Examples of DWT & MODWT Analysis: Overview

- look at DWT analysis of electrocardiogram (ECG) data
- discuss potential alignment problems with the DWT and how they are alleviated with the MODWT
- look at MODWT analysis of ECG data & 3 other time series
 - subtidal sea level fluctuations
 - Nile River minima
 - ocean shear measurements
- discuss practical details
 - choice of wavelet filter and of level J_0
 - handling boundary conditions
 - handling sample sizes that are not multiples of a power of 2
 - definition of DWT not standardized

Electrocardiogram Data: I

- ECG measurements **X** taken during normal sinus rhythm of a patient who occasionally experiences arhythmia (data courtesy of Gust Bardy and Per Reinhall, University of Washington)
- N = 2048 samples collected at rate of 180 samples/second; i.e., $\Delta t = 1/180$ second
- 11.38 seconds of data in all
- time of X_0 taken to be $t_0 = 0.31$ merely for plotting purposes

Electrocardiogram Data: II

- features include
 - baseline drift (not directly related to heart)
 - intermittent high-frequency fluctuations (again, not directly related to heart)
 - 'PQRST' portion of normal heart rhythm
- provides useful illustration of wavelet analysis because there are identifiable features on several scales

• partial DWT coefficients **W** of level $J_0 = 6$ for ECG time series using the Haar, D(4), C(6) and LA(8) wavelets (top to bottom)

Electrocardiogram Data: IV

- elements W_n of **W** are plotted versus $n = 0, \ldots, N-1 = 2047$
- vertical dotted lines delineate 7 subvectors $\mathbf{W}_1, \ldots, \mathbf{W}_6 \& \mathbf{V}_6$
- sum of squares of 2048 coefficients \mathbf{W} is equal to those of \mathbf{X}
- gross pattern of coefficients similar for all four wavelets

Electrocardiogram Data: V

• LA(8) DWT coefficients stacked by scale and aligned with time

• spacing between major tick marks is the same in both plots

Electrocardiogram Data: VI

- R waves aligned with spikes in \mathbf{W}_2 and \mathbf{W}_3
- intermittent fluctuations appear mainly in \mathbf{W}_1 and \mathbf{W}_2
- setting $J_0 = 6$ results in \mathbf{V}_6 capturing baseline drift

Electrocardiogram Data: VII

- to quantify how well various DWTs summarize \mathbf{X} , can form normalized partial energy sequences (NPESs)
- given $\{U_t : t = 0, \dots, N-1\}$, square and order such that $U_{(0)}^2 \ge U_{(1)}^2 \ge \dots \ge U_{(N-2)}^2 \ge U_{(N-1)}^2$
- U²₍₀₎ is largest of all the U²_t values while U²_(N-1) is the smallest
 NPES for {U_t} defined as

$$C_n \equiv \frac{\sum_{m=0}^n U_{(m)}^2}{\sum_{m=0}^{N-1} U_{(m)}^2}, \quad n = 0, 1, \dots, N-1$$

Electrocardiogram Data: VIII

- plots show NPESs for
 - original time series (dashed curve, plot (a))
 - Haar DWT (solid curves, both plots)
 - D(4) DWT (dashed curve, plot (b)); LA(8) is virtually identical
 - DFT (dotted curve, plot (a)) with $|U_t|^2$ rather than U_t^2

Electrocardiogram Data: IX

- Haar DWT multiresolution analysis of ECG time series
- blocky nature of Haar basis vectors readily apparent

Electrocardiogram Data: X

- D(4) DWT multiresolution analysis
- 'shark's fin' evident in \mathcal{D}_5 and \mathcal{D}_6

WMTSA: 131

Electrocardiogram Data: XI

- \bullet C(6) DWT multiresolution analysis
- 'pyramids' evident in \mathcal{D}_6

WMTSA: 132

Electrocardiogram Data: XII

- LA(8) DWT MRA (shape of filter less prominent here)
- note where features end up (will find MODWT does better)

• bottom row: bump \mathbf{X} and bump shifted to right by 5 units

• $J_0 = 4 \text{ LA}(8) \text{ DWTs}$ (first 2 columns) and MRAs (last 2)

