2,t and C0

7,t associated with physical scales of 1 and 32 days

• helps build up picture of how variability changes within a year

WMTSA: 189–190 VII–31



Subtidal Sea Level Fluctuations: IX
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• comparison of alignment properties of DWT and MODWT de-
tails D5 and eD5, both associated with changes on a physical
scale of τ5 ∆t = 8 days (distance between tick marks)

• DWT details evidently suffer from alignment effects

WMTSA: 189–191 VII–32



Nile River Minima: I
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• time series X of minimum yearly water level of the Nile River

• data from 622 to 1284, but actually extends up to 1921

• data after about 715 recorded at the Roda gauge near Cairo

• method(s) used to record data before 715 source of speculation

• oldest time series actually recorded by humans?!

WMTSA: 190–193 VII–33



Nile River Minima: II
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• level J0 = 4 Haar MODWT MRA points out enhanced vari-
ability before 715 at scales τ1 ∆t = 1 year and τ2 ∆t = 2 year

• Haar wavelet adequate (minimizes # of boundary coefficients)

WMTSA: 190–193 VII–34



Ocean Shear Measurements: I
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• level J0 = 6 MODWT multiresolution analysis using LA(8)
wavelet of vertical shear measurements (in inverse seconds) ver-
sus depth (in meters; series collected & supplied by Mike Gregg,
Applied Physics Laboratory, University of Washington)

WMTSA: 193–195 VII–35



Ocean Shear Measurements: II

• ∆t = 0.1 meters and N = 6875

• LA(8) protects against leakage and permits coefficients to be
aligned with depth

• J0 = 6 yields smooth eS6 that is free of bursts (these are isolated
in the details eDj)

• note small distortions at beginning/end of eS6 evidently due to
assumption of circularity

• vertical blue lines delineate subseries of 4096 ‘burst free’ values
(to be reconsidered later)

• since MRA is dominated by eS6, let’s focus on details alone

WMTSA: 193–195 VII–36



Ocean Shear Measurements: III
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• eDj’s pick out bursts around 450 and 975 meters, but two bursts
have somewhat different characteristics

• possible physical interpretation for first burst: turbulence in eD4
drives shorter scale turbulence at greater depths

• hints of increased variability in eD5 and eD6 prior to second burst

WMTSA: 193–195 VII–37



Choice of Wavelet Filter: I

• basic strategy: pick wavelet filter with smallest width L that
yields an acceptable analysis (smaller L means fewer boundary
coefficients)

• very much application dependent

− LA(8) good choice for MRA of ECG data and for time/depth
dependent analysis of variance (ANOVA) of subtidal sea lev-
els and shear data

− D(4) or C(6) good choices for MRA of subtidal sea levels,
but Haar isn’t (details ‘locked’ together, i.e., are not isolating
different aspects of the data)

− Haar good choice for MRA of Nile River minima

WMTSA: 135–136, 195–197 VII–38



Choice of Wavelet Filter: II

• can often pick L via simple procedure of comparing different
MRAs or ANOVAs (this will sometimes rule out Haar if it
differs too much from D(4), D(6), C(6) or LA(8) analyses)

• for MRAs, might argue that we should pick {hl} that is a good
match to the ‘characteristic features’ in X

− hard to quantify what this means, particularly for time series
with different features over different times and scales

− Haar and D(4) are often a poor match, while the LA filters
are usually better because of their symmetry properties

− can use NPESs to quantify match between {hl} and X

• use LA filters or coiflets if time alignment of {Wj,t} with X is
important (LA filters with even L/2, i.e., 8, 12, 16 or 20, yield
better alignment than those with odd L/2)

WMTSA: 135–136, 195–197 VII–39



Choice of Level J0: I

• again, very much application dependent, but often there is a
clear choice

− J0 = 6 picked for ECG data because it isolated the baseline
drift into V6 and eV6, and decomposing this drift further is
of no interest in studying heart rhythms

− J0 = 7 picked for subtidal sea levels because it trapped intra-
annual variations in eV6 (not of interest to analyze these)

− J0 = 6 picked for shear data because eV6 is free of bursts;
i.e., eVJ0

for J0 < 6 would contain a portion of the bursts

− J0 = 4 picked for Nile River minima to demonstrate that
its time-dependent variance is due to variations on the two
smallest scales

WMTSA: 145, 199–200 VII–40



Choice of Level J0: II

• as J0 increases, there are more boundary coefficients to deal
with, which suggests not making J0 too big

• if application doesn’t naturally suggest what J0 should be, an
ad hoc (but reasonable) default is to pick J0 such that circu-
larity assumption influences < 50% of WJ0

or DJ0
(next topic

of discussion)

WMTSA: 145, 199–200 VII–41



Handling Boundary Conditions: I

• DWT and MODWT treat time series X as if it were circular

• circularity says XN−1 is useful surrogate for X−1 (sometimes
this is OK, e.g., subtidal sea levels, but in general it is ques-
tionable)