- level $J_0 = 4$ basis vectors used in LA(8) DWT to produce wavelet coefficients $W_{4,j}$, $j = 4, \ldots, 7$ (wavey curves)
- 'bump' time series **X** (spikey curves in top row of plots)
- shifted bump series $\mathcal{T}^5 \mathbf{X}$ (spikey curves, bottom row)
- inner product between plotted basis vector and time series yields labeled wavelet coefficient
- alignment between basis vectors and time series explains why DWTs for two series are quite different

Effect of Circular Shifts on MODWT

• unlike the DWT, shifting a time series shifts the MODWT coefficients and components of MRA

Electrocardiogram Data: XIII

• level $J_0 = 6$ LA(8) MODWT, with $\widetilde{\mathbf{W}}_j$'s circularly shifted

• vertical lines delineate 'boundary' coefficients (explained later)

Electrocardiogram Data: XIV

- comparison of level 6 MODWT and DWT wavelet coefficients, after shifting for time alignment
- boundary coefficients delineated by vertical red lines
- subsampling & rescaling $\widetilde{\mathbf{W}}_6$ yields \mathbf{W}_6 (note 'aliasing' effect)

Electrocardiogram Data: XV

• LA(8) MODWT multiresolution analysis of ECG data

Electrocardiogram Data: XVI

- MODWT details seem more consistent across time than DWT details; e.g., $\widetilde{\mathcal{D}}_6$ does not fade in and out as much as \mathcal{D}_6
- 'bumps' in \mathcal{D}_6 are slightly asymmetric, whereas those in $\widetilde{\mathcal{D}}_6$ aren't

Electrocardiogram Data: XVII

- MODWT coefficients and MRA resemble each other, with latter being necessarily smoother due to second round of filtering
- in the above, $\widetilde{\mathcal{S}}_6$ is somewhat smoother than $\widetilde{\mathbf{V}}_6$ and is an intuitively reasonable estimate of the baseline drift

Subtidal Sea Level Fluctuations: I

- subtidal sea level fluctuations **X** for Crescent City, CA, collected by National Ocean Service with permanent tidal gauge
- N = 8746 values from Jan 1980 to Dec 1991 (almost 12 years)
- one value every 12 hours, so $\Delta t = 1/2$ day
- 'subtidal' is what remains after diurnal & semidiurnal tides are removed by low-pass filter (filter seriously distorts frequency band corresponding to first physical scale $\tau_1 \Delta t = 1/2$ day)

Subtidal Sea Level Fluctuations: II

• level $J_0 = 7$ Haar MODWT multiresolution analysis

Subtidal Sea Level Fluctuations: III

• level $J_0 = 7 \text{ LA}(8)$ MODWT multiresolution analysis

Subtidal Sea Level Fluctuations: IV

- LA(8) picked in part to help with time alignment of wavelet coefficients, but MRAs for D(4) and C(6) are OK
- Haar MRA suffers from 'leakage'
 - Haar $\widetilde{\mathcal{D}}_1$ has bigger fluctuations than LA(8) $\widetilde{\mathcal{D}}_1$
 - Haar $\widetilde{\mathcal{D}}_4$ and $\widetilde{\mathcal{D}}_5$ track each other consistently, whereas LA(8) $\widetilde{\mathcal{D}}_4$ and $\widetilde{\mathcal{D}}_5$ are decoupled to a better degree (see scatterplots)
- with $J_0 = 7$, $\widetilde{\mathcal{S}}_7$ represents averages over scale $\lambda_7 \Delta t = 64$ days
- this choice of J_0 captures intra-annual variations in $\widetilde{\mathcal{S}}_7$ (not of interest to decompose these variations further)

$\widetilde{\mathcal{D}}_5$ versus $\widetilde{\mathcal{D}}_4$ for Haar Wavelet

• correlation coefficient $\doteq 0.64$

VII–26

$\widetilde{\mathcal{D}}_5$ versus $\widetilde{\mathcal{D}}_4$ for LA(8) Wavelet

• correlation coefficient $\doteq 0.31$

VII–27

Gain Functions for Haar and LA(8) Details

• can obtain $\widetilde{\mathcal{D}}_j$ by applying zero-phase filter to **X** (see Equation (172a)) – here are plots of the associated gain functions

Subtidal Sea Level Fluctuations: V

- \bullet expanded view of 1985 and 1986 portion of MRA
- lull in $\widetilde{\mathcal{D}}_2$, $\widetilde{\mathcal{D}}_3$ and $\widetilde{\mathcal{D}}_4$ in December 1985 (associated with changes on scales of 1, 2 and 4 days)

Subtidal Sea Level Fluctuations: VI

- MRA suggests seasonally dependent variability at some scales
- because MODWT-based MRA does not preserve energy, preferable to study variability via MODWT wavelet coefficients
- \bullet cumulative variance plots for $\widetilde{\mathbf{W}}_{j}$ useful tool for studying time dependent variance
- can create these plots for LA or coiffet-based $\widetilde{\mathbf{W}}_j$ as follows

• form $\mathcal{T}^{-|\nu_j^{(H)}|}\widetilde{\mathbf{W}}_j$, i.e., circularly shift $\widetilde{\mathbf{W}}_j$ to align with **X**

Subtidal Sea Level Fluctuations: VII

• form normalized cumulative sum of squares:

$$C_{j,t} \equiv \frac{1}{N} \sum_{u=0}^{t} \widetilde{W}_{j,u+|\nu_{j}^{(H)}| \mod N}^{2}, \quad t = 0, \dots, N-1;$$

note that $C_{j,N-1} = \|\mathcal{T}^{-\nu_j} \| \|\mathbf{W}_j\|^2 / N = \|\mathbf{W}_j\|^2 / N$

• examples for j = 2 (left-hand plot) and j = 7 (right-hand)

Subtidal Sea Level Fluctuations: VIII

• easier to see how variance is building up by subtracting uniform rate of accumulation $tC_{j,N-1}/(N-1)$ from $C_{j,t}$:

$$C'_{j,t} \equiv C_{j,t} - t \frac{C_{j,N-1}}{N-1}$$

• yields rotated cumulative variance plots

- $C'_{2,t}$ and $C'_{7,t}$ associated with physical scales of 1 and 32 days
- helps build up picture of how variability changes within a year

Subtidal Sea Level Fluctuations: IX

- comparison of alignment properties of DWT and MODWT details \mathcal{D}_5 and $\widetilde{\mathcal{D}}_5$, both associated with changes on a physical scale of $\tau_5 \Delta t = 8$ days (distance between tick marks)
- DWT details evidently suffer from alignment effects

Nile River Minima: I

- \bullet time series **X** of minimum yearly water level of the Nile River
- data from 622 to 1284, but actually extends up to 1921
- data after about 715 recorded at the Roda gauge near Cairo
- method(s) used to record data before 715 source of speculation
- oldest time series actually recorded by humans?!

Nile River Minima: II

• level $J_0 = 4$ Haar MODWT MRA points out enhanced variability before 715 at scales $\tau_1 \Delta t = 1$ year and $\tau_2 \Delta t = 2$ year

• Haar wavelet adequate (minimizes # of boundary coefficients)

Ocean Shear Measurements: I

• level $J_0 = 6$ MODWT multiresolution analysis using LA(8) wavelet of vertical shear measurements (in inverse seconds) versus depth (in meters; series collected & supplied by Mike Gregg, Applied Physics Laboratory, University of Washington)

Ocean Shear Measurements: II

- $\Delta t = 0.1$ meters and N = 6875
- LA(8) protects against leakage and permits coefficients to be aligned with depth
- $J_0 = 6$ yields smooth $\widetilde{\mathcal{S}}_6$ that is free of bursts (these are isolated in the details $\widetilde{\mathcal{D}}_j$)
- note small distortions at beginning/end of $\widetilde{\mathcal{S}}_6$ evidently due to assumption of circularity
- vertical blue lines delineate subseries of 4096 'burst free' values (to be reconsidered later)
- since MRA is dominated by $\widetilde{\mathcal{S}}_6$, let's focus on details alone