• first step is to delineate which parts of Wj and Dj are influ-
enced (at least to some degree) by circular boundary conditions

• by considering

Wj,t = 2j/2fWj,2j(t+1)−1 and fWj,t ≡
Lj−1X

l=0

h̃j,lXt−l mod N,

can determine that circularity affects

Wj,t, t = 0, . . . , L0j − 1 with L0j ≡
ª
(L− 2)

µ
1− 1

2j

∂º

WMTSA: 136–141, 197–199 VII–42



Handling Boundary Conditions: II

• can argue that L01 = L
2 − 1 and L0j = L− 2 for large enough j

• circularity also affects the following elements of Dj:

t = 0, . . . , 2jL0j − 1 and t = N − (Lj − 2j), . . . , N − 1,

where Lj = (2j − 1)(L− 1) + 1

• for MODWT, circularity affects

fWj,t, t = 0, . . . , min{Lj − 2, N − 1}

• circularity also affects the following elements of eDj:

t = 0, . . . , Lj − 2 and t = N − Lj + 1, . . . , N − 1

WMTSA: 136–141, 197–199 VII–43



Handling Boundary Conditions: III
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• examples of delineating LA(8) DWT boundary coefficients for
ECG data and of marking parts of MRA influenced by circu-
larity

WMTSA: 136–141, 197–199 VII–44



Handling Boundary Conditions: IV

• boundary regions increase as the filter width L increases

• for fixed L, boundary regions in DWT MRAs are smaller than
those for MODWT MRAs

• for fixed L, MRA boundary regions increase as J0 increases (an
exception is the Haar DWT)

• these considerations might influence our choice of L and DWT
versus MODWT

WMTSA: 136–141, 197–199 VII–45



Handling Boundary Conditions: V
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• comparison of DWT smooths S6 (top 4 plots) and MODWT
smooths eS6 (bottom 4) for ECG data using, from top to bottom
within each group, the Haar, D(4), C(6) and LA(8) wavelets

WMTSA: 196 VII–46



Handling Boundary Conditions: VI

• just delineating parts of Wj and Dj that are influenced by cir-
cular boundary conditions can be misleading (too pessimistic)

• effective width λj = 2τj = 2j of jth level equivalent filters can
be much smaller than actual width Lj = (2j − 1)(L− 1) + 1

• arguably less pessimistic delineations would be to always mark
boundaries appropriate for the Haar wavelet (its actual width
is the effective width for other filters)

WMTSA: 136–141, 197–199 VII–47



Handling Boundary Conditions: VII
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L1 = 8 vs. 2

L2 = 22 vs. 4

L3 = 50 vs. 8

L4 = 106 vs. 16

L1 = 8 vs. 2

L2 = 22 vs. 4

L3 = 50 vs. 8

L4 = 106 vs. 16

• plots of LA(8) equivalent wavelet/scaling filters, with actual
width Lj compared to effective width of 2j

WMTSA: 136–141, 197–199 VII–48



Handling Boundary Conditions: VIII

• to lessen the impact of boundary conditions, we can use ‘tricks’
from Fourier analysis, which also treats X as if it were circular

− extend series with X (similar to zero padding)

− polynomial extrapolations

− use ‘reflection’ boundary conditions by pasting a reflected
(time-reversed) version of X to end of X

−44.2

−53.8
1800 1900 2000 2100 2200

year

− note that series so constructed of length 2N has same sample
mean and sample variance as original series X

WMTSA: 136–141, 197–199 VII–49



Handling Boundary Conditions: IX
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• comparison of effect of reflection (red/blue) and circular (black)
boundary conditions on LA(8) DWT-based MRA for oxygen
isotope data
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Handling Non-Power of Two Sample Sizes

• not a problem with the MODWT, which is defined naturally
for all sample sizes N

• partial DWT requires just N = M2J0 rather than N = 2J

• can pad with sample mean X etc.

• can truncate down to multiple of 2J0

− truncate at beginning of series & do analysis

− truncate at end of series & do analysis

− combine two analyses together

• can use a specialized pyramid algorithm involving at most one
special term at each level

WMTSA: 141–145 VII–51



Lack of Standard Definition for DWT: I

• our definition of DWT matrix W based upon

− convolutions rather than inner products

− odd indexed downsampling rather than even indexed

− using (−1)l+1hL−1−l to define gl rather than (−1)l−1h1−l

− ordering coefficients in resulting transform from small to
large scale rather than large to small

• choices other than the above are used frequently elsewhere,
resulting in DWTs that can differ from what we have presented

WMTSA: 149–150 VII–52



Lack of Standard Definition for DWT: II

• two left-hand columns: D(4) DWT matrix W as defined here

• two right-hand columns: S-Plus Wavelets D(4) DWT ma-
trix (after reordering of its row vectors)

• only the scaling coefficient is guaranteed to be the same!!!
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