Ocean Shear Measurements: III

- $\widetilde{\mathcal{D}}_j$'s pick out bursts around 450 and 975 meters, but two bursts have somewhat different characteristics
- possible physical interpretation for first burst: turbulence in $\widetilde{\mathcal{D}}_4$ drives shorter scale turbulence at greater depths
- hints of increased variability in $\widetilde{\mathcal{D}}_5$ and $\widetilde{\mathcal{D}}_6$ prior to second burst

Choice of Wavelet Filter: I

- basic strategy: pick wavelet filter with smallest width L that yields an acceptable analysis (smaller L means fewer boundary coefficients)
- very much application dependent
 - LA(8) good choice for MRA of ECG data and for time/depth dependent analysis of variance (ANOVA) of subtidal sea levels and shear data
 - D(4) or C(6) good choices for MRA of subtidal sea levels, but Haar isn't (details 'locked' together, i.e., are not isolating different aspects of the data)
 - Haar good choice for MRA of Nile River minima

Choice of Wavelet Filter: II

- can often pick L via simple procedure of comparing different MRAs or ANOVAs (this will sometimes rule out Haar if it differs too much from D(4), D(6), C(6) or LA(8) analyses)
- for MRAs, might argue that we should pick $\{h_l\}$ that is a good match to the 'characteristic features' in **X**
 - hard to quantify what this means, particularly for time series with different features over different times and scales
 - Haar and D(4) are often a poor match, while the LA filters are usually better because of their symmetry properties
 - can use NPESs to quantify match between $\{h_l\}$ and **X**
- use LA filters or coiffets if time alignment of $\{W_{j,t}\}$ with **X** is important (LA filters with even L/2, i.e., 8, 12, 16 or 20, yield better alignment than those with odd L/2)

WMTSA: 135–136, 195–197

Choice of Level J_0 : I

- again, very much application dependent, but often there is a clear choice
 - $-J_0 = 6$ picked for ECG data because it isolated the baseline drift into \mathbf{V}_6 and $\widetilde{\mathbf{V}}_6$, and decomposing this drift further is of no interest in studying heart rhythms
 - $-J_0 = 7$ picked for subtidal sea levels because it trapped intraannual variations in $\widetilde{\mathbf{V}}_6$ (not of interest to analyze these)
 - $-J_0 = 6$ picked for shear data because $\widetilde{\mathbf{V}}_6$ is free of bursts; i.e., $\widetilde{\mathbf{V}}_{J_0}$ for $J_0 < 6$ would contain a portion of the bursts $-J_0 = 4$ picked for Nile River minima to demonstrate that its time-dependent variance is due to variations on the two smallest scales

Choice of Level J_0 : II

- as J_0 increases, there are more boundary coefficients to deal with, which suggests not making J_0 too big
- if application doesn't naturally suggest what J_0 should be, an ad hoc (but reasonable) default is to pick J_0 such that circularity assumption influences < 50% of \mathbf{W}_{J_0} or \mathcal{D}_{J_0} (next topic of discussion)

Handling Boundary Conditions: I

- DWT and MODWT treat time series \mathbf{X} as if it were circular
- circularity says X_{N-1} is useful surrogate for X_{-1} (sometimes this is OK, e.g., subtidal sea levels, but in general it is questionable)
- first step is to delineate which parts of \mathbf{W}_j and \mathcal{D}_j are influenced (at least to some degree) by circular boundary conditions
- by considering

$$W_{j,t} = 2^{j/2} \widetilde{W}_{j,2^{j}(t+1)-1}$$
 and $\widetilde{W}_{j,t} \equiv \sum_{l=0}^{L_{j}-1} \widetilde{h}_{j,l} X_{t-l \mod N}$,

can determine that circularity affects

$$W_{j,t}, t = 0, \dots, L'_j - 1$$
 with $L'_j \equiv \left[(L-2) \left(1 - \frac{1}{2^j} \right) \right]$

Handling Boundary Conditions: II

• can argue that $L'_1 = \frac{L}{2} - 1$ and $L'_j = L - 2$ for large enough j

• circularity also affects the following elements of \mathcal{D}_i :

$$t = 0, \dots, 2^{j} L'_{j} - 1$$
 and $t = N - (L_{j} - 2^{j}), \dots, N - 1$,
where $L_{j} = (2^{j} - 1)(L - 1) + 1$

• for MODWT, circularity affects

$$\widetilde{W}_{j,t}, \quad t = 0, \dots, \min\{L_j - 2, N - 1\}$$

• circularity also affects the following elements of $\widetilde{\mathcal{D}}_j$:

$$t = 0, \dots, L_j - 2$$
 and $t = N - L_j + 1, \dots, N - 1$

Handling Boundary Conditions: III

• examples of delineating LA(8) DWT boundary coefficients for ECG data and of marking parts of MRA influenced by circularity

Handling Boundary Conditions: IV

- boundary regions increase as the filter width L increases
- \bullet for fixed L, boundary regions in DWT MRAs are smaller than those for MODWT MRAs
- for fixed L, MRA boundary regions increase as J_0 increases (an exception is the Haar DWT)
- \bullet these considerations might influence our choice of L and DWT versus MODWT

Handling Boundary Conditions: V

• comparison of DWT smooths S_6 (top 4 plots) and MODWT smooths \widetilde{S}_6 (bottom 4) for ECG data using, from top to bottom within each group, the Haar, D(4), C(6) and LA(8) wavelets

Handling Boundary Conditions: VI

- just delineating parts of \mathbf{W}_j and \mathcal{D}_j that are influenced by circular boundary conditions can be misleading (too pessimistic)
- effective width $\lambda_j = 2\tau_j = 2^j$ of *j*th level equivalent filters can be much smaller than actual width $L_j = (2^j - 1)(L - 1) + 1$
- arguably less pessimistic delineations would be to always mark boundaries appropriate for the Haar wavelet (its actual width is the effective width for other filters)

Handling Boundary Conditions: VII

• plots of LA(8) equivalent wavelet/scaling filters, with actual width L_j compared to effective width of 2^j

Handling Boundary Conditions: VIII

- to lessen the impact of boundary conditions, we can use 'tricks' from Fourier analysis, which also treats \mathbf{X} as if it were circular
 - extend series with \overline{X} (similar to zero padding)
 - polynomial extrapolations
 - use 'reflection' boundary conditions by pasting a reflected (time-reversed) version of \mathbf{X} to end of \mathbf{X}

mean and sample variance as original series \mathbf{X}

Handling Boundary Conditions: IX

• comparison of effect of reflection (red/blue) and circular (black) boundary conditions on LA(8) DWT-based MRA for oxygen isotope data

Handling Non-Power of Two Sample Sizes

- \bullet not a problem with the MODWT, which is defined naturally for all sample sizes N
- partial DWT requires just $N = M2^{J_0}$ rather than $N = 2^J$
- can pad with sample mean \overline{X} etc.
- can truncate down to multiple of 2^{J_0}
 - truncate at beginning of series & do analysis
 - truncate at end of series & do analysis
 - combine two analyses together
- can use a specialized pyramid algorithm involving at most one special term at each level

Lack of Standard Definition for DWT: I

- \bullet our definition of DWT matrix ${\cal W}$ based upon
 - convolutions rather than inner products
 - odd indexed downsampling rather than even indexed
 - using $(-1)^{l+1}h_{L-1-l}$ to define g_l rather than $(-1)^{l-1}h_{1-l}$
 - ordering coefficients in resulting transform from small to large scale rather than large to small
- choices other than the above are used frequently elsewhere, resulting in DWTs that can differ from what we have presented

Lack of Standard Definition for DWT: II

- two left-hand columns: D(4) DWT matrix \mathcal{W} as defined here
- two right-hand columns: **S-Plus Wavelets** D(4) DWT matrix (after reordering of its row vectors)
- only the scaling coefficient is guaranteed to be the same!!!

WMTSA: 149–150